Skip to main content
Log in

Ultrasound-assisted extraction and on-line LC–GC–MS for determination of polycyclic aromatic hydrocarbons (PAH) in urban dust and diesel particulate matter

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method has been developed for determination of polycyclic aromatic hydrocarbons (PAH) in particulate matter from ambient air and diesel exhaust emissions. It is reproducible and accurate and, compared with similar methods for analysis of individual PAH components in complex matrices, it is relatively fast and simple. Single PAH components can be determined in samples of particulate matter from ambient air and diesel exhaust emissions with LOD of approximately 1 pg/sample. Further, sample throughput is high, because more than 20 samples can be extracted and prepared for analysis in one working (8-h) day. The particulate matter is subjected to ultrasound-assisted extraction, a technique that is shown to extract PAH from particulate material with efficiencies fully comparable with those of Soxhlet extraction. An aliphatic/PAH-enriched fraction is obtained by solid-phase extraction before isolation, separation, and identification/quantification of PAH by on-line liquid chromatography–gas chromatography–mass spectrometry. The method was validated by analysis of US National Institute of Standards and Technology (NIST) Standard Reference Materials (SRM) 1649a, Urban Dust, and 2975, Diesel Particulate Matter. Results from the method are in good agreement with the NIST-certified PAH concentrations and with NIST reference PAH concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R (2002) Environ Health Perspect Suppl 110:451–488

    Google Scholar 

  2. Kiss G, Varga-Puchony Z, Rohrbacher G, Hlavay J (1998) Atmos Res 46:253–261

    Article  Google Scholar 

  3. Offenberg J, Baker J (1999) Environ Sci Technol 33:3324–3331

    Google Scholar 

  4. Westerholm R, Christensen A, Törnqvist M, Ehrenberg L, Rannug U, Sjögren M, Rafter J, Soontjens C, Almén J, Grägg K (2001) Environ Sci Technol 35:1748–1754

    Google Scholar 

  5. Christensen A, Westerholm R, Almén J (2001) Environ Sci Technol 35:2166–2170

    Google Scholar 

  6. IARC (1983) Polynuclear aromatic compounds. Part 1. Chemicals, environmental and experimental data. International agency for research on cancer (IARC), Lyon, France

  7. IARC (1989) Monographs on the evaluation of carcinogenic risks of chemicals to humans: diesel and gasoline engine exhausts and some nitro-PAH. International agency for research on cancer (IARC), Lyon, France

    Google Scholar 

  8. Westerholm R, Alsberg T, Frommelin Å, Strandell M, Rannug U, Winquist L, Grigoriadis V, Egebäck K-E (1988) Environ Sci Technol 22:925–930

    Google Scholar 

  9. Östman C, Bemgård A, Colmsjö A (1992) J High Resolut Chromatogr 15:437–443

    Google Scholar 

  10. Westerholm R, Christensen A, Törnqvist M, Ehrenberg L, Haupt D (1998). In: Proceedings of the 12th international symposium on alcohol fuels, Beijing, 21–24 September 1998, pp 302–307

  11. Paschke T, Hawthorne S, Miller D, Wenclawiak B (1992) J Chromatogr 609:333–340

    Google Scholar 

  12. Burford M, Hawthorne S, Miller D (1993) Anal Chem 65:1497–1505

    Google Scholar 

  13. Shimmo M, Adler H, Hyötyläinen T, Hartonen K, Kulmala M, Riekkola M-L (2002) Atmos Environ 36:2985–2995

    Google Scholar 

  14. Schantz M, Nichols J, Wise S (1997) Anal Chem 69:4210–4219

    Article  CAS  Google Scholar 

  15. Turrio-Baldassarri L, Battistelli C, Iamiceli A (2003) Anal Bioanal Chem 375:589–595

    Google Scholar 

  16. Budzinski H, Baumard P, Papineau A, Wise S, Garrigues P (1996) Polycyclic Aromat Compd 9:225–232

    Google Scholar 

  17. Pineiro-Iglesias M, Lopez-Mahia P, Vazquez-Blanco E, Muniategui-Lorenzo S, Prada-Rodriguez D, Fernandez-Fernandez E (2000) Fresenius J Anal Chem 367:29–34

    Google Scholar 

  18. Chiu C, Poole G, Tardif M, Balgava V, Moudrakovskaia A, Turle R (2002). In: EnviroAnalysis 2002, proceedings of the 4th biennial international conference on monitoring and measurement of the environment, Toronto, ON, Canada, 27–30 May, pp 83–89

  19. Maher W, Pellegrino F, Furlonger J (1989) Microchem J 39:160–165

    Google Scholar 

  20. Miguel A, De Andrade J (1989) Int J Environ Anal Chem 35:35–41

    Google Scholar 

  21. Marvin C, Allan L, McCarry B, Bryant D (1992) Int J Environ Anal Chem 49:221–230

    Google Scholar 

  22. Kayali M, Rubio-Barroso S, Polo-Diez L (1995) J Chromatogr Sci 33:181–185

    Google Scholar 

  23. Sun F, Littlejohn D, Gibson M (1998) Anal Chim Acta 364:1–11

    Google Scholar 

  24. Grimmer G, Böhnke H (1976) Chromatographia 9:30–40

    CAS  Google Scholar 

  25. Natusch D, Tomkins B (1978) Anal Chem 50:1429–1434

    Google Scholar 

  26. Bundt J, Herbel W, Steinhart H, Franke S, Francke W (1991) J High Resolut Chromatogr 14:91–98

    Google Scholar 

  27. Lee M, Novotny M, Bartle K (1981) Analytical chemistry of polycyclic aromatic compounds. Academic, New York

    Google Scholar 

  28. Vo-Dinh T (1989) Chemical analysis of polycyclic aromatic compounds. Wiley, New York

    Google Scholar 

  29. Pagano P, De Zaiacomo T, Scarcella E, Bruni S, Calamosca M (1996) Environ Sci Technol 30:3512–3516

    Google Scholar 

  30. Ahlvik P, Ntziachristos L, Keskinen J, Virtanen A (1998) Society of Automotive Engineers, SAE Paper No 980410, Warrendale, USA

  31. Westerholm R, Christensen A, De Serves C, Almen J (1999) Society of Automotive Engineers. Special Publication SP-1477, Warrendale, USA, pp 231–238

  32. Davies I, Bartle K, Williams P, Andrews G (1988) Anal Chem 60:204–209

    Google Scholar 

  33. Vreuls J, De Jong G, Brinkman U (1991) Chromatographia 31:113–118

    Google Scholar 

  34. Östman C, Carlsson H, Bemgård A, Colmsjö A (1993) Polycyclic Aromat Compd 3:485–492

    Google Scholar 

  35. Lewis A, Askey S, Holden K, Bartle K, Pilling M (1997) J High Resolut Chromatogr 20:109–114

    Google Scholar 

  36. Christensen A (2003) Polycyclic aromatic hydrocarbons in exhaust emissions from mobile sources: sampling and determination. Thesis, Department of Analytical Chemistry, Stockholm University. ISBN 91-7265-691-3

    Google Scholar 

  37. US National Institute of Standards& Technology (2000) Gaithersburg, USA

  38. US National Institute of Standards& Technology (2001) Gaithersburg, USA

  39. Hyōtylainen T, Riekkola M-L (2003) J Chromatogr A 1000:357–384

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Lena Elfver’s laboratory assistance. This study was financed by the EU project Characterization of exhaust particulate emissions from road vehicles “Particulates” (2000-RD.11091), VINNOVA, the Swedish Agency for Innovation Systems, Sweden and the Swedish Energy Administration, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Westerholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, A., Östman, C. & Westerholm, R. Ultrasound-assisted extraction and on-line LC–GC–MS for determination of polycyclic aromatic hydrocarbons (PAH) in urban dust and diesel particulate matter. Anal Bioanal Chem 381, 1206–1216 (2005). https://doi.org/10.1007/s00216-005-3065-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3065-z

Keywords

Navigation