Skip to main content

The Effect of Pharmacological Agents on the Bone-Implant Interface

  • Chapter
  • First Online:
Bone-Implant Interface in Orthopedic Surgery

Abstract

In joint replacement surgery, the prerequisite for clinical success is the achievement of good and fast bone-implant osseointegration. Osseointegration can be defined as the contact which intervenes, without interposition of non-bone tissue, between normal remodeled bone and an implant which can bear the distribution of load from the implant to and inside the bone tissue. The contact area between the implant surface and the bone is called bone-implant interface. This is the area where the biology of bone ingrowth takes place. Bone ingrowth can be defined as the formation of bone tissue inside the porous surface of an implant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. J Arthroplasty. 1999;14(3):355–68.

    Article  PubMed  CAS  Google Scholar 

  2. Branemark PI. Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest. 1959;11(S38):1–82.

    PubMed  Google Scholar 

  3. Branemark PI. Osseointegration and its experimental studies. J Prosthet Dent. 1983;50:399–410.

    Article  PubMed  CAS  Google Scholar 

  4. Rigo ECS, Boschi AO, Yoshimoto M, Allegrini Jr S, Konig Jr B, Carbonari MJ. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Mater Sci Eng. 2004;24:647–51.

    Article  Google Scholar 

  5. Abu-Amer Y, Darwech I, Clohishy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9(S1):S6.

    Article  PubMed  Google Scholar 

  6. Kim YH, Kim VE. Uncemented porous-coated anatomic total hip replacement. Results at six years in a consecutive series. J Bone Joint Surg Br. 1993;75B:6–13.

    Google Scholar 

  7. Zhang C, Tang TT, Ren WP, Zhang XL, Dai KR. Inhibiting wear particles-induced osteolysis with doxycycline. Acta Pharmacol Sin. 2007;28:1603–10.

    Article  PubMed  CAS  Google Scholar 

  8. Ren W, Li XH, Chen BD, Wooley PH. Erythromycin inhibits wear debris-induced osteoclastogenesis by modulation of murine macrophage NF-kappaB activity. J Orthop Res. 2004;22:21–9.

    Article  PubMed  CAS  Google Scholar 

  9. Yang SY, Wu B, Mayton L, Mukherjee P, Robbins PD, Evans CH, Wooley PH. Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis. Gene Ther. 2004;11:483–91.

    Article  PubMed  CAS  Google Scholar 

  10. Merkel KD, Erdmann JM, McHugh KM, Abu-Amer Y, Ross FP, Teitelbaum SL. Tumor necrosis factor-alpha mediates orthopaedic implant osteolysis. Am J Pathol. 1999;154:203–10.

    Article  PubMed  CAS  Google Scholar 

  11. Schwarz EM, Lu AP, Goater JJ, Benz EB, Kollias G, Rosier RN, Puzas JE, O’Keefe RJ. Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis. J Orthop Res. 2000;18:472–80.

    Article  PubMed  CAS  Google Scholar 

  12. Childs LM, Goater JJ, O’Keefe RJ, Schwartz EM. Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res. 2001;16:338–47.

    Article  PubMed  CAS  Google Scholar 

  13. Rakshit DS, Lim J, Ly K, Ivaskhiv LB, Nestor BJ, Sculco TP, Purdue PE. Involvement of complement receptor 3 (CR3) and scavenger receptor in macrophage responses to wear debris. J Orthop Res. 2006;24:2036–44.

    Article  PubMed  Google Scholar 

  14. Chiba J, Rubash HE, Kim KJ, Iawaki Y. The characterization of cytokines in the interface tissue obtained from failed cementless total hip arthroplasty with and without femoral osteolysis. Clin Orthop. 1994;300:304–12.

    PubMed  Google Scholar 

  15. Nivbrant B, Karlsson K, Karrhorn J. Cytokine levels in synovial fluid from hips with well-functioning or loose prostheses. J Bone Joint Surg Br. 1999;81B:163–6.

    Article  Google Scholar 

  16. Stea S, Visantin M, Granchi D, Ciapetti G, Donati ME, Sudanese A, Zanotti C, Toni A. Cytokines and osteolysis around total hip prostheses. Cytokine. 2000;12:1575–9.

    Article  PubMed  CAS  Google Scholar 

  17. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Cellular mediators secreted by interfacial membranes obtained at revision total hip arthroplasty. J Arthroplasty. 1995;10:498–506.

    Article  PubMed  CAS  Google Scholar 

  18. Sabokbar A, Rushton N. Role of inflammatory mediators and adhesion in the pathogenesis of aseptic loosening in total hip arthroplasties. J Arthroplasty. 1995;10:810–6.

    Article  PubMed  CAS  Google Scholar 

  19. Ishiguro N, Kojima T, Ito T, Saga S, Anma H, Kurokouchi K, Iwahori Y, Iwase T, Iwata H. Macrophage activation and migration in interface tissue around loosening total hip arthroplasty components. J Biomed Mater Res. 1997;35:399–406.

    Article  PubMed  CAS  Google Scholar 

  20. Haynes DR, Crotti TN, Potter AE, Loric M, Atkins GJ, Howie DW, Findlay TM. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg Br. 2001;83B:902–11.

    Article  Google Scholar 

  21. Suh KT, Chang JW, Jung JS. The role of inducible nitric oxide synthase in aseptic loosening after total hip arthroplasty. J Bone Joint Surg Br. 2002;84B:753–7.

    Article  Google Scholar 

  22. Goodman SB, Huie P, Song Y, Schurman D, Maloney W, Woolson S, Sibley R. Cellular profile and cytokine production at prosthetic interfaces: study of tissues retrieved from revised hip and knee replacements. J Bone Joint Surg Br. 1998;80B:531–9.

    Article  Google Scholar 

  23. Xu JW, Konttinen YT, Lassus J, Natah S, Ceponis A, Solovieva S, Aspenberg P, Santavirta S. Tumor necrosis factor-alpha (TNF-a)in loosening of total hip replacement (THR). Clin Exp Rheumatol. 1996;14:643–8.

    PubMed  CAS  Google Scholar 

  24. Abu-Amer Y, Clohisy JC. Chapter 20: The biologic response to orthopaedic implants. In: Einhorn TA, O’Keefe RJ, Buckwalter JA, editors. Orthopaedic basic science. Foundations of clinical practice. 3rd ed. Rosemont: American Academy of Orthopaedic Surgeons; 2007. p. 365–77.

    Google Scholar 

  25. Goater JJ, O’Keefe RJ, Rosier RN, Puzas JE, Schwarz EM. Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J Orthop Res. 2002;20:169–73.

    Article  PubMed  CAS  Google Scholar 

  26. Ulrich-Vinther M, Carmody EE, Goater JJ, Sb K, O’Keefe RJ, Schwarz EM. Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am. 2002;84A:1405–12.

    Google Scholar 

  27. Childs LM, Paschalis EP, Xing L, Dougall WC, Anderson D, Boskey AL, Puzas JE, Rosier RN, O’Keefe RJ, Boyce BF, Schwarz EM. In vivo RANK signaling blockade using the receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res. 2002;17:192–9.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang T, Yu H, Gong W, Zhang L, Jia T, Wooley PH, Yang SY. The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials. 2009;30:6102–8.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang L, Jia TH, Chong AC, Bai L, Yu H, Gong W, Wooley PH, Yang SY. Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model. Gene Ther. 2010;17:1262–9.

    Article  PubMed  CAS  Google Scholar 

  30. Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48:677–92.

    Article  PubMed  CAS  Google Scholar 

  31. Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280:874–7.

    Article  PubMed  CAS  Google Scholar 

  32. Montagnani A, Gonnelli S, Cepollaro C, Pacini S, Campagna MS, Franci MB, Lucani B, Gennari C. Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women; a 1-year longitudinal study. Bone. 2003;32:427–33.

    Article  PubMed  CAS  Google Scholar 

  33. Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA. 2000;283:3205–10.

    Article  PubMed  CAS  Google Scholar 

  34. Von Knoch F, Wedemeyer C, Heckelei A, Saxler G, Hilken G, Brankamp J, Sterner T, Landgraeber S, Henschke F, Loer F, von Knoch M. Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis. Biomaterials. 2005;26:5783–9.

    Article  Google Scholar 

  35. Yang F, Zhao SF, Zhang F, He FM, Yang GL. Simvastatin-loaded porous implant surfaces stimulate preosteoblasts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:551–6.

    Article  PubMed  Google Scholar 

  36. Yin H, Li J, Yu X, Fu Z. Effects of simvastatin on osseointegration in canine total hip arthroplasty model: an experimental study. J Arthroplasty. 2011;26:1534–9.

    Article  PubMed  Google Scholar 

  37. Basarir K, Erdemli B, Can A, Erdemli E, Zeyrek T. Osseointegration in arthroplasty: can simvastatin promote bone response to implants? Int Orthop. 2009;33:855–9.

    Article  PubMed  Google Scholar 

  38. Ayukawa Y, Ogino Y, Moriyama Y, Atsuta I, Jinno Y, Kihara M, Tsukiyama Y, Koyano K. Simvastatin enhances bone formation around titanium implants in rat tibiae. J Oral Rehabil. 2010;37:123–30.

    Article  PubMed  CAS  Google Scholar 

  39. Du Z, Chen J, Yan F, Xiao Y. Effects of simvastatin on bone healing around titanium implants in osteoporotic rats. Clin Oral Implants Res. 2009;20:145–50.

    Article  PubMed  Google Scholar 

  40. Nociti Jr FH, Sallum EA, Toledo S, Newman HN, Sallum AW. Effect of calcitonin on bone healing following titanium implant insertion. J Oral Sci. 1999;41:77–80.

    Article  PubMed  CAS  Google Scholar 

  41. Januário AL, Sallum EA, de Toledo S, Sallum AW, Nociti Jr JF. Effect of calcitonin on bone formation around titanium implant. A histometric study in rabbits. Braz Dent J. 2001;12:158–62.

    PubMed  Google Scholar 

  42. Kauther MD, Hagen S, Bachmann HS, Neuerburg L, Broecker-Preuss M, Hilken G, Grabellus F, Koehler G, von Knoch M, Wedemeyer C. Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis. BMC Musculoskelet Disord. 2011;12:186.

    Article  PubMed  CAS  Google Scholar 

  43. Chen BL, Xie DH, Zheng ZM, Lu W, Ning CY, Li YQ, Li FB, Liao WM. Comparison of the effects of alendronate sodium and calcitonin on bone-prosthesis osseointegration in osteoporotic rats. J Bone Joint Surg Am. 2008;90:824–32.

    Article  Google Scholar 

  44. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA. Ten year’s experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–99.

    Article  PubMed  CAS  Google Scholar 

  45. Millet PJ, Allen MJ, Bostrom MP. Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am. 2002;84A:236–49.

    Google Scholar 

  46. Sabokbar A, Fujikawa Y, Neale S, Murray DW, Athanasou NA. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis. 1997;56:414–20.

    Article  PubMed  CAS  Google Scholar 

  47. Shanbhag AS, Hasselman CT, Rubash HE. The John Charnley Award: inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop. 1997;344:33–43.

    PubMed  Google Scholar 

  48. Von Knoch M, Wedemeyer C, Pingsmann A, von Knoch F, Hilken G, Sprecher C, Henschke F, Barden B, Loer F. The decrease of particle-induced osteolysis after a single dose of bisphosphonate. Biomaterials. 2005;26:1803–8.

    Article  Google Scholar 

  49. Von Knoch F, Eckhardt C, Alabre CI. Anabolic effects of bisphosphonates on peri-implant bone stock. Biomaterials. 2007;28:3549–59.

    Article  Google Scholar 

  50. Miyaji T, Nakase T, Azuma Y, Shimizu N, Uchiyama Y, Yoshikawa H. Alendronate inhibits bone resorption at the bone-screw interface. Clin Orthop. 2005;430:195–201.

    PubMed  Google Scholar 

  51. Bobyn JD, McKenzie K, Karabasz D, Krygier JJ, Tanzer M. Locally delivered bisphosphonate for enhancement of bone formation and implant fixation. J Bone Joint Surg Am. 2009;91A(S6):23–31.

    Article  Google Scholar 

  52. Tanzer M, Karabasz D, Krygier JJ, Cohen R, Bobyn JD. The Otto Aufranc Award: bone augmentation around and within porous implants by local bisphosphonate elution. Clin Orthop. 2005;441:30–9.

    Article  PubMed  Google Scholar 

  53. Peter B, Gauthier O, Laïb S, Bujoli B, Guicheux J, Janvier P, van Lenthe GH, Müller R, Zambelli PY, Bouler JM, Pioletti DP. Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A. 2006;76(1):133–43.

    PubMed  Google Scholar 

  54. Jakobsen T, Baas J, Bechtold JE, Elmengaard B, Søballe K. The effect of soaking allograft in bisphosphonate: a pilot dose–response study. Clin Orthop. 2010;468:867–74.

    Article  PubMed  Google Scholar 

  55. McKenzie K, Dennis Bobyn J, Roberts J, Karabasz D, Tanzer M. Bisphosphonate remains highly localized after elution from porous implants. Clin Orthop. 2011;469:514–22.

    Article  PubMed  Google Scholar 

  56. Wilkinson JM, Eagleton AC, Stockley I, Peel NF, Hamer AJ, Eastell R. Effect of pamidronate on bone turnover and implant migration after total hip arthroplasty; a randomized trial. J Orthop Res. 2005;23:1–8.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Q, Badell IR, Schwarz EM, Boulukos KE, Yao Z, Boyce BF, Xing L. Tumor necrosis factor prevents alendronate-induced osteoclast apoptosis in vivo by stimulating Bcl-xL expression through Ets-2. Arthritis Rheum. 2005;52:2708–18.

    Article  PubMed  CAS  Google Scholar 

  58. Moroni A, Faldini C, Hoang-Kim A, Pegreffi F, Giannini S. Alendronate improves screw fixation in osteoporotic bone. J Bone Joint Surg Am. 2007;89A:96–101.

    Article  Google Scholar 

  59. Wang CJ, Wang JW, Weng LH, Hsu CC, Huang CC, Chen HS. The effect of alendronate on bone mineral density in the distal part of the femur and proximal part of the tibia after total knee arthroplasty. J Bone Joint Surg Am. 2003;85:2121–6.

    PubMed  Google Scholar 

  60. Peter B, Ramaniraka N, Rakotomanana LR, Zambelli PY, Pioletti DP. Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis. Comput Methods Biomech Biomed Engin. 2004;7:73–8.

    Article  PubMed  CAS  Google Scholar 

  61. Yamaguchi K, Masuhara K, Yamasaki S, Nakai T, Fuji T. Cyclic therapy with etidronate has a therapeutic effect against local osteoporosis after cementless total hip arthroplasty. Bone. 2003;33:144–9.

    Article  PubMed  CAS  Google Scholar 

  62. Prieto-Alhambra D, Javaid MK, Judge A, Murray D, Carr A, Cooper C, Arden NK. Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ. 2011;343:d7222.

    Article  PubMed  Google Scholar 

  63. Zeng Y, Lai O, Shen B, Yang J, Zhou Z, Kang P, Pei F. A systematic review assessing the effectiveness of alendronate in reducing periprosthetic bone loss after cementless primary THA. Orthopedics. 2011;34(4). doi:10.3928/01477447-20110228-09.

  64. Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, Lam WM, Luk KD. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials. 2006;27:5127–33.

    Article  PubMed  CAS  Google Scholar 

  65. Maïmoun L, Brennan TC, Badoud I, Dubois-Ferriere V, Rizzoli R, Ammann P. Strontium ranelate improves implant osseointegration. Bone. 2010;46:1436–41.

    Article  PubMed  Google Scholar 

  66. Li Y, Feng G, Gao Y, Luo E, Liu X, Hu J. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res. 2010;28:578–82.

    Article  PubMed  CAS  Google Scholar 

  67. Bauer DC. Review: human parathyroid hormone reduces fractures and increases bone mineral density in severe osteoporosis. ACP J Club. 2006;145:71.

    PubMed  Google Scholar 

  68. Iolascon G, Gimigliano F, Resmini G. Teriparatide and orthopedic surgery. Aging Clin Exp Res. 2007;19(S4):22–5.

    PubMed  Google Scholar 

  69. Knecht TP. Teriparatide and fracture healing in cortical bone. Endocr Pract. 2004;10:293.

    PubMed  Google Scholar 

  70. Skripitz R, Aspenberg P. Implant fixation enhanced by intermittent treatment with parathyroid hormone. J Bone Joint Surg Br. 2001;83B:437–40.

    Article  Google Scholar 

  71. Daugaard H, Elmengaard B, Andreassen TT, Baas J, Bechtold JE, Soballe K. The combined effect of parathyroid hormone and bone graft on implant fixation. J Bone Joint Surg Br. 2011;93B:131–9.

    Google Scholar 

  72. Daugaard H, Elmengaard B, Andreassen T, Bechtold J, Lamberg A, Soballe K. Parathyroid hormone treatment increases fixation of orthopedic implants with gap healing: a biomechanical and histomorphometric canine study of porous coated titanium alloy implants in cancellous bone. Calcif Tissue Int. 2011;88:294–303.

    Article  PubMed  CAS  Google Scholar 

  73. Kuchler U, Luvizuto ER, Tangl S, Watzek G, Gruber R. Short-term teriparatide delivery and osseointegration: a clinical feasibility study. J Dent Res. 2011;90:1001–6.

    Article  PubMed  CAS  Google Scholar 

  74. Lynch SE, Buser D, Hernandez RA, Weber HP, Stich H, Fox CH, Williams RC. Effects of the platelet-derived growth factor/insulin-like growth factor-I combination on bone regeneration around titanium dental implants. Results of a pilot study in beagle dogs. J Periodontol. 1991;62:710–6.

    Article  PubMed  CAS  Google Scholar 

  75. Lamberg A, Schmidmaier G, Soballe K, Elmengaard B. Locally delivered TGF-beta1 and IGF-1 enhance the fixation of titanium implants; a study in dogs. Acta Orthop Scand. 2006;77:799–805.

    Article  Google Scholar 

  76. Mannai C. Early implant loading in severely resorbed maxilla using xenograft, autograft, and platelet-rich plasma in 97 patients. J Oral Maxillofac Surg. 2006;64:1420–6.

    Article  PubMed  Google Scholar 

  77. Sumner DR, Turner TM, Urban RM, Vordi AS, Inoue N. Additive enhancement of implant fixation following combined treatment with rhTGF-beta2 and rhBMP-2 in a canine model. J Bone Joint Surg Am. 2006;88A:806–17.

    Article  Google Scholar 

  78. Cole BJ, Bostrom MP, Pritchard TL, Sumner DR, Tomin E, Lane JM, Weiland AJ. Use of bone morphogenetic protein 2 on ectopic porous coated implants in the rat. Clin Orthop. 1997;345:219–28.

    PubMed  Google Scholar 

  79. Koempel JA, Patt BS, O’Grady K, Wozney J, Toriumi DM. The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. J Biomed Mater Res. 1998;41:359–63.

    Article  PubMed  CAS  Google Scholar 

  80. Jennissen HP. Accelerated and improved osteointegration of implants biocoated with bone morphogenetic protein 2 (BMP2). Ann N Y Acad Sci. 2002;961:139–42.

    Article  PubMed  CAS  Google Scholar 

  81. Becker J, Kirsch A, Schwarz F, Chatzinikolaidou M, Rothamel D, Lekovic V, Laub M, Jennissen HP. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs. Clin Oral Investig. 2006;10:217–24.

    Article  PubMed  Google Scholar 

  82. Lind M, Overgaard S, Song Y, Goodman SB, Bunger C, Soballe K. osteogenic protein 1 device stimulates bone healing to hydroxyapatite-coated and titanium implants. J Arthroplasty. 2000;15:339–46.

    Article  PubMed  CAS  Google Scholar 

  83. Zhang R, An Y, Toth CA, Draugh RA, Dimaano NM, Hawikns MV. Osteogenic protein-1 enhances osseointegration of titanium implants coated with peri-apatite in rabbit femoral defect. J Biomed Mater Res B Appl Biomater. 2004;71:408–13.

    Article  PubMed  Google Scholar 

  84. Sumner DR, Turner TM, Purchio AF, Gombotz WR, Urban RM, Galante JO. Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg Am. 1995;77A:1135–47.

    Google Scholar 

  85. De Ranieri A, Virdi AS, Kuroda S, Shott S, Leven RM, Hallab NJ, Sumner DR. Local application of rhTGF-beta2 enhances peri-implant bone volume and bone-implant contact in a rat model. Bone. 2005;37:55–62.

    Article  PubMed  Google Scholar 

  86. Salata LA, Burgos PM, Rasmusson L, Novaes AB, Papalexiou V, Dahlin C, Sennerby L. Osseointegration of oxidized and turned implants in circumferential bone defects with and without adjunctive therapies: an experimental study on BMP-2 and autogenous bone graft in the dog mandible. Int J Oral Maxillofac Surg. 2007;36:62–71.

    Article  PubMed  CAS  Google Scholar 

  87. Sakakura CE, Marcantonio Jr E, Wenzel A, Scaf G. Influence of cyclosporine A on quality of bone around integrated dental implants: a radiographic study in rabbits. Clin Oral Implants Res. 2007;8:34–9.

    Article  Google Scholar 

  88. Eder A, Watzek G. Treatment of a patient with severe osteoporosis and chronic polyarthritis with fixed implant-supported prosthesis: a case report. Int J Oral Maxillofac Implants. 1999;15:587–90.

    Google Scholar 

  89. McDonald AR, Pogrel MA, Sharma A. effects of chemotherapy on osseointegration of implants: a case report. J Oral Implantol. 1998;24:11–3.

    Article  PubMed  CAS  Google Scholar 

  90. Callahan BC, Lisecki EJ, Banks RE, Dalton JE, Cook SD, Wolff JD. The effect of warfarin on the attachment of bone to hydroxyapatite-coated and uncoated porous implants. J Bone Joint Surg Am. 1995;77A:225–30.

    Google Scholar 

  91. Cook SD, Barrack RL, Dalton JE, Thomas KA, Brown TD. Effects of indomethacin on biologic fixation of porous-coated titanium implants. J Arthroplasty. 1995;10:351–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Triantafillopoulos MD, MSc, DSc, FEBOT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Triantafillopoulos, I.K., Papaioannou, N.A. (2014). The Effect of Pharmacological Agents on the Bone-Implant Interface. In: Karachalios, T. (eds) Bone-Implant Interface in Orthopedic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-5409-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5409-9_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5408-2

  • Online ISBN: 978-1-4471-5409-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics