Skip to main content
Log in

With great structure comes great functionality: Understanding and emulating spider silk

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The overarching aim of biomimetic approaches to materials synthesis is to mimic simultaneously the structure and function of a natural material, in such a way that these functional properties can be systematically tailored and optimized. In the case of synthetic spider silk fibers, to date functionalities have largely focused on mechanical properties. A rapidly expanding body of literature documents this work, building on the emerging knowledge of structure–function relationships in native spider silks, and the spinning processes used to create them. Here, we describe some of the benchmark achievements reported until now, with a focus on the last five years. Progress in protein synthesis, notably the expression on full-size spidroins, has driven substantial improvements in synthetic spider silk performance. Spinning technology, however, lags behind and is a major limiting factor in biomimetic production. We also discuss applications for synthetic silk that primarily capitalize on its nonmechanical attributes, and that exploit the remarkable range of structures that can be formed from a synthetic silk feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. W.A. Shear, J.M. Palmer, J.A. Coddington, and P.M. Bonamo: A Devonian spinneret: Early evidence of spiders and silk use. Science 246, 479 (1989).

    CAS  Google Scholar 

  2. J.M. Gosline, P.A. Guerette, C.S. Ortlepp, and K.N. Savage: The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295 (1999).

    CAS  Google Scholar 

  3. F. Vollrath and D.P. Knight: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).

    CAS  Google Scholar 

  4. A. Rising: Controlled assembly: A prerequisite for the use of recombinant spider silk in regenerative medicine?Acta Biomater. 10, 1627 (2014).

    CAS  Google Scholar 

  5. U. Slotta, N. Mougin, L. Römer, and A.H. Leimer: Synthetic spider silk proteins and threads. Chem. Eng. Prog. 108, 43 (2012).

    CAS  Google Scholar 

  6. M. Humenik, A.M. Smith, and T. Scheibel: Recombinant spider silks—Biopolymers with potential for future applications. Polymers 3, 640 (2011).

    CAS  Google Scholar 

  7. M. Widhe, J. Johansson, M. Hedhammar, and A. Rising: Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468 (2012).

    CAS  Google Scholar 

  8. O. Tokareva, M. Jacobsen, M. Buehler, J. Wong, and D.L. Kaplan: Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomater. 10, 1612 (2014).

    CAS  Google Scholar 

  9. O. Tokareva, V.A. Michalczechen-Lacerda, E.L. Rech, and D.L. Kaplan: Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6, 651 (2013).

    CAS  Google Scholar 

  10. M. Widhe, J. Johansson, M. Hedhammar, and A. Rising: Invited review: Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468 (2012).

    CAS  Google Scholar 

  11. D. Bittencourt, P.F. Oliveira, F. Prosdocimi, and E.L. Rech: Protein families, natural history and biotechnological aspects of spider silk. Genet. Mol. Res. 11, 2360 (2012).

    CAS  Google Scholar 

  12. A. Tarakanova and M.J. Buehler: A materiomics approach to spider silk: Protein molecules to webs. JOM 64, 214 (2012).

    CAS  Google Scholar 

  13. Y. Yang, X. Chen, Z. Shao, P. Zhou, D. Porter, D.P. Knight, and F. Vollrath: Toughness of spider silk at high and low temperatures. Adv. Mat. 17, 84 (2005).

    Google Scholar 

  14. E.M. Pogozelski, W.L. Becker, B.D. See, and C.M. Kieffer: Mechanical testing of spider silk at cryogenic temperatures. Int. J. Biol. Macromol. 48, 27 (2011).

    CAS  Google Scholar 

  15. F. Vollrath and D. Porter: Silks as ancient models for modern polymers. Polymer 50, 5623 (2009).

    CAS  Google Scholar 

  16. I. Agnarsson, M. Kuntner, and T.A. Blackledge: Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. PLoS One 5, 1 (2010).

    Google Scholar 

  17. M. Gregorič, I. Agnarsson, T.A. Blackledge, and M. Kuntner: Darwin’s bark spider: Giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae)?J. Arachnol. 39, 287 (2011).

    Google Scholar 

  18. I. Agnarsson, C. Boutry, and T.A. Blackledge: Spider silk aging: Initial improvement in a high performance material followed by slow degradation. J. Exp. Zool. A Ecol. Genet. Physiol. 309A, 494 (2008).

    Google Scholar 

  19. B.O. Swanson, T.A. Blackledge, A.P. Summers, and C.Y. Hayashi: Spider dragline silk: Correlated and mosaic evolution in high-performance biological materials. Evolution 60, 2539 (2006).

    Google Scholar 

  20. J. Asrar and J.C. Hill: Biosynthetic processes for linear polymers. J. Appl. Polym. Sci. 83, 457 (2002).

    CAS  Google Scholar 

  21. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Tough, bio-inspired hybrid materials. Science 322, 1516 (2008).

    CAS  Google Scholar 

  22. C.P. Brown, C. Harnagea, H.S. Gill, A.J. Price, E. Traversa, S. Licoccia, and F. Rosei: Rough fibrils provide a toughening mechanism in biological fibers. ACS Nano 6, 1961 (2012).

    CAS  Google Scholar 

  23. S. Keten and M.J. Buehler: Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743 (2008).

    CAS  Google Scholar 

  24. A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, and K. Weisshart: Composition and hierarchical organisation of a spider silk. PLoS One 2, e998 (2007).

    Google Scholar 

  25. K.J. Koski, P. Akhenblit, K. McKiernan, and J.L. Yarger: Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262 (2013).

    CAS  Google Scholar 

  26. M. Xu and R.V. Lewis: Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. U. S. A. 87, 7120 (1990).

    CAS  Google Scholar 

  27. M. Heim, L. Romer, and T. Scheibel: Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chem. Soc. Rev. 39, 156 (2010).

    CAS  Google Scholar 

  28. A.H. Simmons, C.A. Michal, and L.W. Jelinski: Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84 (1996).

    CAS  Google Scholar 

  29. B. Bonev, S. Grieve, M.E. Herberstein, A.I. Kishore, A. Watts, and F. Separovic: Orientational order of Australian spider silks as determined by solid-state NMR. Biopolymers 82, 134 (2006).

    CAS  Google Scholar 

  30. J.D. van Beek, S. Hess, F. Vollrath, and B.H. Meier: The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. U. S. A. 99, 10266 (2002).

    Google Scholar 

  31. F. Vollrath and D. Porter: Spider silk as archetypal protein elastomer. Soft Matter 2, 377 (2006).

    CAS  Google Scholar 

  32. X.Y. Liu, A. Sponner, D. Porter, and F. Vollrath: Proline and processing of spider silks. Biomacromolecules 9, 116 (2008).

    CAS  Google Scholar 

  33. K.N. Savage and J.M. Gosline: The role of proline in the elastic mechanism of hydrated spider silks. J. Exp. Biol. 211, 1948 (2008).

    Google Scholar 

  34. K.N. Savage and J.M. Gosline: The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties. J. Exp. Biol. 211, 1937 (2008).

    CAS  Google Scholar 

  35. C.P. Brown, J. MacLeod, H. Amenitsch, F. Cacho-Nerin, H.S. Gill, A.J. Price, E. Traversa, S. Licoccia, and F. Rosei: The critical role of water in spider silk and its consequence for protein mechanics. Nanoscale 3, 3805 (2011).

    CAS  Google Scholar 

  36. J. Guan, D. Porter, and F. Vollrath: Silks cope with stress by tuning their mechanical properties under load. Polymer 53, 2717 (2012).

    CAS  Google Scholar 

  37. D. Porter, F. Vollrath, and Z. Shao: Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E: Soft Matter Biol. Phys. 16, 199 (2005).

    CAS  Google Scholar 

  38. B. Mortimer, S.D. Gordon, C. Holland, C.R. Siviour, F. Vollrath, and J.F.C. Windmill: The speed of sound in silk: Linking material performance to biological function. Adv. Mat. 26, 5179 (2014).

    CAS  Google Scholar 

  39. S. Keten and M.J. Buehler: Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008).

    Google Scholar 

  40. S. Keten and M.J. Buehler: Atomistic model of the spider silk nanostructure. Appl. Phys. Lett. 96, 153701 (2010).

    Google Scholar 

  41. S. Keten, Z. Xu, B. Ihle, and M.J. Buehler: Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 9, 359 (2010).

    CAS  Google Scholar 

  42. Z. Qin and M.J. Buehler: Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals. Phys. Rev. E 82, 061906 (2010).

    Google Scholar 

  43. S. Keten and M.J. Buehler: Nanostructure and molecular mechanics of dragline spider silk protein assemblies. J. Roy. Soc. Interface 7, 1709 (2010).

    CAS  Google Scholar 

  44. Sandeep P. Patil, B. Markert, and F. Gräter: Rate-dependent behavior of the amorphous phase of spider dragline silk. Biophys. J. 106, 2511 (2014).

    CAS  Google Scholar 

  45. T. Giesa, M. Arslan, N.M. Pugno, and M.J. Buehler: Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett. 11, 5038 (2011).

    CAS  Google Scholar 

  46. S.W. Cranford: Increasing silk fibre strength through heterogeneity of bundled fibrils. J. R. Soc. Interface 10, 20130148 (2013).

    Google Scholar 

  47. G. Xu, L. Gong, Z. Yang, and X.Y. Liu: What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter 10, 2116 (2014).

    CAS  Google Scholar 

  48. S.T. Krishnaji, G. Bratzel, M.E. Kinahan, J.A. Kluge, C. Staii, J.Y. Wong, M.J. Buehler, and D.L. Kaplan: Sequence–structure–property relationships of recombinant spider silk proteins: Integration of biopolymer design, processing, and modeling. Adv. Funct. Mater. 23, 241 (2013).

    CAS  Google Scholar 

  49. J.Y. Wong, J. McDonald, M. Taylor-Pinney, D.I. Spivak, D.L. Kaplan, and M.J. Buehler: Materials by design: Merging proteins and music. Nano Today 7, 488 (2012).

    CAS  Google Scholar 

  50. C. Holland, F. Vollrath, A.J. Ryan, and O.O. Mykhaylyk: Silk and synthetic polymers: Reconciling 100 degrees of separation. Adv. Mater. 24, 105 (2012).

    CAS  Google Scholar 

  51. F. Vollrath, D. Porter, and C. Holland: There are many more lessons still to be learned from spider silks. Soft Matter 7, 9595 (2011).

    CAS  Google Scholar 

  52. A Heidebrecht and T. Scheibel: Recombinant production of spider silk proteins. Adv. Appl. Microbiol. 82, 115 (2013).

    CAS  Google Scholar 

  53. N.A. Ayoub, J.E. Garb, A. Kuelbs, and C.Y. Hayashi: Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol. Biol. Evol. 30, 589 (2013).

    CAS  Google Scholar 

  54. A. Chinali, W. Vater, B. Rudakoff, A. Sponner, E. Unger, F. Grosse, K.H. Guehrs, and K. Weisshart: Containment of extended length polymorphisms in silk proteins. J. Mol. Evol. 70, 325 (2010).

    CAS  Google Scholar 

  55. N.A. Ayoub, J.E. Garb, R.M. Tinghitella, M.A. Collin, and C.Y. Hayashi: Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes. PLoS One 2, e514 (2007).

    Google Scholar 

  56. Y. Zhang, A.C. Zhao, Y.H. Sima, C. Lu, Z.H. Xiang, and M. Nakagaki: The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: A second blueprint for synthesizing de novo silk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 164, 151 (2013).

    CAS  Google Scholar 

  57. K.W. Sanggaard, J.S. Bechsgaard, X. Fang, J. Duan, T.F. Dyrlund, V. Gupta, X. Jiang, L. Cheng, D. Fan, Y. Feng, L. Han, Z. Huang, Z. Wu, L. Liao, V. Settepani, I.B. Thogersen, B. Vanthournout, T. Wang, Y. Zhu, P. Funch, J.J. Enghild, L. Schauser, S.U. Andersen, P. Villesen, M.H. Schierup, T. Bilde, and J. Wang: Spider genomes provide insight into composition and evolution of venom and silk. Nat. Commun. 5, 3765 (2014).

    CAS  Google Scholar 

  58. P.L. Tai, G.Y. Hwang, and I.M. Tso: Inter-specific sequence conservation and intra-individual sequence variation in a spider silk gene. Int. J. Biol. Macromol. 34, 295 (2004).

    CAS  Google Scholar 

  59. R. Beckwitt and S. Arcidiacono: Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (tetragnathidae) and Araneus bicentenarius (Araneidae). J. Biol. Chem. 269, 6661 (1994).

    CAS  Google Scholar 

  60. G. Askarieh, M. Hedhammar, K. Nordling, A. Saenz, C. Casals, A. Rising, J. Johansson, and S.D. Knight: Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236 (2010).

    CAS  Google Scholar 

  61. G. Gronau, Z. Qin, and M.J. Buehler: Effect of sodium chloride on the structure and stability of spider silk’s N-terminal protein domain. Biomater. Sci. 1, 276 (2013).

    CAS  Google Scholar 

  62. F. Hagn, L. Eisoldt, J.G. Hardy, C. Vendrely, M. Coles, T. Scheibel, and H. Kessler: A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239 (2010).

    CAS  Google Scholar 

  63. F. Prosdocimi, D. Bittencourt, F.R. da Silva, M. Kirst, P.C. Motta, and E.L. Rech: Spinning gland transcriptomics from two main clades of spiders (order: Araneae)—Insights on their molecular, anatomical and behavioral evolution. PLoS One 6, e21634 (2011).

    CAS  Google Scholar 

  64. T.H. Clarke, J.E. Garb, C.Y. Hayashi, R.A. Haney, A.K. Lancaster, S. Corbett, and N.A. Ayoub: Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15, 365 (2014).

    Google Scholar 

  65. R.F. Foelix: The Biology of Spiders (Oxford University Press, New York, 1996). p. 336.

    Google Scholar 

  66. T. Lefèvre, S. Boudreault, C. Cloutier, and M. Pézolet: Diversity of molecular transformations involved in the formation of spider silks. J. Mol. Biol. 405, 238 (2011).

    Google Scholar 

  67. D. Knight and F. Vollrath: Hexagonal columnar liquid crystal in the cells secreting spider silk. Tissue Cell 31, 617 (1999).

    CAS  Google Scholar 

  68. D.H. Hijirida, K.G. Do, C. Michal, S. Wong, D. Zax, and L.W. Jelinski: 13C NMR of Nephila clavipes major ampullate silk gland. Biophys. J. 71, 3442 (1996).

    CAS  Google Scholar 

  69. H.J. Jin and D.L. Kaplan: Mechanism of silk processing in insects and spiders. Nature 424, 1057 (2003).

    CAS  Google Scholar 

  70. S. Rammensee, U. Slotta, T. Scheibel, and A.R. Bausch: Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. U. S. A. 105, 6590 (2008).

    CAS  Google Scholar 

  71. F. Vollrath, N. Hawkins, D. Porter, C. Holland, and M. Boulet-Audet: Differential scanning fluorimetry provides high throughput data on silk protein transitions. Sci. Rep. 4, 5625 (2014).

    CAS  Google Scholar 

  72. J.G. Hardy, L.M. Römer, and T.R. Scheibel: Polymeric materials based on silk proteins. Polymer 49, 4309 (2008).

    CAS  Google Scholar 

  73. F. Vollrath and D.P. Knight: Structure and function of the silk production pathway in the spider Nephila edulis. Int. J Biol. Macromol. 24, 243 (1999).

    CAS  Google Scholar 

  74. J. Leclerc, T. Lefèvre, M. Gauthier, S.M. Gagné, and M. Auger: Hydrodynamical properties of recombinant spider silk proteins: Effects of pH, salts and shear, and implications for the spinning process. Biopolymers 99, 582 (2013).

    CAS  Google Scholar 

  75. J. Kovoor and A. Munoz-Cuevas: Structure and function of the silk-gland system in Oxyopidae (Araneae). In Proceedings of the 17th European Colloquium of Arachnology, Edinburgh 1997, 1998; p. 133.

  76. M.A. Garrido, M. Elices, C. Viney, and J. Pérez-Rigueiro: Active control of spider silk strength: Comparison of drag line spun on vertical and horizontal surfaces. Polymer 43, 1537 (2002).

    CAS  Google Scholar 

  77. A.A. Griffith: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A 221, 163 (1921).

    Google Scholar 

  78. F. Teulé, A.R. Cooper, W.A. Furin, D. Bittencourt, E.L. Rech, A. Brooks, and R.V. Lewis: A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4, 341 (2009).

    Google Scholar 

  79. R. Menassa, H. Zhu, C.N. Karatzas, A. Lazaris, A. Richman, and J. Brandle: Spider dragline silk proteins in transgenic tobacco leaves: Accumulation and field production. Plant Biotechnol. J. 2, 431 (2004).

    CAS  Google Scholar 

  80. S.R. Fahnestock and L.A. Bedzyk: Production of synthetic spider dragline silk protein in Pichia pastoris. Appl. Microbiol. Biotechnol. 47, 33 (1997).

    CAS  Google Scholar 

  81. F. Teulé, Y-G. Miao, B-H. Sohn, Y-S. Kim, J.J. Hull, M.J. Fraser, R.V. Lewis, and D.L. Jarvis: Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. U.S.A. 109, 923 (2012).

    Google Scholar 

  82. H.B. Steinkraus, H. Rothfuss, J.A. Jones, E. Dissen, E. Shefferly, and R.V. Lewis: The absence of detectable fetal microchimerism in nontransgenic goats (Capra aegagrus hircus) bearing transgenic offspring. J. Anim. Sci. 90, 481 (2012).

    CAS  Google Scholar 

  83. A. Lazaris, S. Arcidiacono, Y. Huang, J-F. Zhou, F. Duguay, N. Chretien, E.A. Welsh, J.W. Soares, and C.N. Karatzas: Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472 (2002).

    CAS  Google Scholar 

  84. J. Leclerc, T. Lefèvre, F. Pottier, L.P. Morency, C. Lapointe-Verreault, S.M. Gagné, and M. Auger: Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution. Biopolymers 97, 337 (2012).

    CAS  Google Scholar 

  85. X-X. Xia, Z-G. Qian, C.S. Ki, Y.H. Park, D.L. Kaplan, and S.Y. Lee: Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. U. S. A. 107, 14059 (2010).

    CAS  Google Scholar 

  86. S.R. Fahnestock, Z. Yao, and L.A. Bedzyk: Microbial production of spider silk proteins. Rev. Mol. Biotechnol. 74, 105 (2000).

    CAS  Google Scholar 

  87. D.M. Widmaier, D. Tullman-Ercek, E.A. Mirsky, R. Hill, S. Govindarajan, J. Minshull, and C.A. Voigt: Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 308 (2009).

    Google Scholar 

  88. D.M. Widmaier and C.A. Voigt: Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb. Cell Fact. 9, 78 (2010).

    Google Scholar 

  89. A.M. Goncalves, A.Q. Pedro, C. Maia, F. Sousa, J.A. Queiroz, and L.A. Passarinha: Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins. J. Microbiol. Biotechnol. 23, 587 (2013).

    CAS  Google Scholar 

  90. V. Hauptmann, N. Weichert, M. Rakhimova, and U. Conrad: Spider silks from plants—A challenge to create native-sized spidroins. Biotechnol. J. 8, 1183 (2013).

    CAS  Google Scholar 

  91. S. Grip, A. Rising, H. Nimmervoll, E. Storckenfeldt, S.J. Mcqueen-Mason, N. Pouchkina-Stantcheva, F. Vollrath, W. Engström, and A. Fernandez-Arias: Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genom. Proteom. 3, 83 (2006).

    CAS  Google Scholar 

  92. N. Weichert, V. Hauptmann, M. Menzel, K. Schallau, P. Gunkel, T.C. Hertel, M. Pietzsch, U. Spohn, and U. Conrad: Transglutamination allows production and characterization of native-sized ELPylated spider silk proteins from transgenic plants. Plant Biotechnol. J. 12, 265 (2014).

    CAS  Google Scholar 

  93. H-T. Xu, B-L. Fan, S-Y. Yu, Y-H. Huang, Z-H. Zhao, Z-X. Lian, Y-P. Dai, L-L. Wang, Z-L. Liu, J. Fei, and N. Li: Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Ani. Biotechnol. 18, 1 (2007).

    Google Scholar 

  94. M. Elices, G.V. Guinea, G.R. Plaza, C. Karatzas, C. Riekel, F. Agulló-Rueda, R. Daza, and J. Pérez-Rigueiro: Bioinspired fibers follow the track of natural spider silk. Macromolecules 44, 1166 (2011).

    CAS  Google Scholar 

  95. Y. Zhang, J. Hu, Y. Miao, A. Zhao, T. Zhao, D. Wu, L. Liang, A. Miikura, K. Shiomi, Z. Kajiura, and M. Nakagaki: Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol. Biol. Rep. 35, 329 (2008).

    Google Scholar 

  96. K. Schacht and T. Scheibel: Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr. Opin. Biotechnol. 29, 62 (2014).

    CAS  Google Scholar 

  97. P. Domachuk, K. Tsioris, F.G. Omenetto, and D.L. Kaplan: Bio-microfluidics: Biomaterials and biomimetic designs. Adv. Mater. 22, 249 (2010).

    CAS  Google Scholar 

  98. H. Daniel and S. Thomas: Method and device for producing a thread from silk proteins. U.S. Patent No. 7,868,146. 11 January 2011.

  99. D.P. Knight and L. Pinnock: Method and apparatus for forming objects. WO Patent App. PCT/EP2003/014,787. 8 July 2004.

  100. M.E. Kinahan, E. Filippidi, S. Köster, X. Hu, H.M. Evans, T. Pfohl, D.L. Kaplan, and J. Wong: Tunable silk: Using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12, 1504 (2011).

    CAS  Google Scholar 

  101. J. Luo, L. Zhang, Q. Peng, M. Sun, Y. Zhang, H. Shao, and X. Hu: Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int. J Biol. Macromol. 66, 319 (2014).

    CAS  Google Scholar 

  102. G.J.G. Davies, D.P. Knight, and F. Vollrath: Structure and function of the major ampullate spinning duct of the golden orb weaver, Nephila edulis. Tissue Cell 45, 306 (2013).

    CAS  Google Scholar 

  103. B. Renberg, H. Andersson-Svahn, and M. Hedhammar: Mimicking silk spinning in a microchip. Sens. Actuators B 195, 404 (2014).

    CAS  Google Scholar 

  104. C. Holland, A.E. Terry, D. Porter, and F. Vollrath: Natural and unnatural silks. Polymer 48, 3388 (2007).

    CAS  Google Scholar 

  105. X. Chen, D.P. Knight, and F. Vollrath: Rheological characterization of Nephila spidroin solution. Biomacromolecules 3, 644 (2002).

    CAS  Google Scholar 

  106. F. Vollrath, D.P. Knight, and X.W. Hu: Silk production in a spider involves acid bath treatment. Phil. Trans. R. Soc. B 265, 817 (1998).

    Google Scholar 

  107. Z. Shao, F. Vollrath, Y. Yang, and H.C. Thøgersen: Structure and behavior of regenerated spider silk. Macromolecules 36, 1157 (2003).

    CAS  Google Scholar 

  108. A. Seidel, O. Liivak, S. Calve, J. Adaska, G. Ji, Z. Yang, D. Grubb, D.B. Zax, and L.W. Jelinski: Regenerated spider silk: Processing, properties, and structure. Macromolecules 33, 775 (2000).

    CAS  Google Scholar 

  109. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno: Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem. 275, 40517 (2000).

    CAS  Google Scholar 

  110. D.N. Breslauer, L.P. Lee, and S.J. Muller: Simulation of flow in the silk gland. Biomacromolecules 10, 49 (2008).

    Google Scholar 

  111. D. Porter, J. Guan, and F. Vollrath: Spider silk: Super material or thin fibre?Adv. Mater. 25, 1275 (2013).

    CAS  Google Scholar 

  112. Z. Huang, Y. Lu, R. Majithia, J. Shah, K. Meissner, K.S. Matthews, S.E. Bondos, and J. Lou: Size dictates mechanical properties for protein fibers self-assembled by the Drosophila hox transcription factor ultrabithorax. Biomacromolecules 11, 3644 (2010).

    CAS  Google Scholar 

  113. J. Smook, W. Hamersma, and A.J. Pennings: The fracture process of ultra-high strength polyethylene fibres. J. Mat. Sci. 19, 1359 (1984).

    CAS  Google Scholar 

  114. T. Amornsakchai, D. Cansfield, S. Jawad, G. Pollard, and I. Ward: The relation between filament diameter and fracture strength for ultra-high-modulus polyethylene fibres. J. Mat. Sci. 28, 1689 (1993).

    CAS  Google Scholar 

  115. H.D. Wagner: Dependence of fracture stress upon diameter in strong polymeric fibers. J. Macromol. Sci. Phys. 28, 339 (1989).

    Google Scholar 

  116. H. Wagner: Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J. Polym. Sci. Part B Polym. Phys. 27, 115 (1989).

    CAS  Google Scholar 

  117. H.G. Chae, Y.H. Choi, M.L. Minus, and S. Kumar: Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Composites Sci. Technol. 69, 406 (2009).

    CAS  Google Scholar 

  118. Y. Ji, B. Li, S. Ge, J.C. Sokolov, and M.H. Rafailovich: Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22, 1321 (2006).

    CAS  Google Scholar 

  119. K. Young, F.M. Blighe, J.J. Vilatela, A.H. Windle, I.A. Kinloch, L. Deng, R.J. Young, and J.N. Coleman: Strong dependence of mechanical properties on fiber diameter for polymer–nanotube composite fibers: Differentiating defect from orientation effects. ACS Nano 4, 6989 (2010).

    CAS  Google Scholar 

  120. D. Mackenzie: The history of sutures. Med. Hist. 17, 158 (1973).

    CAS  Google Scholar 

  121. K. Gellynck, P. Verdonk, R. Forsyth, K.F. Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen: Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. 19, 2963 (2008).

    CAS  Google Scholar 

  122. F. Vollrath: Strength and structure of spiders’ silks. J. Biotechnol. 74, 67 (2000).

    CAS  Google Scholar 

  123. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, and D.L. Kaplan: Silk-based biomaterials. Biomaterials 24, 401 (2003).

    CAS  Google Scholar 

  124. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D.L. Kaplan: The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26, 147 (2005).

    CAS  Google Scholar 

  125. J.G. Hardy and T.R. Scheibel: Composite materials based on silk proteins. Prog. Polym. Sci. 35, 1093 (2010).

    CAS  Google Scholar 

  126. D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, and D.L. Kaplan: Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612 (2011).

    CAS  Google Scholar 

  127. H-J. Jin, J. Chen, V. Karageorgiou, G.H. Altman, and D.L. Kaplan: Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25, 1039 (2004).

    CAS  Google Scholar 

  128. R. Nazarov, H-J. Jin, and D.L. Kaplan: Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5, 718 (2004).

    CAS  Google Scholar 

  129. S. Hofmann, C. Wong Po Foo, F. Rossetti, M. Textor, G. Vunjak-Novakovic, D. Kaplan, H. Merkle, and L. Meinel: Silk fibroin as an organic polymer for controlled drug delivery. J. Control. Release 111, 219 (2006).

    CAS  Google Scholar 

  130. K.D. Hermanson, D. Huemmerich, T. Scheibel, and A.R. Bausch: Engineered microcapsules fabricated from reconstituted spider silk. Adv. Mater. 19, 1810 (2007).

    CAS  Google Scholar 

  131. S.C. Gomes, I.B. Leonor, J.F. Mano, R.L. Reis, and D.L. Kaplan: Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32, 4255 (2011).

    CAS  Google Scholar 

  132. D-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, and D. Contreras: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511 (2010).

    CAS  Google Scholar 

  133. S. Kim, A.N. Mitropoulos, J.D. Spitzberg, H. Tao, D.L. Kaplan, and F.G. Omenetto: Silk inverse opals. Nat. Photonics 6, 818 (2012).

    CAS  Google Scholar 

  134. J. MacLeod and F. Rosei: Photonic crystals: Sustainable sensors from silk. Nat. Mater. 12, 98 (2013).

    CAS  Google Scholar 

  135. Y.Y. Diao, X.Y. Liu, G.W. Toh, L. Shi, and J. Zi: Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mat. 23, 5373 (2013).

    CAS  Google Scholar 

  136. B.D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D.L. Kaplan, and F.G. Omenetto: Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214 (2008).

    CAS  Google Scholar 

  137. J.J. Amsden, H. Perry, S.V. Boriskina, A. Gopinath, D.L. Kaplan, L. Dal Negro, and F.G. Omenetto: Spectral analysis of induced color change on periodically nanopatterned silk films. Opt. Express 17, 21271 (2009).

    CAS  Google Scholar 

  138. J.J. Amsden, P. Domachuk, A. Gopinath, R.D. White, L.D. Negro, D.L. Kaplan, and F.G. Omenetto: Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 22, 1746 (2010).

    CAS  Google Scholar 

  139. X. Huang, G. Liu, and X. Wang: New secrets of spider silk: Exceptionally high thermal conductivity and its abnormal change under stretching. Adv. Mater. 24, 1482 (2012).

    CAS  Google Scholar 

  140. R. Fuente, A. Mendioroz, and A. Salazar: Revising the exceptionally high thermal diffusivity of spider silk. Mater. Lett. 114, 1 (2014).

    CAS  Google Scholar 

  141. L. Zhang, T. Chen, H. Ban, and L. Liu: Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein. Nanoscale 6, 7786 (2014).

    CAS  Google Scholar 

  142. B. Tulachan, S.K. Meena, R.K. Rai, C. Mallick, T.S. Kusurkar, A.K. Teotia, N.K. Sethy, K. Bhargava, S. Bhattacharya, A. Kumar, R.K. Sharma, N. Sinha, S.K. Singh, and M. Das: Electricity from the silk cocoon membrane. Sci. Rep. 4, 5434 (2014).

    CAS  Google Scholar 

  143. C.P. Brown, F. Rosei, E. Traversa, and S. Licoccia: Spider silk as a load-bearing biomaterial: Tailoring mechanical properties via structural modifications. Nanoscale 3, 870 (2011).

    CAS  Google Scholar 

  144. R.W. Work: Viscoelastic behaviour and wet supercontraction of major ampullate silk fibres of certain orb-web-building spiders (Araneae). J. Exp. Biol. 118, 379 (1985).

    Google Scholar 

  145. Y. Liu, Z. Shao, and F. Vollrath: Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4, 901 (2005).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Arthritis Research UK (C.P.B), the University of the Sunshine Coast, Australia (C.P.B. and J.M.), and the Natural Sciences and Engineering Research Council of Canada (F.R.). C.P.B. is grateful to Arthritis Research UK for salary support. F.R. is grateful to the Canada Research Chairs program for partial salary support, thanks the Alexander von Humboldt Foundation for a F.W. Bessel Award, and acknowledges NSERC for an EWR Steacie Memorial Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cameron P. Brown or Federico Rosei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, C.P., Whaite, A.D., MacLeod, J.M. et al. With great structure comes great functionality: Understanding and emulating spider silk. Journal of Materials Research 30, 108–120 (2015). https://doi.org/10.1557/jmr.2014.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.365

Navigation