Skip to main content

Formation and Characterization of Polyaromatic Hydrocarbons

  • Chapter
  • First Online:
Cleaner Combustion

Abstract

Issues concerning polycyclic aromatic hydrocarbons (PAH) carcinogenicity, and their important role in formation of dangerous pollutants, such as soot, have motivated their study under a wide range of laboratory conditions and for several kinds of thermochemical processes. Every experimental system, depending on the operating conditions, demands a specific protocol for PAH determination. This chapter aims to contribute to the knowledge of different procedures for PAH quantification both at the gas phase and when they are associated with soot particles. Different kinds of experimental set-ups for PAH formation together with the collection systems to capture them are explained here. Besides, some sample extraction techniques are reviewed, mainly focused on Soxhlet extraction because of its inexpensive equipment and overall simplicity to be applied by staff with limited analytical experience. Chromatographic techniques are also considered, paying special attention to gas chromatography coupled to mass spectrometry (GC–MS), popular in PAH analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PAH:

Polycyclic aromatic hydrocarbons

GC–MS:

Gas chromatography coupled to mass spectrometry

HACA:

H-abstraction/C2H2 addition route

EPA:

Environmental Protection Agency

EPA–PAH:

Polycyclic aromatic hydrocarbons classified by EPA as priority pollutants

PUF:

Polyurethane foam

PTFE:

Polytetrafluoroethylene

DCM:

Dichloromethane

ASE:

Accelerated solvent extraction

SFE:

Supercritical fluid extraction

GPT:

Thermochemical Processes Group

I3A:

Aragón Institute of Engineering Research

HPLC–UV:

Reversed-phase high performance liquid chromatograph with ultraviolet detection

FID:

Flame ionization detection

SIM:

Selected ion monitoring

SRM:

Standard reference material

References

  • ATSDR, Agency for Toxic Substances and Disease Registry (1996) Polycyclic aromatic hydrocarbons (PAHs), Atlanta. http://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts69.html

  • Allouis C, Apicella B, Barbella R et al (2003) Monitoring of fuel consumption and aromatics formation in a kerosene spray flame as characterized by fluorescence spectroscopy. Chemosphere 51:1097–1102

    Article  Google Scholar 

  • Andrade-Eiroa A, Leroy V, Dagaut P et al (2010a) Determination of polycyclic aromatic hydrocarbons in kerosene and bio-kerosene soot. Chemosphere 78:1342–1349

    Article  Google Scholar 

  • Andrade-Eiroa A, Diévart P, Dagaut P (2010b) Improved optimization of polycyclic aromatic hydrocarbons (PAH) mixtures resolution in reversed-phase-high-performance liquid chromatography by using factorial design and response methodology. Talanta 81:265–274

    Article  Google Scholar 

  • Apicella B, Ciajolo A, Barbella R et al (2003) Size exclusion chromatography of particulate produced in fuel-rich combustion of different fuels. Energy Fuels 217:565–570

    Article  Google Scholar 

  • Appel J, Bockhorn H, Frenklach M (2000) Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust Flame 121:122–136

    Article  Google Scholar 

  • Ardag H, Ozel MZ, Sen A (2011) Polycyclic aromatic hydrocarbons in water from the Menderes river. Turkey Bull Environ Contam Toxicol 86:221–225

    Article  Google Scholar 

  • Ballesteros R, Hernández JJ, Lyons LL (2009) Determination of PAHs in diesel gas matter using thermal extraction and solid phase micro-extraction. Atmos Environ 43:655–662

    Article  Google Scholar 

  • Ballesteros R, Hernández JJ, Lyons LL (2010) An experimental study of the influence of biofuel origin on particle-associated. Atmos Environ 44:930–938

    Article  Google Scholar 

  • Becnel JM, Dooley KM (1998) Supercritical fluid extraction of polycyclic aromatic hydrocarbon mixtures from contaminated soils. Ind Eng Chem Res 37:584–594

    Article  Google Scholar 

  • Borrás E, Tortajada-Genaro LA (2007) Characterization of polycyclic aromatic hydrocarbons in atmospheric aerosols by gas chromatography-mass spectrometry. Anal Chim Acta 583:266–276

    Article  Google Scholar 

  • Bouvier Y, Mihesan C, Ziskind M et al (2007) Molecular species adsorbed on soot particles issued from low sooting methane and acetylene laminar flames: A laser-based experiment. Proc Combust Inst 31:841–849

    Article  Google Scholar 

  • Chen BH, Wang CY, Chiu CP (1996) Evaluation of analysis of polycyclic aromatic hydrocarbons in meat products by liquid chromatography. J Agric Food Chem 44:2244–2251

    Article  Google Scholar 

  • Christensen A (2003) Polycyclic aromatic hydrocarbon in exhaust emission from mobile sources-sampling and determination. Ph.D. thesis, University of Stockholm, Stockholm

    Google Scholar 

  • Christensen A, Ostman C, Westerholm R (2005) Ultrasound-assisted extraction and on-line LC–GC–MS for determination of polycyclic aromatic hydrocarbons (PAH) in urban dust and diesel particulate matter. Anal Bioanal Chem 381:1206–1216

    Article  Google Scholar 

  • Chuang JC, Hannan SW, Wilson NK (1987) Field comparison of polyurethane foam and XAD-2 resin for air sampling for polynuclear aromatic hydrocarbons. Environ Sci Technol 21:798–804

    Article  Google Scholar 

  • Ciajolo A, Ragucci R, Apicella B et al (2001) Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene flames. Chemosphere 42:835–841

    Article  Google Scholar 

  • De Kok TMCM, Driece HAL, Hogervorst JGF, Briedé JJ (2006) Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat Res 613:103–112

    Article  Google Scholar 

  • Durlak SK, Biswas P, Shi J et al (1998) Characterization of polycyclic aromatic hydrocarbon particulate and gaseous emissions from polystyrene combustion. Environ Sci Technol 32:2301–2307

    Article  Google Scholar 

  • EPA, Environmental Protection Agency (1996a) EPA-Method 3561: supercritical fluid extraction of polynuclear aromatic hydrocarbons, Ohio. http://www.caslab.com/EPA-Methods/PDF/EPA-Method-3561.pdf

  • EPA, Environmental Protection Agency (1996b) EPA-Method 3540C: Soxhlet extraction, Ohio. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3540c.pdf

  • EPA, Environmental Protection Agency (1998a) Locating and estimating air emissions from sources of polycyclic organic matter, Ohio. http://www.epa.gov/ttn/chief

  • EPA, Environmental Protection Agency (1998b) EPA-Method 8270D: determination of semivolatile organic compounds by gas chromatography/mass spectrometry (CG/MS), Ohio. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8270d.pdf

  • EPA, Environmental Protection Agency (1999) EPA-Method TO-13A: Compendium of methods for the determination of toxic organic compounds in ambient air, Ohio. http://www.epa.gov/ttnamti1/files/ambient/airtox/to-13arr.pdf

  • EPA, Environmetal Protection Agency (2000) EPA-Method 3550C: ultrasonic extraction, Ohio. http://www.caslab.com/EPA-Methods/PDF/EPA-Method-3550C.pdf

  • Esarte C, Millera A, Bilbao R et al (2009) Gas and soot products formed in the pyrolysis of acetylene–ethanol blends under flow reactor conditions. Fuel Process Technol 90:496–503

    Article  Google Scholar 

  • Faccinetto A, Desgroux P, Ziskind M et al (2011) High-sensivity detection of polycyclic aromatic hydrocarbons adsorbed onto soot particles using laser desorption/laser ionization/time-of-flight mass spectrometry: an approach to studying the soot inception process in low-pressure flames. Combust Flame 158:227–239

    Article  Google Scholar 

  • Ferreira V (2007) Cromatografía: fundamentos y práctica, 2nd edn. Publication Service of the University of Zaragoza, Zaragoza

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic Press, California

    Google Scholar 

  • Font R, Esperanza M, García AN (2003) Toxic by-products from the combustion of kraft lignin. Chemosphere 52:1047–1058

    Article  Google Scholar 

  • Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037

    Article  Google Scholar 

  • Furton KG, Pentzke G (1998) Polycyclic aromatic hydrocarbons. In: Shibamoto T (ed) Chromatographic analysis of environmental and food toxicants, 1st edn. Marcel Dekker, New York

    Google Scholar 

  • Furuhata T, Kobayashi Y, Hayashida K et al (2012) Behavior of PAHs and PM in a diffusion flame of paraffin fuels. Fuel 91:16–25

    Article  Google Scholar 

  • Gfrerer M, Gawlik BM, Lankmayr E (2004) Validation of a fluidized-bed extraction method for solid materials for the determination of PAHs and PCBs using certified reference materials. Anal Chim Acta 527:53–60

    Article  Google Scholar 

  • Howard JB, Longwell JP, Marr JA et al (1995) Effects of PAH isomerizations on mutagenicity of combustion products. Combust Flame 101:262–270

    Article  Google Scholar 

  • Indarto A, Giordana A, Ghigo G et al (2010) Polycyclic aromatic hydrocarbon formation mechanism in the particle phase. Phys Chem Chem Phys 12:9429–9440

    Article  Google Scholar 

  • Kado NY, Okamoto RA, Karim J et al (2000) Airborne particle emissions from 2-and 4-stroke outboard marine engines: polycyclic aromatic hydrocarbon and bioassay analyses. Environ Sci Technol 34:2714–2720

    Article  Google Scholar 

  • Kim JY, Lee JY, Choi S-D et al (2012) Gaseous and particulate polycyclic aromatic hydrocarbons at the Gosan background site in East Asia. Atmos Environ 49:311–319

    Article  Google Scholar 

  • Ledesma EB, Marsh ND, Sandrowitz AK et al (2002) Global kinetic rate parameters for the formation of polycyclic aromatic hydrocarbons from the pyrolyis of catechol, a model compound representative of solid fuel moieties. Energy Fuels 16:1331–1336

    Article  Google Scholar 

  • Lee HK (1995) Recent applications of gas and high-performance liquid chromatographic techniques to the analysis of polycyclic aromatic hydrocarbons in airborne particulates. J Chromatogr A 710:79–92

    Article  Google Scholar 

  • Lee HK (2001) Modern techniques for the analysis of polycyclic aromatic hydrocarbons. In: Kleiböhmer W (ed) Handbook of analytical separations, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Lee JJ, Huang K-L, Yu YY et al (2004) Laboratory retention of vapor-phase PAHs using XAD adsorbents. Atmos Environ 38:6185–6193

    Article  Google Scholar 

  • Lemaire R, Therssen E, Desgroux P (2010) Effect of ethanol addition in gasoline and gasoline–surrogate on soot formation in turbulent spray flames. Fuel 89:3952–3959

    Article  Google Scholar 

  • Levendis YA, Atal A, Carlson JB et al (2001) PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads. Chemosphere 42:775–783

    Article  Google Scholar 

  • Li Y, Tian Z, Zhang L et al (2009) An experimental study of the rich premixed ethylbenzene flame at low pressure. Proc Combust Inst 32:647–655

    Article  Google Scholar 

  • Li-bin L, Yan L, Jin-ming L et al (2007) Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: a review. J Environ Sci 19:1–11

    Article  Google Scholar 

  • Librando V, Hutzinger O, Tringali G et al (2004) Supercritical fluid extraction of polycyclic aromatic hydrocarbons from marine sediments and soil samples. Chemosphere 54:1189–1197

    Article  Google Scholar 

  • Liu K, Han W, Pan W-P et al (2001) Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. J Hazard Mater B84:175–188

    Article  Google Scholar 

  • Luch A (2005) Polycyclic aromatic hydrocarbon-induced carcinogenesis-an introduction. In: Lunch A (ed) The carcinogenic effects of polycyclic aromatic hydrocarbons, 1st edn. Imperial College Press, London

    Google Scholar 

  • Luque de Castro MD, Luque de García JL (2002) Acceleration and automation of solid sample treatment. Elsevier Science, Amsterdam

    Google Scholar 

  • Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389

    Article  Google Scholar 

  • Macadam S, Beér JM, Safofim AF (1996) Soot surface growth by polycyclic aromatic hydrocarbon and acetylene addition. Proc Combust Inst 26:2295–2302

    Google Scholar 

  • Manzello SL, Lenhert DB, Yozgatligil A et al (2007) Soot particle size distributions in a well-stirred reactor/plug flow reactor. Proc Combust Inst 31:675–683

    Article  Google Scholar 

  • Mastral AM, Callén M, Murillo R (1996) Assessment of PAH emissions as a function of coal combustion variables. Fuel 75:1533–1536

    Article  Google Scholar 

  • Mastral AM, Callén MS, García T et al (2001) Benzo(a)pyrene, benzo(a)anthracene, and dibenzo(a, h)anthracene emissions from coal and waste tire energy generation at atmospheric fluidized bed combustion (AFBC). Environ Sci Technol 35:2645–2649

    Article  Google Scholar 

  • Mastral AM, López JM, Callén MS et al (2003) Spatial and temporal PAH concentrations in Zaragoza. Spain Sci Total Environ 307:111–124

    Article  Google Scholar 

  • Mathieu O, Franche G, Djebaili-Chaumeix N et al (2007) Characterization of adsorbed species on soot formed behind reflected shock waves. Proc Combust Inst 31:511–519

    Article  Google Scholar 

  • Mendiara T, Domene MP, Millera A et al (2005) An experimental study of the soot formed in the pyrolysis of acetylene. J Anal Appl Pyrolysis 74:486–493

    Article  Google Scholar 

  • Moltó J, Conesa JA, Font R et al (2005) Organic compounds produced during the thermal decomposition of cotton fabrics. Environ Sci Technol 39:5141–5147

    Article  Google Scholar 

  • Moltó J, Egea S, Conesa JA et al (2011) Thermal decomposition of electronic wastes: mobile phone case and other parts. Waste Manage 31:2546–2552

    Article  Google Scholar 

  • NIST, National Institute of Standards and Technology (2006) Certified of analysis for standard reference material 1650b, diesel particulate matter, Gaithersburg. https://www-s.nist.gov/srmors/certificates/view_certGIF.cfm?certificate=1650B

  • Norinaga K, Janardhanan VM, Deutschamann O (2007) Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073–1373 K with a plug-flow reactor model. Int J Chem Kinet 40:199–208

    Article  Google Scholar 

  • Norinaga K, Deutschmann O, Saegusa N et al (2009) Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. J Anal Appl Pyrolysis 86:148–160

    Article  Google Scholar 

  • Ortiz R, Vega S, Gutiérrez R et al (2012) Presence of polycyclic aromatic hydrocarbons (PAHs) in top soils from rural terrains in Mexico City. Bull Environ Contam Toxicol 88:428–432

    Article  Google Scholar 

  • Pandey SK, Kim K-H, Brown RJC (2011) A review of techniques for the determination of polycyclic aromatic hydrocarbons in air. Trends Anal Chem 30:1716–1739

    Article  Google Scholar 

  • Portet-Koltalo F, Oukebdane K, Dionnet F et al (2008) Optimisation of the extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives from diesel particulate matter using microwave-assisted extraction. Anal Bioanal Chem 390:389–398

    Article  Google Scholar 

  • Poster DL, Schantz MM, Sander LC et al (2006) Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal Bioanal Chem 386:859–881

    Article  Google Scholar 

  • Ruiz MP, Guzmán R, Millera A et al (2007a) Influence of different operation conditions on soot formation from C2H2 pyrolysis. Ind Eng Chem Res 46:7550–7560

    Article  Google Scholar 

  • Ruiz MP, Callejas A, Millera A et al (2007b) Soot formation from C2H2 and C2H4 pyrolysis at different temperatures. J Anal Appl Pyrolysis 79:244–251

    Article  Google Scholar 

  • Sánchez NE, Callejas A, Millera A et al (2010) Determination of polycyclic aromatic hydrocarbons (PAH) adsorbed on soot formed in pyrolysis of acetylene at different temperatures. Chem Eng Trans 22:131–136

    Google Scholar 

  • Sánchez NE, Callejas A, Millera A et al (2012a) Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures. Energy 43:30–36

    Article  Google Scholar 

  • Sánchez NE, Callejas A, Millera A et al (2012b) Polycyclic aromatic hydrocarbons (PAH) and soot formation in the pyrolysis of acetylene and ethylene: Effect of the Reaction Temperature. Energy Fuels 26:4823–4829

    Article  Google Scholar 

  • Sánchez NE, Salafranca J, Callejas A et al (2013) Quantification of polycyclic aromatic hydrocarbons (PAH) found in gas and particle phases from pyrolytic processes using gas chromatography-mass spectrometry (GC-MS). Fuel 107:246–253

    Google Scholar 

  • Sander LC, Wise SA (1997) Polycyclic aromatic hydrocarbon structure index. NIST special publication 922. http://www.nist.gov/mml/analytical/organic/upload/SP-922-Polycyclic-Aromatic-Hydrocarbon-Structure-Index-2.pdf

  • Schneider K, Roller M, Kalberlah F et al (2002) Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol 22:73–83

    Article  Google Scholar 

  • Shen G, Wang W, Yang Y et al (2011) Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas-particle partitioning. Environ Sci Technol 45:1206–1212

    Article  Google Scholar 

  • Somers ML, McClaine JW, Wornat MJ (2007) The formation of polycyclic aromatic hydrocarbons from the supercritical pyrolysis of 1-methylnaphthalene. Proc Combust Inst 31:501–509

    Article  Google Scholar 

  • Song YF, Jing X, Fleischmann S et al (2002) Comparative study of extraction methods for determination of PAHs from contaminated soils and sediments. Chemosphere 48:993–1001

    Article  Google Scholar 

  • Tang L, Tang X-Y, Zhu Y-G, Zheng M-H, Miao Q-L (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–828

    Article  Google Scholar 

  • Thomas S, Wornat MJ (2008) Effect of acetylene addition on yields of C1–C10 hydrocarbon products of catechol pyrolysis. Energy Fuels 22:976–986

    Article  Google Scholar 

  • Thomas S, Wornat MJ (2009) Polycyclic aromatic hydrocarbons from the co-pyrolysis of catechol and 1,3-butadiene. Proc Combust Inst 32:615–622

    Article  Google Scholar 

  • Thomas S, Ledesma EB, Wornat MJ (2007) The effects of oxygen on the yields of the thermal decomposition products of catechol under pyrolysis and fuel-rich oxidation conditions. Fuel 86:2581–2595

    Article  Google Scholar 

  • Viegas O, Novo P, Pinho O et al (2012) A comparison of the extraction procedures and quantification methods for the chromatographic determination of polycyclic aromatic hydrocarbons in charcoal grilled meat and fish. Talanta 88:677–683

    Article  Google Scholar 

  • Wang J, Richter H, Howard JB et al (2002) Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: The effects of the secondary furnace (afterburner) temperature and soot filtration. Environ Sci Technol 36:797–808

    Article  Google Scholar 

  • Wang R, Cadman P (1998) Soot and PAH production from spray combustion of different hydrocarbons behind reflected shock waves. Combust Flame 112:359–370

    Article  Google Scholar 

  • Wang Z, Wang J, Richter H et al (2003) Comparative study on polycyclic aromatic hydrocarbons, light hydrocarbons, carbon monoxide, and particulate emissions from the combustion of polyethylene, polystyrene, and poly(vinyl chloride). Energy Fuels 17:999–1013

    Article  Google Scholar 

  • Wartel M, Pauwels J-F, Desgroux P et al (2010) Quantitative measurement of naphthalene in low-pressure flames by jet-cooled laser-induced fluorescence. Appl Phys B 100:933–943

    Article  Google Scholar 

  • WHO, World Health organization, regional office for Europe (2000) Polycyclic aromatic hydrocarbons (PAHs). In: Air quality guidelines, 2nd edn. (CD-ROM version), Denmark. http://www.euro.who.int/__data/assets/pdf_file/0015/123063/AQG2ndEd_5_9PAH.pdf

  • Wu J, Song KH, Litzinger T et al (2006) Reduction of PAH and soot in premixed ethylene–air flames by addition of ethanol. Combust Flame 144:675–687

    Article  Google Scholar 

  • Xue J, Liu G, Niu Z et al (2007) Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal. Energy Fuels 21:881–890

    Article  Google Scholar 

Download references

Acknowledgments

This work has been performed at the Aragón Institute of Engineering Research (I3A) of the University of Zaragoza in the frame of the Thermochemical Processes Group (GPT). The authors express their gratitude to the MICINN, FEDER (Project CTQ2009-12205), Aragón Government and European Social Fund (ESF), for financial support. Ms N.E. Sánchez acknowledges the Banco Santander Central Hispano, University of Zaragoza and the Colombian Institute for the Development of Science and Technology (COLCIENCIAS) for the predoctoral grant awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María U. Alzueta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sánchez, N.E., Callejas, A., Salafranca, J., Millera, Á., Bilbao, R., Alzueta, M.U. (2013). Formation and Characterization of Polyaromatic Hydrocarbons. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics