Skip to main content
Log in

Quantitative measurement of naphthalene in low-pressure flames by jet-cooled laser-induced fluorescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have recently developed a new laser based set-up (Jet-Cooled Laser-Induced Fluorescence) for the analysis of aromatic compounds generated in flames. This method relies on the extraction of the species from the flame via a thin microprobe and their direct analysis inside a supersonic free jet by Laser-Induced Fluorescence (LIF). Under the supersonic conditions of the jet, the vibronic spectra of the molecules become structured as the possibility of electronic transitions is reduced, allowing their selective detection by LIF. In addition, due to the very low quenching efficiency inside the jet, LIF signals can be directly related to the population of the probed species and easily calibrated into absolute concentrations. All of the work presented here has been carried out for naphthalene, which is an important PAH involved in soot formation mechanisms. The calibration procedure is described in detail. We also report a detailed study of the quantitative features of the technique, in particular cooling efficiencies and collision rates as well as some additional potential factors that could bias the quantitative aspect of the method. Finally, the possibilities of the technique for the measurement of PAH within flames in the presence of soot particles along with its accuracy and reproducibility are demonstrated by recording naphthalene mole fractions profiles in several rich CH4/O2/N2 flames. A detection limit of the order of a ppb is demonstrated under flame conditions with and without the presence of soot particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Richter, J.B. Howard, Prog. Energy Combust. Sci. 26, 565 (2000)

    Article  Google Scholar 

  2. M. Frenklach, Phys. Chem. Chem. Phys. 4, 2028 (2002)

    Article  Google Scholar 

  3. B. Apicella, R. Barbella, A. Ciajolo, A. Tregrossi, Combust. Sci. Technol. 174, 309 (2002)

    Article  Google Scholar 

  4. T.R. Melton, F. Inal, S.M. Senkan, Combust. Flame 121, 671 (2000)

    Article  Google Scholar 

  5. P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen, J.F. Pauwels, Combust. Flame 155, 289 (2008)

    Article  Google Scholar 

  6. T.R. Melton, A.M. Vincitore, S.M. Senkan, Proc. Combust. Inst. 2, 1631 (1998)

    Google Scholar 

  7. F. Liu, K.A. Thomson, H. Guo, G.J. Smallwood, Combust. Flame 146, 456 (2006)

    Article  Google Scholar 

  8. X. Mercier, M. Wartel, J.F. Pauwels, P. Desgroux, Appl. Phys. B, Lasers Opt. 91, 387 (2008)

    Article  ADS  Google Scholar 

  9. The McKenna Flat Flame Burner, Holthuis & Associates, P.O. Box 1531, Sebastopol, CA 95473

  10. K. Ruzicka, M. Fulem, V. Ruzicka, J. Chem. Eng. Data 50, 1956 (2005)

    Article  Google Scholar 

  11. V. Oja, E.M. Suuberg, J. Chem. Eng. Data 43, 486 (1998)

    Article  Google Scholar 

  12. H.-H. Grotheer, K. Hoffmann, K. Wolf, S. Kanjarkar, C. Wahl, M. Aigner, Combust. Flame 156, 791 (2009)

    Article  Google Scholar 

  13. S.M. Beck, J.B. Hopkins, D.E. Powers, R.E. Smalley, J. Chem. Phys. 74, 43 (1981)

    Article  ADS  Google Scholar 

  14. S.M. Beck, D.E. Powers, J.B. Hopkins, R.E. Smalley, J. Chem. Phys. 73, 2019 (1980)

    Article  ADS  Google Scholar 

  15. F.M. Behlen, D.B. McDonald, V. Sethuraman, S.A. Rice, J. Chem. Phys. 75, 5685 (1981)

    Article  ADS  Google Scholar 

  16. F.M. Behlen, S.A. Rice, J. Chem. Phys. 75, 5672 (1981)

    Article  ADS  Google Scholar 

  17. H. Gattermann, M. Stockburger, J. Chem. Phys. 63, 4541 (1975)

    Article  ADS  Google Scholar 

  18. M. Stockburger, H. Gattermann, W. Klusmann, J. Chem. Phys. 63, 4529 (1975)

    Article  ADS  Google Scholar 

  19. K. Yoshida, Y. Semba, S. Kasahara, T. Yamanaka, M. Baba, J. Chem. Phys. 130, 194304 (2009)

    Article  ADS  Google Scholar 

  20. W. Majewski, W.L. Meerts, J. Mol. Spectrosc. 104, 271 (1984)

    Article  ADS  Google Scholar 

  21. M.H. Kabir, S. Kasahara, W. Demtroder, Y. Tatamitani, A. Doi, H. Kato, M. Baba, J. Chem. Phys. 119, 3691 (2003)

    Article  ADS  Google Scholar 

  22. R.S. Mulliken, J. Chem. Phys. 23, 1997 (1955)

    Article  Google Scholar 

  23. J.M. Hollas, T. Ridley, P.A. Freedman, Chem. Phys. Lett. 92, 317 (1982)

    Article  ADS  Google Scholar 

  24. J.M. Hollas, S.N. Thakur, Mol. Phys. 22, 203 (1971)

    Article  ADS  Google Scholar 

  25. D.-L. Joo, R. Takahashi, J. O’Reilly, H. Katô, M. Baba, J. Mol. Spectrosc. 215, 155 (2002)

    Article  ADS  Google Scholar 

  26. R.H. Judge, D.J. Clouthier, Comput. Phys. Commun. 135, 293 (2001)

    Article  MATH  ADS  Google Scholar 

  27. V.A. Walters, D.L. Snavely, S.D. Colson, K.B. Wiberg, K.N. Wong, J. Phys. Chem. 90, 592 (1986)

    Article  Google Scholar 

  28. M. Kamphus, N.-N. Liu, B. Atakan, F. Qi, A. McIlroy, Proc. Combust. Inst. 29, 2627 (2002)

    Article  Google Scholar 

  29. N. Ohta, H. Baba, J. Chem. Phys. 76, 1654 (1982)

    Article  ADS  Google Scholar 

  30. M. Martinez, H. Harder, X. Ren, R.L. Lesher, W.H. Brune, Atmos. Chem. Phys. 4, 563 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Mercier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wartel, M., Pauwels, JF., Desgroux, P. et al. Quantitative measurement of naphthalene in low-pressure flames by jet-cooled laser-induced fluorescence. Appl. Phys. B 100, 933–943 (2010). https://doi.org/10.1007/s00340-010-4135-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4135-2

Keywords

Navigation