Skip to main content

Synchronization of Donors and Recipients: Practical Aspects of Clinical Surveillance

  • Chapter
  • First Online:
Principles of Oocyte and Embryo Donation

Abstract

Embryo implantation in the human results from three key events, which include development, synchronization, and signaling between the embryo and endometrium. These occur through a series of coordinated genetic and hormonal events regulating intracellular signaling in both the host uterus and implanting blastocyst. Coordination of these events is crucial for success in any reproductive cycle, but in donor–recipient cycles, embryo development and endometrial priming occur at different trajectories and in separate environments. These cycles offer unique clinical challenges for the reproductive endocrinologist who must choreograph hormonal manipulation to align the recipients’ endometrium with the retrieved, fertilized, developing, and ultimately transferred donor embryo. This synchrony of events also offers the clinical scientist the ability to study endometrial receptivity during the early stages of human reproduction and implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–99.

    Article  PubMed  CAS  Google Scholar 

  2. Damario MA, Lesnick TG, Lessey BA, et al. Endometrial markers of uterine receptivity utilizing the donor oocyte model. Hum Reprod. 2001;16(9):1893–9.

    Article  PubMed  CAS  Google Scholar 

  3. Chen Q, Zhang Y, Lu J, et al. Embryo-uterine cross-talk during implantation: the role of Wnt signaling. Mol Hum Reprod. 2009;15(4):215–21.

    Article  PubMed  CAS  Google Scholar 

  4. Dey SK, Lim H, Das SK, et al. Molecular cues to implantation. Endocr Rev. 2004;25(3):341–73.

    Article  PubMed  CAS  Google Scholar 

  5. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci USA. 1993;90(21):10159–62.

    Article  PubMed  CAS  Google Scholar 

  6. de Ziegler D, Fanchin R, de Moustier B, Bulletti C. The hormonal control of endometrial receptivity: estrogen (E2) and progesterone. J Reprod Immunol. 1998;39(1–2):149–66.

    Article  PubMed  Google Scholar 

  7. Lim H, Song H, Paria BC, Reese J, Das SK, Dey SK. Molecules in blastocyst implantation: uterine and embryonic perspectives. Vitam Horm. 2002;64:43–76.

    Article  PubMed  CAS  Google Scholar 

  8. Strauss III JF, Barbieri RL. Yen and Jaffe’s reproductive endocrinology. 6th ed. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  9. Garcia E, Bouchard P, De Brux J, et al. Use of immunocytochemistry of progesterone and estrogen receptors for endometrial dating. J Clin Endocrinol Metab. 1988;67(1):80–7.

    Article  PubMed  CAS  Google Scholar 

  10. Navot D, Anderson TL, Droesch K, Scott RT, Kreiner D, Rosenwaks Z. Hormonal manipulation of endometrial maturation. J Clin Endocrinol Metab. 1989;68(4):801–7.

    Article  PubMed  CAS  Google Scholar 

  11. Remohi J, Gallardo E, Guanes PP, Simon C, Pellicer A. Donor-recipient synchronization and the use of gonadotrophin-releasing hormone agonists to avoid the premature luteinizing hormone surge in oocyte donation. Hum Reprod. 1995;10 Suppl 2:84–90.

    Article  PubMed  CAS  Google Scholar 

  12. Michalas S, Loutradis D, Drakakis P, et al. A flexible protocol for the induction of recipient endometrial cycles in an oocyte donation programme. Hum Reprod. 1996;11(5):1063–6.

    Article  PubMed  CAS  Google Scholar 

  13. Younis JS, Mordel N, Lewin A, Simon A, Schenker JG, Laufer N. Artificial endometrial preparation for oocyte donation: the effect of estrogen stimulation on clinical outcome. J Assist Reprod Genet. 1992;9(3):222–7.

    Article  PubMed  CAS  Google Scholar 

  14. Noyes RW. Uniformity of secretory endometrium; study of multiple sections from 100 uteri removed at operation. Fertil Steril. 1956;7(2):103–9.

    PubMed  CAS  Google Scholar 

  15. Giudice LC. Microarray expression profiling reveals candidate genes for human uterine receptivity. Am J Pharmacogenomics. 2004;4(5):299–312.

    Article  PubMed  CAS  Google Scholar 

  16. Psychoyos A, Prapas I. Inhibition of egg development and implantation in rats after post-coital administration of the progesterone antagonist RU 486. J Reprod Fertil. 1987;80(2):487–91.

    Article  PubMed  CAS  Google Scholar 

  17. Sarantis L, Roche D, Psychoyos A. Displacement of receptivity for nidation in the rat by the progesterone antagonist RU 486: a scanning electron microscopy study. Hum Reprod. 1988;3(2):251–5.

    PubMed  CAS  Google Scholar 

  18. Navot D, Scott RT, Droesch K, Veeck LL, Liu HC, Rosenwaks Z. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril. 1991;55(1):114–8.

    PubMed  CAS  Google Scholar 

  19. Imbar T, Hurwitz A. Synchronization between endometrial and embryonic age is not absolutely crucial for implantation. Fertil Steril. 2004;82(2):472–4.

    Article  PubMed  Google Scholar 

  20. Lessey BA, Yeh I, Castelbaum AJ, et al. Endometrial progesterone receptors and markers of uterine receptivity in the window of implantation. Fertil Steril. 1996;65(3):477–83.

    PubMed  CAS  Google Scholar 

  21. Nikas G, Drakakis P, Loutradis D, et al. Uterine pinopodes as markers of the ‘nidation window’ in cycling women receiving exogenous oestradiol and progesterone. Hum Reprod. 1995;10(5):1208–13.

    PubMed  CAS  Google Scholar 

  22. Beier HM, Beier-Hellwig K. Molecular and cellular aspects of endometrial receptivity. Hum Reprod Update. 1998;4(5):448–58.

    Article  PubMed  CAS  Google Scholar 

  23. Stavreus-Evers A, Aghajanova L, Brismar H, Eriksson H, Landgren BM, Hovatta O. Co-existence of heparin-binding epidermal growth factor-like growth factor and pinopodes in human endometrium at the time of implantation. Mol Hum Reprod. 2002;8(8):765–9.

    Article  PubMed  CAS  Google Scholar 

  24. Lessey BA. The role of the endometrium during embryo implantation. Hum Reprod. 2000;15 Suppl 6:39–50.

    PubMed  Google Scholar 

  25. Nikas G. Pinopodes as markers of endometrial receptivity in clinical practice. Hum Reprod. 1999;14 Suppl 2:99–106.

    Article  PubMed  Google Scholar 

  26. Nikas G. Endometrial receptivity: changes in cell-surface morphology. Semin Reprod Med. 2000;18(3):229–35.

    Article  PubMed  CAS  Google Scholar 

  27. Bentin-Ley U. Relevance of endometrial pinopodes for human blastocyst implantation. Hum Reprod. 2000;15 Suppl 6:67–73.

    PubMed  Google Scholar 

  28. Quinn CE, Casper RF. Pinopodes: a questionable role in endometrial receptivity. Hum Reprod Update. 2009;15(2):229–36.

    Article  PubMed  CAS  Google Scholar 

  29. Noble LS, Takayama K, Zeitoun KM, et al. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metabol. 1997;82(2):600–6.

    Article  CAS  Google Scholar 

  30. Jalkanen J, Suikkari AM, Koistinen R, et al. Regulation of insulin-like growth factor-binding protein-1 production in human granulosa-luteal cells. J Clin Endocrinol Metabol. 1989;69(6):1174–9.

    Article  CAS  Google Scholar 

  31. Edwards RG. Implantation, interception and contraception. Hum Reprod. 1994;9(6):985–95.

    PubMed  CAS  Google Scholar 

  32. Tabibzadeh S, Babaknia A. The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and tissue invasion. Hum Reprod. 1995;10(6):1579–602.

    Article  PubMed  CAS  Google Scholar 

  33. Sharkey AM, Smith SK. The endometrium as a cause of implantation failure. Best Pract Res Clin Obstet Gynaecol. 2003;17(2):289–307.

    Article  PubMed  Google Scholar 

  34. Sarno JL, Kliman HJ, Taylor HS. HOXA10, Pbx2, and Meis1 protein expression in the human endometrium: formation of multimeric complexes on HOXA10 target genes. J Clin Endocrinol Metab. 2005;90(1):522–8.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–84.

    PubMed  CAS  Google Scholar 

  36. Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab. 1999;84(3):1129–35.

    Article  PubMed  CAS  Google Scholar 

  37. Gendron RL, Paradis H, Hsieh-Li HM, Lee DW, Potter SS, Markoff E. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol Reprod. 1997;56(5):1097–105.

    Article  PubMed  CAS  Google Scholar 

  38. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(1): 238–43.

    Article  PubMed  CAS  Google Scholar 

  39. Daftary GS, Kayisli U, Seli E, Bukulmez O, Arici A, Taylor HS. Salpingectomy increases peri-implantation endometrial HOXA10 expression in women with hydrosalpinx. Fertil Steril. 2007;87(2):367–72.

    Article  PubMed  CAS  Google Scholar 

  40. Rackow BW, Taylor HS. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity. Fertil Steril. 2010;93(6): 2027–34.

    Article  PubMed  CAS  Google Scholar 

  41. Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14(5):1328–31.

    Article  PubMed  CAS  Google Scholar 

  42. Cavagna M, Mantese JC. Biomarkers of endometrial receptivity – a review. Placenta. 2003;24(Suppl B):S39–47.

    Article  PubMed  CAS  Google Scholar 

  43. Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances and challenges. Science. 2002;296(5576):2185–8.

    Article  PubMed  CAS  Google Scholar 

  44. Giudice LC. Potential biochemical markers of uterine receptivity. Hum Reprod. 1999;14 Suppl 2:3–16.

    Article  PubMed  CAS  Google Scholar 

  45. Escary JL, Perreau J, Dumenil D, Ezine S, Brulet P. Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature. 1993;363(6427):361–4.

    Article  PubMed  CAS  Google Scholar 

  46. Yoshida K, Taga T, Saito M, et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA. 1996;93(1):407–11.

    Article  PubMed  CAS  Google Scholar 

  47. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–9.

    Article  PubMed  CAS  Google Scholar 

  48. Steck T, Giess R, Suetterlin MW, et al. Leukaemia inhibitory factor (LIF) gene mutations in women with unexplained infertility and recurrent failure of implantation after IVF and embryo transfer. Eur J Obstet Gynecol Reprod Biol. 2004;112(1):69–73.

    Article  PubMed  CAS  Google Scholar 

  49. Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol. 1998;39(2):137–43.

    Article  PubMed  CAS  Google Scholar 

  50. Brinsden PR, Alam V, de Moustier B, Engrand P. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril. 2009;91(4 Suppl):1445–7.

    Article  PubMed  CAS  Google Scholar 

  51. Marwood M, Visser K, Salamonsen LA, Dimitriadis E. Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology. 2009;150(6):2915–23.

    Article  PubMed  CAS  Google Scholar 

  52. Hamatani T, Daikoku T, Wang H, et al. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci USA. 2004;101(28):10326–31.

    Article  PubMed  CAS  Google Scholar 

  53. Illera MJ, Lorenzo PL, Gui YT, Beyler SA, Apparao KB, Lessey BA. A role for alphavbeta3 integrin during implantation in the rabbit model. Biol Reprod. 2003;68(3):766–71.

    PubMed  CAS  Google Scholar 

  54. Lessey BA, Damjanovich L, Coutifaris C, Castelbaum A, Albelda SM, Buck CA. Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. J Clin Invest. 1992;90(1):188–95.

    Article  PubMed  CAS  Google Scholar 

  55. Lessey BA, Ilesanmi AO, Lessey MA, Riben M, Harris JE, Chwalisz K. Luminal and glandular endometrial epithelium express integrins differentially throughout the menstrual cycle: implications for implantation, contraception, and infertility. Am J Reprod Immunol. 1996;35(3):195–204.

    Article  PubMed  CAS  Google Scholar 

  56. Lessey BA, Castelbaum AJ, Sawin SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril. 1995;63(3):535–42.

    PubMed  CAS  Google Scholar 

  57. Creus M, Ordi J, Fabregues F, et al. alphavbeta3 integrin expression and pinopod formation in normal and out-of-phase endometria of fertile and infertile women. Hum Reprod. 2002;17(9):2279–86.

    Article  PubMed  CAS  Google Scholar 

  58. Hey NA, Li TC, Devine PL, Graham RA, Saravelos H, Aplin JD. MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients. Hum Reprod. 1995;10(10):2655–62.

    PubMed  CAS  Google Scholar 

  59. Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril. 1992;58(3):537–42.

    PubMed  CAS  Google Scholar 

  60. Mohamed OA, Dufort D, Clarke HJ. Expression and estradiol regulation of Wnt genes in the mouse blastocyst identify a candidate pathway for embryo-maternal signaling at implantation. Biol Reprod. 2004;71(2):417–24.

    Article  PubMed  CAS  Google Scholar 

  61. Mohamed OA, Jonnaert M, Labelle-Dumais C, Kuroda K, Clarke HJ, Dufort D. Uterine Wnt/beta-catenin signaling is required for implantation. Proc Natl Acad Sci USA. 2005;102(24):8579–84.

    Article  PubMed  CAS  Google Scholar 

  62. Trounson A, Leeton J, Besanko M, Wood C, Conti A. Pregnancy established in an infertile patient after transfer of a donated embryo fertilised in vitro. Br Med J (Clin Res Ed). 1983;286(6368):835–8.

    Article  CAS  Google Scholar 

  63. Lutjen P, Trounson A, Leeton J, Findlay J, Wood C, Renou P. The establishment and maintenance of pregnancy using in vitro fertilization and embryo donation in a patient with primary ovarian failure. Nature. 1984;307(5947):174–5.

    Article  PubMed  CAS  Google Scholar 

  64. Younis JS, Mordel N, Ligovetzky G, Lewin A, Schenker JG, Laufer N. The effect of a prolonged artificial follicular phase on endometrial development in an oocyte donation program. J In Vitro Fert Embryo Transf. 1991;8(2):84–8.

    Article  PubMed  CAS  Google Scholar 

  65. Pados G, Camus M, Van Waesberghe L, Liebaers I, Van Steirteghem A, Devroey P. Oocyte and embryo donation: evaluation of 412 consecutive trials. Hum Reprod. 1992;7(8):1111–7.

    PubMed  CAS  Google Scholar 

  66. Rosenwaks Z. Donor eggs: their application in modern reproductive technologies. Fertil Steril. 1987;47(6):895–909.

    PubMed  CAS  Google Scholar 

  67. Serhal PF, Craft IL. Ovum donation – a simplified approach. Fertil Steril. 1987;48(2):265–9.

    PubMed  CAS  Google Scholar 

  68. Van Steirteghem AC, Van den Abbeel E, Braeckmans P, et al. Pregnancy with a frozen-thawed embryo in a woman with primary ovarian failure. N Engl J Med. 1987;317(2):113.

    Article  PubMed  Google Scholar 

  69. Insler V, Lunenfeld E, Potashnik G, et al. The ­combined pituitary suppression/ovarian stimulation therapy: myths and realities. In: Mashiach S, Ben-Rafael Z, Laufer N, Svhenker JG, editors. Advances in assisted reproductive technologies. New York: Plenum Press; 1990.

    Google Scholar 

  70. Klein J, Sauer MV. Oocyte donation. Best Pract Res Clin Obstet Gynaecol. 2002;16(3):277–91.

    Article  PubMed  Google Scholar 

  71. Sauer MV. Oocyte donation: reflections on past work and future directions. Hum Reprod. 1996;11(6):1149–50.

    Article  PubMed  CAS  Google Scholar 

  72. Devroey P, Pados G. Preparation of endometrium for egg donation. Hum Reprod Update. 1998;4(6): 856–61.

    Article  PubMed  CAS  Google Scholar 

  73. Fletcher D, Chamberlain D, Handley A, et al. Utstein-style audit of Protocol C: a non-standard resuscitation protocol for healthcare professionals. Resuscitation. 2011;82:1265–72.

    Article  PubMed  Google Scholar 

  74. Surrey ES, Silverberg KM, Surrey MW, Schoolcraft WB. Effect of prolonged gonadotropin-releasing ­hormone agonist therapy on the outcome of in vitro fertilization-embryo transfer in patients with endometriosis. Fertil Steril. 2002;78(4):699–704.

    Article  PubMed  Google Scholar 

  75. Ditkoff EC, Sauer MV. A combination of norethindrone acetate and leuprolide acetate blocks the gonadotrophin-releasing hormone agonistic response and minimizes cyst formation during ovarian stimulation. Hum Reprod. 1996;11(5):1035–7.

    Article  PubMed  CAS  Google Scholar 

  76. Anderson RE, Stein AL, Paulson RJ, Stanczyk FZ, Vijod AG, Lobo RA. Effects of norethindrone on gonadotropin and ovarian steroid secretion when used for cycle programming during in vitro fertilization. Fertil Steril. 1990;54(1):96–101.

    PubMed  CAS  Google Scholar 

  77. Prapas N, Prapas Y, Panagiotidis Y, et al. GnRH agonist versus GnRH antagonist in oocyte donation cycles: a prospective randomized study. Hum Reprod. 2005;20(6):1516–20.

    Article  PubMed  CAS  Google Scholar 

  78. Albano C, Smitz J, Camus M, Riethmuller-Winzen H, Van Steirteghem A, Devroey P. Comparison of different doses of gonadotropin-releasing hormone antagonist Cetrorelix during controlled ovarian hyperstimulation. Fertil Steril. 1997;67(5):917–22.

    Article  PubMed  CAS  Google Scholar 

  79. Hohmann FP, Macklon NS, Fauser BC. A randomized comparison of two ovarian stimulation protocols with gonadotropin-releasing hormone (GnRH) antagonist cotreatment for in vitro fertilization commencing recombinant follicle-stimulating hormone on cycle day 2 or 5 with the standard long GnRH agonist protocol. J Clin Endocrinol Metab. 2003;88(1):166–73.

    Article  PubMed  CAS  Google Scholar 

  80. Tarlatzis BC, Fauser BC, Kolibianakis EM, Diedrich K, Rombauts L, Devroey P. GnRH antagonists in ovarian stimulation for IVF. Hum Reprod Update. 2006;12(4):333–40.

    Article  PubMed  CAS  Google Scholar 

  81. Lindheim SR, Morales AJ. GnRH antagonists followed by a decline in serum estradiol results in adverse outcomes in donor oocyte cycles. Hum Reprod. 2003;18(10):2048–51.

    Article  PubMed  CAS  Google Scholar 

  82. Ricciarelli E, Sanchez M, Martinez M, Andres L, Cuadros J, Hernandez ER. Impact of the gonadotropin-releasing hormone antagonist in oocyte donation cycles. Fertil Steril. 2003;79(6):1461–3.

    Article  PubMed  Google Scholar 

  83. Hernandez ER. Embryo implantation and GnRH antagonists: embryo implantation: the Rubicon for GnRH antagonists. Hum Reprod. 2000;15(6):1211–6.

    Article  PubMed  CAS  Google Scholar 

  84. Dekel N, Lewysohn O, Ayalon D, Hazum E. Receptors for gonadotropin releasing hormone are present in rat oocytes. Endocrinology. 1988;123(2):1205–7.

    Article  PubMed  CAS  Google Scholar 

  85. Emons G, Schroder B, Ortmann O, Westphalen S, Schulz KD, Schally AV. High affinity binding and direct antiproliferative effects of luteinizing hormone-releasing hormone analogs in human endometrial cancer cell lines. J Clin Endocrinol Metab. 1993;77(6):1458–64.

    Article  PubMed  CAS  Google Scholar 

  86. Albano C, Felberbaum RE, Smitz J, et al. Ovarian stimulation with HMG: results of a prospective randomized phase III European study comparing the luteinizing hormone-releasing hormone (LHRH)-antagonist cetrorelix and the LHRH-agonist buserelin. European Cetrorelix Study Group. Hum Reprod. 2000;15(3):526–31.

    Article  PubMed  CAS  Google Scholar 

  87. Sauer MV, Paulson RJ, Moyer DL. Assessing the importance of endometrial biopsy prior to oocyte donation. J Assist Reprod Genet. 1997;14(2):125–7.

    Article  PubMed  CAS  Google Scholar 

  88. Vlahos NF, Bankowski BJ, Zacur HA, Garcia JE, Wallach EE, Zhao Y. An oocyte donation protocol using the GnRH antagonist ganirelix acetate, does not compromise embryo quality and is associated with high pregnancy rates. Arch Gynecol Obstet. 2005;272(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  89. Bodri D, Sunkara SK, Coomarasamy A. Gonadotropin-releasing hormone agonists versus antagonists for controlled ovarian hyperstimulation in oocyte donors: a systematic review and meta-analysis. Fertil Steril. 2011;95(1):164–9.

    Article  PubMed  CAS  Google Scholar 

  90. Simon C, Oberye J, Bellver J, et al. Similar endometrial development in oocyte donors treated with either high- or standard-dose GnRH antagonist compared to treatment with a GnRH agonist or in natural cycles. Hum Reprod. 2005;20(12):3318–27.

    Article  PubMed  CAS  Google Scholar 

  91. Nelson LM, Anasti JN, Kimzey LM, et al. Development of luteinized graafian follicles in patients with karyotypically normal spontaneous premature ovarian failure. J Clin Endocrinol Metab. 1994;79(5):1470–5.

    Article  PubMed  CAS  Google Scholar 

  92. Rebar RW, Connolly HV. Clinical features of young women with hypergonadotropic amenorrhea. Fertil Steril. 1990;53(5):804–10.

    PubMed  CAS  Google Scholar 

  93. Bryman I, Sylven L, Berntorp K, et al. Pregnancy rate and outcome in Swedish women with Turner syndrome. Fertil Steril. 2011;95(8):2507–10.

    Article  PubMed  Google Scholar 

  94. Hovatta O. Pregnancies in women with Turner’s syndrome. Ann Med. 1999;31(2):106–10.

    PubMed  CAS  Google Scholar 

  95. Remohi J, Gutierrez A, Cano F, Ruiz A, Simon C, Pellicer A. Long oestradiol replacement in an oocyte donation programme. Hum Reprod. 1995;10(6):1387–91.

    Article  PubMed  CAS  Google Scholar 

  96. Dmowski WP, Michalowska J, Rana N, Friberg J, McGill-Johnson E, DeOrio L. Subcutaneous estradiol pellets for endometrial preparation in donor oocyte recipients with a poor endometrial response. J Assist Reprod Genet. 1997;14(3):139–44.

    Article  PubMed  CAS  Google Scholar 

  97. Ryan KJ, Engel LL. The interconversion of estrone and estradiol by human tissue slices. Endocrinology. 1953;52(3):287–91.

    Article  PubMed  CAS  Google Scholar 

  98. Campbell S, Whitehead MI. Potency and hepato-cellular effects of oestrogens after oral, percutaneous, and suboutaneous administration. Lancaster: MTP Press; 1982.

    Google Scholar 

  99. Powers MS, Schenkel L, Darley PE, Good WR, Balestra JC, Place VA. Pharmacokinetics and pharmacodynamics of transdermal dosage forms of 17 beta-estradiol: comparison with conventional oral estrogens used for hormone replacement. Am J Obstet Gynecol. 1985;152(8):1099–106.

    PubMed  CAS  Google Scholar 

  100. Rosenwaks Z, Navot D, Veeck L, et al. Oocyte donation. The Norfolk Program. Ann N Y Acad Sci. 1988;541:728–41.

    Article  PubMed  CAS  Google Scholar 

  101. Schmidt CL, de Ziegler D, Gagliardi CL, et al. Transfer of cryopreserved-thawed embryos: the natural cycle versus controlled preparation of the endometrium with gonadotropin-releasing hormone agonist and exogenous estradiol and progesterone (GEEP). Fertil Steril. 1989;52(4):609–16.

    PubMed  CAS  Google Scholar 

  102. Bustillo M, Krysa LW, Coulam CB. Uterine receptivity in an oocyte donation programme. Hum Reprod. 1995;10(2):442–5.

    PubMed  CAS  Google Scholar 

  103. Leeton J, Rogers P, King C, Healy D. A comparison of pregnancy rates for 131 donor oocyte transfers using either a sequential or fixed regime of steroid replacement therapy. Hum Reprod. 1991;6(2):299–301.

    PubMed  CAS  Google Scholar 

  104. Ben-Nun I, Shulman A. Induction of artificial endometrial cycles with s.c. oestrogen implants and injectable progesterone in in-vitro fertilization treatment with donated oocytes: a preliminary report. Hum Reprod. 1997;12(10):2267–70.

    Article  PubMed  CAS  Google Scholar 

  105. Zegers-Hochschild F, Altieri E. Luteal estrogen is not required for the establishment of pregnancy in the human. J Assist Reprod Genet. 1995;12(3):224–8.

    Article  PubMed  CAS  Google Scholar 

  106. Lewin A, Benshushan A, Mezker E, Yanai N, Schenker JG, Goshen R. The role of estrogen support during the luteal phase of in vitro fertilization-embryo transplant cycles: a comparative study between progesterone alone and estrogen and progesterone support. Fertil Steril. 1994;62(1):121–5.

    PubMed  CAS  Google Scholar 

  107. Gelbaya TA, Kyrgiou M, Tsoumpou I, Nardo LG. The use of estradiol for luteal phase support in in vitro fertilization/intracytoplasmic sperm injection cycles: a systematic review and meta-analysis. Fertil Steril. 2008;90(6):2116–25.

    Article  PubMed  Google Scholar 

  108. Yanushpolsky E, Hurwitz S, Greenberg L, Racowsky C, Hornstein M. Crinone vaginal gel is equally effective and better tolerated than intramuscular progesterone for luteal phase support in in vitro fertilization-embryo transfer cycles: a prospective randomized study. Fertil Steril. 2010;94(7):2596–9.

    Article  PubMed  CAS  Google Scholar 

  109. Bourgain C, Devroey P, Van Waesberghe L, Smitz J, Van Steirteghem AC. Effects of natural progesterone on the morphology of the endometrium in patients with primary ovarian failure. Hum Reprod. 1990;5(5):537–43.

    PubMed  CAS  Google Scholar 

  110. Mesiano S. The endocrinology of human pregnancy and fetoplacental neuroendocrine development. In: Strauss III JF, Barbieri RL, editors. Yen and Jaffe’s reproductive endocrinology. 6th ed. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  111. Glujovsky D, Pesce R, Fiszbajn G, Sueldo C, Hart RJ, Ciapponi A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst Rev. 2010; (1):CD006359.

    Google Scholar 

  112. Noci I, Borri P, Chieffi O, et al. I. Aging of the human endometrium: a basic morphological and immunohistochemical study. Eur J Obstet Gynecol Reprod Biol. 1995;63(2):181–5.

    Article  PubMed  CAS  Google Scholar 

  113. Paulson RJ, Sauer MV, Lobo RA. Potential enhancement of endometrial receptivity in cycles using controlled ovarian hyperstimulation with antiprogestins: a hypothesis. Fertil Steril. 1997;67(2):321–5.

    Article  PubMed  CAS  Google Scholar 

  114. Castelbaum AJ, Ying L, Somkuti SG, Sun J, Ilesanmi AO, Lessey BA. Characterization of integrin expression in a well differentiated endometrial adenocarcinoma cell line (Ishikawa). J Clin Endocrinol Metab. 1997;82(1):136–42.

    Article  PubMed  CAS  Google Scholar 

  115. Yoo HJ, Barlow DH, Mardon HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev Genet. 1997;21(1):102–8.

    Article  PubMed  CAS  Google Scholar 

  116. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–3.

    PubMed  CAS  Google Scholar 

  117. Jones GS. The luteal phase defect. Fertil Steril. 1976;27(4):351–6.

    PubMed  CAS  Google Scholar 

  118. Soules MR, McLachlan RI, Ek M, Dahl KD, Cohen NL, Bremner WJ. Luteal phase deficiency: characterization of reproductive hormones over the menstrual cycle. J Clin Endocrinol Metab. 1989;69(4):804–12.

    Article  PubMed  CAS  Google Scholar 

  119. Miller MM, Hoffman DI, Creinin M, et al. Comparison of endometrial biopsy and urinary pregnanediol glucuronide concentration in the diagnosis of luteal phase defect. Fertil Steril. 1990;54(6):1008–11.

    PubMed  CAS  Google Scholar 

  120. Gibson M, Badger GJ, Byrn F, Lee KR, Korson R, Trainer TD. Error in histologic dating of secretory endometrium: variance component analysis. Fertil Steril. 1991;56(2):242–7.

    PubMed  CAS  Google Scholar 

  121. Coutifaris C, Myers ER, Guzick DS, et al. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;82(5):1264–72.

    Article  PubMed  Google Scholar 

  122. Potter DA, Witz CA, Burns WN, Brzyski RG, Schenken RS. Endometrial biopsy during hormone replacement cycle in donor oocyte recipients before in vitro fertilization-embryo transfer. Fertil Steril. 1998;70(2):219–21.

    Article  PubMed  CAS  Google Scholar 

  123. Jun SH, Hornstein MD. Is there a role for preparatory cycle in ovum donation recipients? Curr Opin Obstet Gynecol. 2006;18(3):333–7.

    Article  PubMed  Google Scholar 

  124. McWilliams GD, Frattarelli JL. Changes in measured endometrial thickness predict in vitro fertilization success. Fertil Steril. 2007;88(1):74–81.

    Article  PubMed  Google Scholar 

  125. Amir W, Micha B, Ariel H, Liat LG, Jehoshua D, Adrian S. Predicting factors for endometrial thickness during treatment with assisted reproductive technology. Fertil Steril. 2007;87(4):799–804.

    Article  PubMed  Google Scholar 

  126. Richter KS, Bugge KR, Bromer JG, Levy MJ. Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertil Steril. 2007;87(1):53–9.

    Article  PubMed  Google Scholar 

  127. Zhang X, Chen CH, Confino E, Barnes R, Milad M, Kazer RR. Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2005;83(2):336–40.

    Article  PubMed  Google Scholar 

  128. Zenke U, Chetkowski RJ. Transfer and uterine factors are the major recipient-related determinants of success with donor eggs. Fertil Steril. 2004;82(4):850–6.

    Article  PubMed  Google Scholar 

  129. Kovacs P, Matyas S, Boda K, Kaali SG. The effect of endometrial thickness on IVF/ICSI outcome. Hum Reprod. 2003;18(11):2337–41.

    Article  PubMed  CAS  Google Scholar 

  130. Noyes N, Hampton BS, Berkeley A, Licciardi F, Grifo J, Krey L. Factors useful in predicting the success of oocyte donation: a 3-year retrospective analysis. Fertil Steril. 2001;76(1):92–7.

    Article  PubMed  CAS  Google Scholar 

  131. Sharara FI, Lim J, McClamrock HD. Endometrial pattern on the day of oocyte retrieval is more predictive of implantation success than the pattern or thickness on the day of hCG administration. J Assist Reprod Genet. 1999;16(10):523–8.

    Article  PubMed  CAS  Google Scholar 

  132. Rashidi BH, Sadeghi M, Jafarabadi M, Tehrani Nejad ES. Relationships between pregnancy rates following in vitro fertilization or intracytoplasmic sperm injection and endometrial thickness and pattern. Eur J Obstet Gynecol Reprod Biol. 2005;120(2):179–84.

    Article  PubMed  Google Scholar 

  133. Schild RL, Knobloch C, Dorn C, Fimmers R, van der Ven H, Hansmann M. Endometrial receptivity in an in vitro fertilization program as assessed by spiral artery blood flow, endometrial thickness, endometrial volume, and uterine artery blood flow. Fertil Steril. 2001;75(2):361–6.

    Article  PubMed  CAS  Google Scholar 

  134. Laasch C, Puscheck E. Cumulative embryo score, not endometrial thickness, is best for pregnancy prediction in IVF. J Assist Reprod Genet. 2004;21(2):47–50.

    Article  PubMed  Google Scholar 

  135. Garcia-Velasco JA, Isaza V, Caligara C, Pellicer A, Remohi J, Simon C. Factors that determine discordant outcome from shared oocytes. Fertil Steril. 2003;80(1):54–60.

    Article  PubMed  Google Scholar 

  136. Dietterich C, Check JH, Choe JK, Nazari A, Lurie D. Increased endometrial thickness on the day of human chorionic gonadotropin injection does not adversely affect pregnancy or implantation rates following in vitro fertilization-embryo transfer. Fertil Steril. 2002;77(4):781–6.

    Article  PubMed  Google Scholar 

  137. Yuval Y, Lipitz S, Dor J, Achiron R. The relationships between endometrial thickness, and blood flow and pregnancy rates in in-vitro fertilization. Hum Reprod. 1999;14(4):1067–71.

    Article  PubMed  CAS  Google Scholar 

  138. Sundstrom P. Establishment of a successful pregnancy following in-vitro fertilization with an endometrial thickness of no more than 4 mm. Hum Reprod. 1998;13(6):1550–2.

    Article  PubMed  CAS  Google Scholar 

  139. Baruffi RL, Contart P, Mauri AL, et al. A uterine ultrasonographic scoring system as a method for the prognosis of embryo implantation. J Assist Reprod Genet. 2002;19(3):99–102.

    Article  PubMed  Google Scholar 

  140. Khalifa E, Brzyski RG, Oehninger S, Acosta AA, Muasher SJ. Sonographic appearance of the endometrium: the predictive value for the outcome of in-vitro fertilization in stimulated cycles. Hum Reprod. 1992;7(5):677–80.

    PubMed  CAS  Google Scholar 

  141. Sher G, Herbert C, Maassarani G, Jacobs MH. Assessment of the late proliferative phase endometrium by ultrasonography in patients undergoing in-vitro fertilization and embryo transfer (IVF/ET). Hum Reprod. 1991;6(2):232–7.

    PubMed  CAS  Google Scholar 

  142. Tang B, Gurpide E. Direct effect of gonadotropins on decidualization of human endometrial stroma cells. J Steroid Biochem Mol Biol. 1993;47(1–6):115–21.

    Article  PubMed  CAS  Google Scholar 

  143. Paulson RJ, Sauer MV, Lobo RA. Embryo implantation after human in vitro fertilization: importance of endometrial receptivity. Fertil Steril. 1990;53(5):870–4.

    PubMed  CAS  Google Scholar 

  144. Fanchin R, Righini C, Olivennes F, Ferreira AL, de Ziegler D, Frydman R. Consequences of premature progesterone elevation on the outcome of in vitro fertilization: insights into a controversy. Fertil Steril. 1997;68(5):799–805.

    Article  PubMed  CAS  Google Scholar 

  145. Remohi J, Ardiles G, Garcia-Velasco JA, Gaitan P, Simon C, Pellicer A. Endometrial thickness and serum oestradiol concentrations as predictors of outcome in oocyte donation. Hum Reprod. 1997;12(10):2271–6.

    Article  PubMed  CAS  Google Scholar 

  146. Check JH, Nowroozi K, Choe J, Lurie D, Dietterich C. The effect of endometrial thickness and echo pattern on in vitro fertilization outcome in donor oocyte-embryo transfer cycle. Fertil Steril. 1993;59(1):72–5.

    PubMed  CAS  Google Scholar 

  147. Abdalla HI, Brooks AA, Johnson MR, Kirkland A, Thomas A, Studd JW. Endometrial thickness: a predictor of implantation in ovum recipients? Hum Reprod. 1994;9(2):363–5.

    PubMed  CAS  Google Scholar 

  148. Barker MA, Boehnlein LM, Kovacs P, Lindheim SR. Follicular and luteal phase endometrial thickness and echogenic pattern and pregnancy outcome in oocyte donation cycles. J Assist Reprod Genet. 2009;26(5):243–9.

    Article  PubMed  Google Scholar 

  149. Steer CV, Campbell S, Tan SL, et al. The use of transvaginal color flow imaging after in vitro fertilization to identify optimum uterine conditions before embryo transfer. Fertil Steril. 1992;57(2):372–6.

    PubMed  CAS  Google Scholar 

  150. Chien LW, Tzeng CR, Chang SR, Chen AC. The correlation of the embryo implantation rate with uterine arterial impedance in in vitro fertilization and embryo transfer. Early Pregnancy. 1995;1(1):27–32.

    PubMed  CAS  Google Scholar 

  151. Hoozemans DA, Schats R, Lambalk NB, Homburg R, Hompes PG. Serial uterine artery Doppler velocity parameters and human uterine receptivity in IVF/ICSI cycles. Ultrasound Obstet Gynecol. 2008;31(4): 432–8.

    Article  PubMed  CAS  Google Scholar 

  152. Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. The role of endometrial and subendometrial blood flows measured by three-dimensional power Doppler ultrasound in the prediction of pregnancy during IVF treatment. Hum Reprod. 2006;21(1):164–70.

    Article  PubMed  Google Scholar 

  153. Wu HM, Chiang CH, Huang HY, Chao AS, Wang HS, Soong YK. Detection of the subendometrial vascularization flow index by three-dimensional ultrasound may be useful for predicting the ­pregnancy rate for patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2003;79(3): 507–11.

    Article  PubMed  Google Scholar 

  154. Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17(2):242–53.

    Article  PubMed  CAS  Google Scholar 

  155. Biljan MM, Mahutte NG, Dean N, Hemmings R, Bissonnette F, Tan SL. Effects of pretreatment with an oral contraceptive on the time required to achieve pituitary suppression with gonadotropin-releasing hormone analogues and on subsequent implantation and pregnancy rates. Fertil Steril. 1998;70(6):1063–9.

    Article  PubMed  CAS  Google Scholar 

  156. Garcia-Velasco JA, Bermejo A, Ruiz F, Martinez-Salazar J, Requena A, Pellicer A. Cycle scheduling with oral contraceptive pills in the GnRH antagonist protocol vs the long protocol: a randomized, controlled trial. Fertil Steril. 2011;96:590–3.

    Article  PubMed  CAS  Google Scholar 

  157. Kolibianakis EM, Papanikolaou EG, Camus M, Tournaye H, Van Steirteghem AC, Devroey P. Effect of oral contraceptive pill pretreatment on ongoing pregnancy rates in patients stimulated with GnRH antagonists and recombinant FSH for IVF. A randomized controlled trial. Hum Reprod. 2006;21(2):352–7.

    Article  PubMed  CAS  Google Scholar 

  158. Cedrin-Durnerin I, Bstandig B, Parneix I, et al. Effects of oral contraceptive, synthetic progestogen or natural estrogen pre-treatments on the hormonal profile and the antral follicle cohort before GnRH antagonist protocol. Hum Reprod. 2007;22(1):109–16.

    Article  PubMed  CAS  Google Scholar 

  159. Rombauts L, Healy D, Norman RJ. A comparative randomized trial to assess the impact of oral contraceptive pretreatment on follicular growth and hormone profiles in GnRH antagonist-treated patients. Hum Reprod. 2006;21(1):95–103.

    Article  PubMed  CAS  Google Scholar 

  160. Griesinger G, Kolibianakis EM, Venetis C, Diedrich K, Tarlatzis B. Oral contraceptive pretreatment significantly reduces ongoing pregnancy likelihood in gonadotropin-releasing hormone antagonist cycles: an updated meta-analysis. Fertil Steril. 2010;94(6):2382–4.

    Article  PubMed  CAS  Google Scholar 

  161. Bodri D, Vernaeve V, Guillen JJ, Vidal R, Figueras F, Coll O. Comparison between a GnRH antagonist and a GnRH agonist flare-up protocol in oocyte donors: a randomized clinical trial. Hum Reprod. 2006;21(9):2246–51.

    Article  PubMed  CAS  Google Scholar 

  162. Wei AY, Mijal KA, Christianson MS, Schouweiler CM, Lindheim SR. Comparison of GnRH antagonists and flareup GnRH agonists in donor oocyte cycles. J Reprod Med. 2008;53(3):147–50.

    PubMed  CAS  Google Scholar 

  163. Albano C, Smitz J, Camus M, et al. Hormonal profile during the follicular phase in cycles stimulated with a combination of human menopausal gonadotrophin and gonadotrophin-releasing hormone antagonist (Cetrorelix). Hum Reprod. 1996;11(10):2114–8.

    Article  PubMed  CAS  Google Scholar 

  164. de Jong D, Macklon NS, Mannaerts BM, Coelingh Bennink HJ, Fauser BC. High dose gonadotrophin-releasing hormone antagonist (ganirelix) may prevent ovarian hyperstimulation syndrome caused by ovarian stimulation for in-vitro fertilization. Hum Reprod. 1998;13(3):573–5.

    Article  PubMed  Google Scholar 

  165. A double-blind, randomized, dose-finding study to assess the efficacy of the gonadotrophin-releasing hormone antagonist ganirelix (Org 37462) to prevent premature luteinizing hormone surges in women undergoing ovarian stimulation with recombinant follicle stimulating hormone (Puregon). The ganirelix dose-finding study group. Hum Reprod. 1998;13(11):3023–31.

    Google Scholar 

  166. Fluker M, Grifo J, Leader A, et al. Efficacy and safety of ganirelix acetate versus leuprolide acetate in women undergoing controlled ovarian hyperstimulation. Fertil Steril. 2001;75(1):38–45.

    Article  PubMed  CAS  Google Scholar 

  167. Westergaard LG, Laursen SB, Andersen CY. Increased risk of early pregnancy loss by profound suppression of luteinizing hormone during ovarian stimulation in normogonadotrophic women undergoing assisted reproduction. Hum Reprod. 2000;15(5):1003–8.

    Article  PubMed  CAS  Google Scholar 

  168. Barker MA, Christianson MS, Schouweiler CM, Lindheim SR. Clinical outcomes using a flexible regimen of GnRH-antagonists and a ‘step-up’ of additional gonadotropins in donor oocyte cycles. Curr Med Res Opin. 2007;23(9):2297–302.

    Article  PubMed  CAS  Google Scholar 

  169. Propst AM, Bates GW, Robinson RD, Arthur NJ, Martin JE, Neal GS. A randomized controlled trial of increasing recombinant follicle-stimulating ­hormone after initiating a gonadotropin-releasing hormone antagonist for in vitro fertilization-embryo transfer. Fertil Steril. 2006;86(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  170. Al-Inany HG, Youssef MA, Aboulghar M, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev. 2011; (5):CD001750.

    Google Scholar 

  171. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2): 141–54.

    Article  Google Scholar 

  172. Scott Jr RT, Hofmann GE. Prognostic assessment of ovarian reserve. Fertil Steril. 1995;63(1):1–11.

    PubMed  Google Scholar 

  173. Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z. Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril. 1989;51(4):651–4.

    PubMed  CAS  Google Scholar 

  174. Toner JP, Philput CB, Jones GS, Muasher SJ. Basal follicle-stimulating hormone level is a better predictor of in vitro fertilization performance than age. Fertil Steril. 1991;55(4):784–91.

    PubMed  CAS  Google Scholar 

  175. Licciardi FL, Liu HC, Rosenwaks Z. Day 3 estradiol serum concentrations as prognosticators of ovarian stimulation response and pregnancy outcome in patients undergoing in vitro fertilization. Fertil Steril. 1995;64(5):991–4.

    PubMed  CAS  Google Scholar 

  176. Smotrich DB, Widra EA, Gindoff PR, Levy MJ, Hall JL, Stillman RJ. Prognostic value of day 3 estradiol on in vitro fertilization outcome. Fertil Steril. 1995;64(6):1136–40.

    PubMed  CAS  Google Scholar 

  177. Seifer DB, Lambert-Messerlian G, Hogan JW, Gardiner AC, Blazar AS, Berk CA. Day 3 serum inhibin-B is predictive of assisted reproductive technologies outcome. Fertil Steril. 1997;67(1):110–4.

    Article  PubMed  CAS  Google Scholar 

  178. Balasch J, Creus M, Fabregues F, et al. Inhibin, follicle-stimulating hormone, and age as predictors of ovarian response in in vitro fertilization cycles ­stimulated with gonadotropin-releasing hormone agonist-gonadotropin treatment. Am J Obstet Gynecol. 1996;175(5):1226–30.

    Article  PubMed  CAS  Google Scholar 

  179. van Rooij IA, Broekmans FJ, te Velde ER, et al. Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve. Hum Reprod. 2002;17(12): 3065–71.

    Article  PubMed  Google Scholar 

  180. Muttukrishna S, Suharjono H, McGarrigle H, Sathanandan M. Inhibin B and anti-Mullerian hormone: markers of ovarian response in IVF/ICSI patients? BJOG. 2004;111(11):1248–53.

    Article  PubMed  CAS  Google Scholar 

  181. Broer SL, Mol BW, Hendriks D, Broekmans FJ. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91(3):705–14.

    Article  PubMed  CAS  Google Scholar 

  182. Bancsi LF, Broekmans FJ, Eijkemans MJ, de Jong FH, Habbema JD, te Velde ER. Predictors of poor ovarian response in in vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril. 2002;77(2):328–36.

    Article  PubMed  Google Scholar 

  183. Frattarelli JL, Levi AJ, Miller BT, Segars JH. A prospective assessment of the predictive value of basal antral follicles in in vitro fertilization cycles. Fertil Steril. 2003;80(2):350–5.

    Article  PubMed  Google Scholar 

  184. Bancsi LF, Broekmans FJ, Looman CW, Habbema JD, te Velde ER. Impact of repeated antral follicle counts on the prediction of poor ovarian response in women undergoing in vitro fertilization. Fertil Steril. 2004;81(1):35–41.

    Article  PubMed  Google Scholar 

  185. Hendriks DJ, Mol BW, Bancsi LF, Te Velde ER, Broekmans FJ. Antral follicle count in the prediction of poor ovarian response and pregnancy after in vitro fertilization: a meta-analysis and comparison with basal follicle-stimulating hormone level. Fertil Steril. 2005;83(2):291–301.

    Article  PubMed  Google Scholar 

  186. Maseelall PB, Hernandez-Rey AE, Oh C, Maagdenberg T, McCulloh DH, McGovern PG. Antral follicle count is a significant predictor of livebirth in in vitro fertilization cycles. Fertil Steril. 2009;91(4 Suppl):1595–7.

    Article  PubMed  CAS  Google Scholar 

  187. Frattarelli JL, Lauria-Costab DF, Miller BT, Bergh PA, Scott RT. Basal antral follicle number and mean ovarian diameter predict cycle cancellation and ovarian responsiveness in assisted reproductive technology cycles. Fertil Steril. 2000;74(3):512–7.

    Article  PubMed  CAS  Google Scholar 

  188. Weckstein LN, Jacobson A, Galen D, Hampton K, Hammel J. Low-dose aspirin for oocyte donation recipients with a thin endometrium: prospective, randomized study. Fertil Steril. 1997;68(5):927–30.

    Article  PubMed  CAS  Google Scholar 

  189. Sher G, Fisch JD. Vaginal sildenafil (Viagra): a preliminary report of a novel method to improve uterine artery blood flow and endometrial development in patients undergoing IVF. Hum Reprod. 2000;15(4):806–9.

    Article  PubMed  CAS  Google Scholar 

  190. Senturk LM, Erel CT. Thin endometrium in assisted reproductive technology. Curr Opin Obstet Gynecol. 2008;20(3):221–8.

    Article  PubMed  Google Scholar 

  191. Takasaki A, Tamura H, Miwa I, Taketani T, Shimamura K, Sugino N. Endometrial growth and uterine blood flow: a pilot study for improving endometrial thickness in the patients with a thin endometrium. Fertil Steril. 2010;93(6):1851–8.

    Article  PubMed  CAS  Google Scholar 

  192. Ledee-Bataille N, Olivennes F, Lefaix JL, Chaouat G, Frydman R, Delanian S. Combined treatment by pentoxifylline and tocopherol for recipient women with a thin endometrium enrolled in an oocyte donation programme. Hum Reprod. 2002;17(5): 1249–53.

    Article  PubMed  CAS  Google Scholar 

  193. Foudila T, Soderstrom-Anttila V, Hovatta O. Turner’s syndrome and pregnancies after oocyte donation. Hum Reprod. 1999;14(2):532–5.

    Article  PubMed  CAS  Google Scholar 

  194. Bodri D, Vernaeve V, Figueras F, Vidal R, Guillen JJ, Coll O. Oocyte donation in patients with Turner’s syndrome: a successful technique but with an accompanying high risk of hypertensive disorders during pregnancy. Hum Reprod. 2006;21(3):829–32.

    Article  PubMed  CAS  Google Scholar 

  195. Karnis MF, Zimon AE, Lalwani SI, Timmreck LS, Klipstein S, Reindollar RH. Risk of death in pregnancy achieved through oocyte donation in patients with Turner syndrome: a national survey. Fertil Steril. 2003;80(3):498–501.

    Article  PubMed  Google Scholar 

  196. Practice Committee, American Society for Reproductive Medicine. Increased maternal cardiovascular mortality associated with pregnancy in women with Turner syndrome. Fertil Steril. 2005;83(4):1074–5.

    Article  Google Scholar 

  197. Bondy CA. Care of girls and women with Turner syndrome: a guideline of the Turner Syndrome Study Group. J Clin Endocrinol Metab. 2007;92(1):10–25.

    Article  PubMed  CAS  Google Scholar 

  198. Delbaere A, Englert Y. Turner’s syndrome and oocyte donation. Gynecol Obstet Fertil. 2002;30(12):970–8.

    Article  PubMed  CAS  Google Scholar 

  199. Larizza D, Cuccia M, Martinetti M, et al. Adrenocorticotrophin stimulation and HLA polymorphisms suggest a high frequency of heterozygosity for steroid 21-hydroxylase deficiency in patients with Turner’s syndrome and their families. Clin Endocrinol (Oxf). 1994;40(1):39–45.

    Article  CAS  Google Scholar 

  200. Yaron Y, Ochshorn Y, Amit A, Yovel I, Kogosowki A, Lessing JB. Patients with Turner’s syndrome may have an inherent endometrial abnormality affecting receptivity in oocyte donation. Fertil Steril. 1996;65(6):1249–52.

    PubMed  CAS  Google Scholar 

  201. Xiao BL, Zhou LY, Zhang XL, Jia MC, Luukkainen T, Allonen H. Pharmacokinetic and pharmacodynamic studies of levonorgestrel-releasing intrauterine device. Contraception. 1990;41(4):353–62.

    Article  PubMed  CAS  Google Scholar 

  202. Barbosa I, Bakos O, Olsson SE, Odlind V, Johansson ED. Ovarian function during use of a levonorgestrel-releasing IUD. Contraception. 1990;42(1):51–66.

    Article  PubMed  CAS  Google Scholar 

  203. Haimov-Kochman R, Amsalem H, Adoni A, Lavy Y, Spitz IM. Management of a perforated levonorgestrel-medicated intrauterine device – a pharmacokinetic study: case report. Hum Reprod. 2003;18(6):1231–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Lindheim M.D., MMM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sroga, J.M., Lindheim, S.R. (2013). Synchronization of Donors and Recipients: Practical Aspects of Clinical Surveillance. In: Sauer, M. (eds) Principles of Oocyte and Embryo Donation. Springer, London. https://doi.org/10.1007/978-1-4471-2392-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2392-7_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2391-0

  • Online ISBN: 978-1-4471-2392-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics