Skip to main content

Epigenetic Changes in Hormonal Related Disease: Uterine Leiomyoma (Fibroids)

  • Chapter
Environmental Epigenetics

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1580 Accesses

Abstract

Epigenetic modifications have been associated with etiology of hormonal related diseases such as breast cancer and prostate cancer. In this chapter, the epigenetic status of a less studied hormonal related disease, uterine leiomyoma, was investigated and its application in potential therapeutic was further discussed. Differential methylation status, the most studied epigenetic signatures, is associated with differential gene expression. Here we investigate whether there are differential epigenetic signatures and their involvement in differential gene expression, apoptosis between two uterine stable cell lines, uterine leiomyoma UtLM-hT (LM) and normal uterine smooth muscle cell lines UtSM-hT (SMC). We first analyzed DNA methylation status using a cancer methylation panel bead array and our data showed that there are differential methylation patterns between the two cell lines. We then selected nine genes with significant differential methylation patterns from the bead array and verified that eight of the nine selected genes show significant differential gene expression between the two cell lines. Additionally, four of the eight genes that demonstrate differential gene expression respond to treatment with a demethylation agent, 5-Aza-2′-deoxycytidine (DAC). Cellular retinol binding protein 1 (CRBP-1) and Tumor necrosis factor super family 10 (TNFSF10) are genes that shows significant differential methylation patterns, gene expression, and responses to DAC between LM and SMC. Altered extracellular matrix (ECM) genes and reduced apoptosis are found in LM and are associated with epigenetic silenced CRBP-1 and TNFSF10 genes.

This chapter showed a systemically investigation from a methylation bead array to explore the possible role of epigenetic changes and their associated biological impacts and potential epigenetic therapy in uterine leiomyoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu J et al (2005) Retinoic acid and retinoid receptors: potential chemopreventive and therapeutic role in cervical cancer. Lancet Oncol 6(9):712–720

    Article  CAS  PubMed  Google Scholar 

  • Ahn WS et al (2003) Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol 84(6):267–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arslan AA et al (2005) Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Hum Reprod 20(4):852–863

    Article  CAS  PubMed  Google Scholar 

  • Aschelter AM et al (2012) Genomic and epigenomic alterations in prostate cancer. Front Endocrinol (Lausanne) 3:128

    CAS  Google Scholar 

  • Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2(6):420–430

    Article  CAS  PubMed  Google Scholar 

  • Baird DD, Newbold R (2005) Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development. Reprod Toxicol 20(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Barker KT et al (2006) No evidence for epigenetic inactivation of fumarate hydratase in leiomyomas and leiomyosarcomas. Cancer Lett 235(1):136–140

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9(16):2395–2402

    Article  CAS  PubMed  Google Scholar 

  • Burroughs KD et al (1997) Regulation of apoptosis in uterine leiomyomata. Endocrinology 138(7):3056–3064

    CAS  PubMed  Google Scholar 

  • Campan M, Weisenberger DJ, Laird PW (2006) DNA methylation profiles of female steroid hormone-driven human malignancies. Curr Top Microbiol Immunol 310:141–178

    CAS  PubMed  Google Scholar 

  • Carney SA et al (2002) Immortalization of human uterine leiomyoma and myometrial cell lines after induction of telomerase activity: molecular and phenotypic characteristics. Lab Invest 82(6):719–728

    Article  CAS  PubMed  Google Scholar 

  • Catherino WH, Malik M (2007) Uterine leiomyomas express a molecular pattern that lowers retinoic acid exposure. Fertil Steril 87(6):1388–1398

    Article  CAS  PubMed  Google Scholar 

  • Catherino WH et al (2003) Strategy for elucidating differentially expressed genes in leiomyomata identified by microarray technology. Fertil Steril 80(2):282–290

    Article  PubMed  Google Scholar 

  • Chegini N et al (2003) Gene expression profile of leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. J Soc Gynecol Investig 10(3):161–171

    Article  CAS  PubMed  Google Scholar 

  • Chiang TC (2009) Differential epigenetic signatures between normal uterine smooth muscle cells (SMC) and leiomyoma cells (LM) and their association with estrogen responses. New Orleans, Louisiana, Tulane University, PhD, p 125

    Google Scholar 

  • Choudhry H, Catto JW (2011) Epigenetic regulation of microRNA expression in cancer. Methods Mol Biol 676:165–184

    Article  CAS  PubMed  Google Scholar 

  • Cook JD et al (2005) Interaction between genetic susceptibility and early-life environmental exposure determines tumor-suppressor-gene penetrance. Proc Natl Acad Sci U S A 102(24):8644–8649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crews D, McLachlan JA (2006) Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 147(6):s4–s10

    Article  CAS  PubMed  Google Scholar 

  • Dal Cin P, Van den Berghe H (1997) Ten years of the cytogenetics of soft tissue tumors. Cancer Genet Cytogenet 95(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Decensi A et al (2003) Breast cancer prevention trials using retinoids. J Mammary Gland Biol Neoplasia 8(1):19–30

    Article  PubMed  Google Scholar 

  • Egger G et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2005) Dormant hypermethylated tumour suppressor genes: questions and answers. J Pathol 205(2):172–180

    Article  CAS  PubMed  Google Scholar 

  • Evans P, Brunsell S (2007) Uterine fibroid tumors: diagnosis and treatment. Am Fam Physician 75(10):1503–1508

    PubMed  Google Scholar 

  • Fan H et al (2014) Low-dose decitabine-based chemoimmunotherapy for patients with refractory advanced solid tumors: a phase I/II report. J Immunol Res 2014:371087

    PubMed Central  PubMed  Google Scholar 

  • Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuno K et al (2003) Genital ulcers during treatment with ALL- trans retinoic acid for acute promyelocytic leukemia. Leuk Lymphoma 44(11):2009

    Article  CAS  PubMed  Google Scholar 

  • Ghyselinck NB et al (1999) Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO J 18(18):4903–4914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glasspool RM et al (2014) A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br J Cancer 110(8):1923–1929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goessl C et al (2000) Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 60(21):5941–5945

    CAS  PubMed  Google Scholar 

  • Griffiths AE, Gore DS (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45(1):23–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hellebrekers DM et al (2007) Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67(9):4138–4148

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Hervouet E et al (2013) Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics 8(3):237–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hess CJ et al (2008) Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia. Leuk Lymphoma 49(6):1132–1141

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PJ et al (2004) Molecular characterization of uterine fibroids and its implication for underlying mechanisms of pathogenesis. Fertil Steril 82(3):639–649

    Article  CAS  PubMed  Google Scholar 

  • Hunter DS et al (2002) Aberrant expression of HMGA2 in uterine leiomyoma associated with loss of TSC2 tumor suppressor gene function. Cancer Res 62(13):3766–3772

    CAS  PubMed  Google Scholar 

  • Jahr S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665

    CAS  PubMed  Google Scholar 

  • Jeronimo C et al (2004) Aberrant cellular retinol binding protein 1 (CRBP1) gene expression and promoter methylation in prostate cancer. J Clin Pathol 57(8):872–876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaminskas E et al (2005) FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10(3):176–182

    Article  CAS  PubMed  Google Scholar 

  • Kozaki K et al (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68(7):2094–2105

    Article  CAS  PubMed  Google Scholar 

  • Kuppumbatti YS et al (2000) Cellular retinol-binding protein expression and breast cancer. JNCI J Natl Cancer Inst 92(6):475–480

    Article  CAS  Google Scholar 

  • Kuppumbatti YS, Rexer B, Nakajo S, Nakaya K, Mira-y-Lopez R (2001) CRBP suppresses breast cancer cell survival and anchorage-independent growth. Oncogene 20(50):7413–7419

    Article  CAS  PubMed  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    Article  CAS  PubMed  Google Scholar 

  • Lengfelder E et al (2005) Treatment concepts of acute promyelocytic leukemia. Crit Rev Oncol Hematol 56(2):261–274

    Article  PubMed  Google Scholar 

  • Leon SA et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650

    CAS  PubMed  Google Scholar 

  • Leppert PC et al (2004) Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril 82(Supplement 3):1182–1187

    Article  PubMed Central  PubMed  Google Scholar 

  • Li S, McLachlan JA (2001) Estrogen-associated genes in uterine leiomyoma. Ann N Y Acad Sci 948:112–120

    Article  CAS  PubMed  Google Scholar 

  • Li S et al (1997) Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res 57(19):4356–4359

    CAS  PubMed  Google Scholar 

  • Li S et al (2003) DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol 90(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Ligon AH, Morton CC (2001) Leiomyomata: heritability and cytogenetic studies. Hum Reprod Update 7(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Lurie S et al (2005) Age-related prevalence of sonographically confirmed uterine myomas. J Obstet Gynaecol 25(1):42–44

    Article  CAS  PubMed  Google Scholar 

  • Malik M, Webb J, Catherino WH (2008) Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol (Oxf) 69(3):462–470

    Article  CAS  Google Scholar 

  • Marshall LM et al (1998) A prospective study of reproductive factors and oral contraceptive use in relation to the risk of uterine leiomyomata. Fertil Steril 70(3):432–439

    Article  CAS  PubMed  Google Scholar 

  • Martin MM (2006) Molecular characterization of immortalized human uterine leiomyoma cell lines: a fibroid model. In: Interdisciplinary program in environmental biology. Tulane University, New Orleans, pp 1–231

    Google Scholar 

  • Maruo T et al (2004) Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update 10(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Matsuo H, Maruo T, Samoto T (1997) Increased expression of Bcl-2 protein in human uterine leiomyoma and its up-regulation by progesterone. J Clin Endocrinol Metab 82(1):293–299

    CAS  PubMed  Google Scholar 

  • McLachlan JA, Newbold RR, Bullock BC (1980) Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res 40(11):3988–3999

    CAS  PubMed  Google Scholar 

  • Meloni AM, Surti U, Contento AM, Davare J, Sandberg AA (1992) Uterine leiomyomas: cytogenetic and histologic profile. Obstet Gynecol 80(2):209–217

    CAS  PubMed  Google Scholar 

  • Mongiat M et al (2007) Regulation of the extrinsic apoptotic pathway by the extracellular matrix glycoprotein EMILIN2. Mol Cell Biol 27(20):7176–7187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nierth-Simpson EN et al (2009) Human uterine smooth muscle and leiomyoma cells differ in their rapid 17{beta}-estradiol Signaling. Endocrinology 150:2436–2445, en.2008–0224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12(2):201

    Article  PubMed Central  PubMed  Google Scholar 

  • Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  • Pavicic W et al (2011) Altered methylation at microRNA-associated CpG islands in hereditary and sporadic carcinomas: a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach. Mol Med 17(7–8):726–735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Quade BJ et al (2004) Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Gene Chromosome Cancer 40(2):97–108

    Article  CAS  Google Scholar 

  • Rhee I et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416(6880):552–556

    Article  CAS  PubMed  Google Scholar 

  • Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Saunthararajah Y (2013) Key clinical observations after 5-azacytidine and decitabine treatment of myelodysplastic syndromes suggest practical solutions for better outcomes. Hematol Am Soc Hematol Educ Program 2013:511–521

    Article  Google Scholar 

  • Severino MF et al (1996) Endocrinology and paracrinology: rapid loss of oestrogen and progesterone receptors in human leiomyoma and myometrial explant cultures. Mol Hum Reprod 2(11):823–828

    Article  CAS  PubMed  Google Scholar 

  • Shimomura Y et al (1998) Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab 83(6):2192–2198

    CAS  PubMed  Google Scholar 

  • Silverman LR et al (1993) Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 7(Suppl 1):21–29

    PubMed  Google Scholar 

  • Singh P, Lee DH, Szabo PE (2012) More than insulator: multiple roles of CTCF at the H19-Igf2 imprinted domain. Front Genet 3:214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skubitz KM, Skubitz AP (2003) Differential gene expression in uterine leiomyoma. J Lab Clin Med 141(5):297–308

    Article  CAS  PubMed  Google Scholar 

  • Takai N et al (2005) Discovery of epigenetically masked tumor suppressor genes in endometrial cancer. Mol Cancer Res 3(5):261–269

    Article  CAS  PubMed  Google Scholar 

  • Tsibris JC et al (2002) Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril 78(1):114–121

    Article  PubMed Central  PubMed  Google Scholar 

  • Valenzuela MT et al (2002) Assessing the Use of p16INK4a promoter gene methylation in serum for detection of bladder cancer. Eur Urol 42(6):622–630

    Article  CAS  PubMed  Google Scholar 

  • Varella-Garcia M et al (2006) Karyotypic characteristics of human uterine leiomyoma and myometrial cell lines following telomerase induction. Cancer Genet Cytogenet 170(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2003) Distinctive proliferative phase differences in gene expression in human myometrium and leiomyomata. Fertil Steril 80(2):266–276

    Article  PubMed  Google Scholar 

  • West CP et al (1987) Shrinkage of uterine fibroids during therapy with goserelin (Zoladex): a luteinizing hormone-releasing hormone agonist administered as a monthly subcutaneous depot. Fertil Steril 48(1):45–51

    CAS  PubMed  Google Scholar 

  • Weston G et al (2003) Fibroids display an anti-angiogenic gene expression profile when compared with adjacent myometrium. Mol Hum Reprod 9(9):541–549

    Article  CAS  PubMed  Google Scholar 

  • Wilcox LS et al (1994) Hysterectomy in the United States, 1988–1990. Obstet Gynecol 83(4):549–555

    Article  CAS  PubMed  Google Scholar 

  • Wong IHN et al (1999) Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 59(1):71–73

    CAS  PubMed  Google Scholar 

  • Xu X, Gammon MD, Zhang Y, Bestor TH, Zeisel SH, Wetmur JG, Wallenstein S, Bradshaw PT, Garbowski G, Teitelbaum SL, Neugut AI, Santella RM, Chen J (2009) BRCA1 promoter methylation is associated with increased mortality among women with breast cancer. Breast Cancer Res Treat 115(2):397–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Zaitseva M, Vollenhoven BJ, Rogers PA (2006) In vitro culture significantly alters gene expression profiles and reduces differences between myometrial and fibroid smooth muscle cells. Mol Hum Reprod 12(3):187–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Cruz Velasco for statistical analysis, Dr. Jovanny Zabaleta for technical support, and Ms. Alice LeBlanc for critical proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Chin Chiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Chiang, TC. (2015). Epigenetic Changes in Hormonal Related Disease: Uterine Leiomyoma (Fibroids). In: Su, L., Chiang, Tc. (eds) Environmental Epigenetics. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6678-8_3

Download citation

Publish with us

Policies and ethics