Skip to main content
  • 1325 Accesses

Abstract

Viscoelastic processes are history dependent processes in which some energy is stored and some energy is dissipated. A simple viscoelastic relaxation process is one in which the state variables respond over time to constant control variables. For example, in creep, the stress is held constant, and in stress relaxation, the strain is held constant. Each viscoelastic material has a long-term behavior towards which a relaxation process tends. The structure of a viscoelastic material is perturbed only slightly during time-dependent responses. This is in contrast to a viscoplastic material (see Chapter 5) which involves mechanisms, such as dislocation multiplication, that permanently change the structure of the material. The creep of a non-aging polymer is a qualitatively different phenomenon than that of a metal creep, which may involve mechanisms such as dislocation climb. Other than relaxation processes such as creep or stress relaxation, viscoelastic process may be forced, such as in rate-dependent loading or in sinusoidal loading. The goal is to describe the application of the maximum dissipation evolution construction to produce a nonlinear viscoelastic model that can represent both relaxation and forced loadings. The class of models developed here assumes that dissipation occurs in a viscoelastic material without affecting the equilibrium, or long-term state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. L. Anthony, R. H. Caston, and E. Guth (1942). Equations of state for natural and synthetic rubber-like materials. I. Journal of Physical Chemistry 46, 826–840.

    Article  Google Scholar 

  • J. T. Apter (1964). Mathematical development of a physical model of some visco-elastic properties of the aorta. Bulletin of Mathematical Biophysics 26, 267–288.

    Article  Google Scholar 

  • J. T. Apter, M. Rabinowitz, and D. H. Cummings (1966). Correlation of visco-elastic properties of large arteries with microscopic structure. I, II, III. Circulation Research 19, 104–121.

    Article  Google Scholar 

  • J. T. Apter and E. Marquez (1968). Correlation of visco-elastic properties of large arteries with microscopic structure. IV. Circulation Research 22, 393–404.

    Article  Google Scholar 

  • M. B. Bennett, R. F. Ker, N. J. Dimery, and R. McN. Alexander (1986). Mechanical properties of various mammalian tendons. Journal of Zoology, London A 209, 537–548.

    Article  Google Scholar 

  • L. E. Bilston, Z. Liu, and N. Phan-Thien (2001). Large strain behavior of brain tissue in shear: Some experimental data and differential constitutive model. Biorheology 38, 335–345.

    Google Scholar 

  • J. Bonet (2001). Large strain viscoelastic constitutive models. International Journal of Solids and Structures 38, 2953–2968.

    Article  MATH  Google Scholar 

  • O. S. Brüller (1985). On the nonlinear response of polymers to periodical sudden loading and unloading. Polymer Engineering and Science 25, 604–607.

    Article  Google Scholar 

  • O. S. Brüller (1987). On the nonlinear characterization of the long term behavior of polymeric materials. Polymer Engineering and Science 27, 144–148.

    Article  Google Scholar 

  • O. S. Brüller (1991). Some New Results Concerning the Nonlinear Viscoelastic Characterization of Polymeric Materials. In Constitutive Laws for Engineering Materials, eds. C. S. Desai, E. Krempl, G. Frantziskonis, and H. Saadatmanesh, 241–246. ASME Press, New York, NY.

    Google Scholar 

  • P. Chadwick (1974). Thermo-mechanics of rubberlike materials. Philosophical Transactions of the Royal Society London A 276, 371–403.

    Google Scholar 

  • R. M. Christensen (1971). Theory of Viscoelasticity: An Introduction, Academic Press, New York, London.

    Google Scholar 

  • B. D. Coleman (1964). Thermodynamics of materials with memory. Archive for Rational Mechanics and Analysis 17, 1–46.

    MathSciNet  Google Scholar 

  • M. J. Crochet and P. M. Naghdi (1969). A class of simple solids with fading memory. International Journal of Engineering Science 7, 1173.

    Article  MathSciNet  MATH  Google Scholar 

  • W. N. Findley, J. S. Lai, and K. Onaron (1989). Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover, New York, NY.

    Google Scholar 

  • Y. C. Fung (1972). Stress-strain history relations of soft tissues in simple elongation. In Biomechanics: Its Foundations and Objectives, eds. Y. C. Fung, N. Perrone, and M. Anliker, Prentice-Hall, Englewood Cliffs, NJ, 181–208.

    Google Scholar 

  • Y. C. Fung (1973). Biorheology of soft tissues. Biorheology 10, 139–155.

    Google Scholar 

  • Y. C. Fung (1993). Biomechanics. Mechanical Properties of Living Tissues, 2nd ed., Springer, New York, NY.

    Google Scholar 

  • J. Hale and H. Koçak (1991). Dynamics and Bifurcations, Springer, New York, NY.

    Book  MATH  Google Scholar 

  • H. W. Haslach, Jr. (2005). Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomechanics and Modeling in Mechanobiology 3(3), 172–189.

    Article  Google Scholar 

  • H. W. Haslach, Jr. and N-N. Zeng (1999). Maximum dissipation evolution equations for nonlinear thermoviscoelasticity. International Journal of Non-linear Mechanics 34, 361–385.

    Article  MathSciNet  MATH  Google Scholar 

  • G. A. Holzapfel (2000). Nonlinear Solid Mechanics, John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • G. A. Holzapfel, T, C. Gasser, and R. W. Ogden (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 61, 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  • G. A. Holzapfel, T, C. Gasser, and M. Stadler (2002). A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. European Journal of Mechanics A/Solids 21, 441–463.

    Article  MATH  Google Scholar 

  • J. D. Humphrey, D. L. Vawter, and R. P. Vito (1987). Pseudoelasticity of excised visceral pleura. Journal of Biomechanics 109, 115–120.

    Article  Google Scholar 

  • J. D. Humphrey, R. K. Strumpf, and F. C. P. Yin (1992). A constitutive theory for biomembranes: Application to epicardal mechanics. Journal of Biomechanical Engineering 114, 461–466.

    Article  Google Scholar 

  • A. G. James, A. Green, and G. M. Simpson (1975). Strain energy functions of rubber. I. Characterization of gum vulcanizates. Journal of Applied Polymer Science 19, 2033–2058.

    Article  Google Scholar 

  • J. P. Joule (1859). Some thermo-dynamic properties of solids. Philosophical Transactions of the Royal Society London A 149, 91–131.

    Google Scholar 

  • L. Kelvin (W. Thomson) (1857). On the thermo-elastic and thermo-magnetic properties of matter. Quarterly Journal of Pure and Applied Mathematics 1, 57.

    Google Scholar 

  • S. K. Kyriacou and J. D. Humphrey (1996). Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. Journal of Biomechanics 29(8), 1015–1022.

    Article  Google Scholar 

  • Y. Lanir (1983). Constitutive equations for fibrous connective tissues. Journal of Biomechanics 16, 1–12.

    Article  Google Scholar 

  • E. H. Lee (1955). Stress analysis in visco-elastic bodies. Quarterly of Applied Mathematics 13, 183–190.

    MathSciNet  MATH  Google Scholar 

  • J. Lemaitre and J.-L. Chaboche (1990). Mechanics of Solid Materials, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • F. J. Lockett (1972). Nonlinear Viscoelastic Solids, Academic Press, New York, NY.

    MATH  Google Scholar 

  • H. Markovitz (1977). Boltzmann and the beginnings of linear viscoelasticity. Transactions of the Society of Rheology 21, 381–398.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Miller and K. Chinzei (2002). Mechanical properties of brain tissue in tension. Journal of Biomechanics 35, 483–490.

    Article  Google Scholar 

  • R. W. Ogden (1972). Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society London. A 326, 565–584.

    Article  MATH  Google Scholar 

  • S. W. Park and Y. Kim (2001). Fitting Prony-series viscoelastic models with power-law presmoothing. Journal of Materials in Civil Engineering 13, 26–32.

    Article  Google Scholar 

  • M. T. Prange and S. S. Margulies (2002). Regional, directional, and age-dependent properties of the brain undergoing large deformation. Journal of Biomechanical Engineering 124, 244–252.

    Article  Google Scholar 

  • K. R. Rajagopal and A. R. Srinivasa (2005). A note on a correspondence principle in nonlinear viscoelastic materials. International Journal of Fracture 131, 147–152.

    Article  Google Scholar 

  • B. J. Rigby (1964). The effect of mechanical extension upon the thermal stability of collagen. Biochimica et Biophysica Acta 79, 634–636.

    Google Scholar 

  • E. Rosa, Jr., A. R. Altenberger, and J. S. Dahler (1992). Model calculations based on a new theory of rubber elasticity. Acta Physica Polonica B 23, 337–356.

    Google Scholar 

  • C. S. Roy (1880–1881). The elastic properties of the arterial wall. Journal of Physiology 3, 125–159.

    Google Scholar 

  • S. Scott, G. G. Ferguson, and M. R. Roach (1972). Comparison of the elastic properties of human intracranial arteries and aneurysms. Canadian Journal of Physiology and Pharmacology 50, 328–332.

    Article  Google Scholar 

  • A. H. Scott (1935). Specific volume, compressibility, and volume thermal expansivity of rubber - sulpher compounds. Journal of Research of the National Bureau of Standards Washington 14, 99–20.

    Article  Google Scholar 

  • A. D. Shah and J. D. Humphrey (1999). Finite strain elastodynamics of intracranial saccular aneurysms. Journal of Biomechanics 32, 593–599.

    Article  Google Scholar 

  • R. A. Schapery (1984). Correspondence principles and generalized J integral for large deformation and fracture analysis of viscoelastic media. International Journal of Fracture 25, 195–223.

    Article  Google Scholar 

  • M. Shen (1969). Internal energy contribution to the elasticity of natural rubber. Macromolecules 2, 358–364.

    Article  Google Scholar 

  • F. Shen, T. E. Tay, J. Z. Li, S. Nigen, P. V. S. Lee, and H. K. Chan (2006). Modified Bilston Nonlinear Viscoelastic model for Finite Element head injury studies. Journal of Biomechanical Engineering 128, 797–801.

    Article  Google Scholar 

  • R. Skalak, A. Rachev, and A. Tozeren (1975). Stress-strain relations for membranes under finite deformations. Bulgarian Academy of Sciences: Biomechanics 2, 24–29.

    Google Scholar 

  • T. T. Tanaka and Y. C. Fung (1974). Elastic and inelastic properties of the canine aorta and their variations along the aortic tree. Journal of Biomechanics, 7, 357–370.

    Article  Google Scholar 

  • P. Tong and Y. C. Fung (1976). The stress-strain relationship for the skin. Journal of Biomechanics 9, 649–657.

    Article  Google Scholar 

  • E. Tanaka and H. Yamada (1990). An inelastic constitutive model of blood vessels. Acta Mechanica 82, 21–30.

    Article  MATH  Google Scholar 

  • C. Truesdell (1984). Rational Thermodynamics, Springer, New York, NY.

    Book  MATH  Google Scholar 

  • A. Viidik (1968). A rheological model for uncalcified parallel-fibered collogeneous tissue. Journal of Biomechanics 1, 3–11.

    Article  Google Scholar 

  • L. A. Wood (1973). Modulus of natural rubber crosslinked by dicumyl peroxide. II. Comparison with Theory. Rubber Chemistry and Technology 46, 1287–1298.

    Article  Google Scholar 

  • S. L.-Y. Woo, B. R. Simon, S.C. Kuel, and W. H. Akeson (1980). Quasi-linear viscoelastic properties of normal articular cartilage. Journal of Biomechanical Engineering 102, 85–90.

    Article  Google Scholar 

  • B. Wunderlich and H. Baur (1970). Heat capacities of linear high polymers. III. Results of experimental heat capacity measurements. Advances in Polymer Science 7, 260.

    Article  Google Scholar 

  • N. Zeng (1995). A Thermoelastic Constitutive Equation for Rubberlike Materials and a System of Non-equilibrium Evolution Equations, Ph.D. Thesis, University of Maryland, College Park, MD.

    Google Scholar 

  • N-N. Zeng and H. W. Haslach, Jr. (1996). Thermoelastic generalization of isothermal elastic constitutive models for rubberlike materials. Rubber Chemistry and Technology 69 (2), 313–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry W. Haslach Jr .

Appendix: Evolution Equation When the Strain Energy Is a Function of a Tensor

Appendix: Evolution Equation When the Strain Energy Is a Function of a Tensor

Let E be a second order tensor of state variables, and let H be the second order tensor of conjugate control variables. Assume that the energy function has the form

$$\psi(\textbf{E}; \textbf{H}) = \phi(\textbf{E}) + \textbf{E}:\textbf{H}.$$

The affinities are the second order tensor, \(\textbf{X}= \partial \psi/\partial \textbf{E}\). The affinities are a function of E, so that \(\textbf{X}= h(\textbf{E})\). Assume that h is invertible so that \(\psi(\textbf{E}; \textbf{H})\) can be written in terms of the affinities for fixed control variables, \(\bar{\psi}(\textbf{X}; \textbf{H})\).

The gradient dissipation condition is that the evolution of the affinities obeys \(\dot{\textbf{X}}= -k\partial \bar{\psi}/\partial \textbf{X}\) for fixed controls, where \(\dot{\textbf{X}}\) is a second order tensor. By the chain rule,

$$\dot{\textbf{X}} = \frac{\partial \textbf{X}}{\partial \textbf{E}} \dot{\textbf{E}}.$$
((64))

Here \(\partial \textbf{X}/\partial \textbf{E}\) is a fourth order tensor. Again by the chain rule,

$$\frac{\partial \bar{\psi}}{\partial \textbf{X}}= \frac{\partial \psi}{\partial \textbf{E}} \frac{\partial \textbf{E}}{\partial \textbf{X}}.$$
((65))

Substitution of (64) and (65) into \(\dot{\textbf{X}}= -k\partial \bar{\psi}/\partial \textbf{X}\) yields the evolution equation in terms of the state variables,

$$\dot{\textbf{E}} = -k\left( \frac{\partial \textbf{X}}{\partial \textbf{E}} \right)^{-2} \frac{\partial \psi}{\partial \textbf{E}} =-k\left( \frac{\partial \textbf{X}}{\partial \textbf{E}} \right)^{-2} \left( \frac{\partial \phi}{\partial \textbf{E}} + \textbf{H} \right).$$
((66))

This form reduces to that of Eq. (19) in the case that E has only diagonal non-zero entries. Then H also has only diagonal non-zero entries. The affinity is a second order tensor defined by

$$(\textbf{X})_{ij}= \left(\frac{\partial \psi}{\partial \textbf{E}} \right)_{ij} = \frac{\partial \psi}{\partial \textbf{E}}_{ij}.$$
((67))

If ψ only depends on \(E_{11}, E_{22}\), and E 33, then the only non-zero terms of X are the three terms X ii .

The fourth order tensor \(\partial \textbf{X}/\partial \textbf{E}\) is defined by

$$\left(\frac{\partial \textbf{X}}{\partial \textbf{E}} \right)_{ijkm} = \frac{\partial \textbf{X}_{ij}}{\partial \textbf{E}_{km}}.$$
((68))

The only non-zero term of this tensor, if only the diagonal entries of E are non-zero, have the form

$$\left(\frac{\partial \textbf{X}}{\partial \textbf{E}} \right)_{iikk} = \frac{\partial \textbf{X}_{ii}}{\partial \textbf{E}_{kk}} = \frac{\partial^2 \psi}{\partial \textbf{E}_{ii}\partial \textbf{E}_{kk}}.$$
((69))

The evolution equation therefore has the form of Eq. (19).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haslach, H.W. (2011). Viscoelasticity. In: Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7765-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7765-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7764-9

  • Online ISBN: 978-1-4419-7765-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics