Skip to main content

Trinucleotide-Expansion Diseases

  • Chapter
  • First Online:
Neurochemical Mechanisms in Disease

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 1))

Abstract

Many diseases, most with a strong neurodegenerative component, are now known to result from an expansion of a trinucleotide repeat sequence within the genome. In many cases, the longer the repeat the earlier the onset, and the more rapid and severe is the disease progression. Almost all of these diseases may be divided into three groups. In the first group, the expansion is either in an untranslated region/intron of the gene (e.g., fragile X syndrome, myotonic dystrophy type 1 (MD1), Friedreich ataxia, or spinocerebellar ataxia type 12 (SCA12)), or is in a DNA stretch that does not code for a protein (spinocerebellar ataxia type 8 (SCA8)). In group 1, with the exception of SCA12, the repeat triplet is not CAG. Generally, the mutations in group 1 result in low or absent levels of the protein corresponding to the affected gene and/or altered message RNA metabolism. In the second group, caused by (CAG) n expansions, the mutation is in an exon of the gene and each protein is expressed with an expanded polyglutamine (Q n ) domain. At least nine neurodegenerative diseases belong in this second group. The most common of these diseases is Huntington disease (HD). Others are dentatorubralpallidoluysian atrophy (DPLA; Haw River syndrome), spinobulbar muscular atrophy (SBMA; Kennedy disease) and seven forms of spinocerebellar ataxia [SCA1, SCA2, SCA3 (Machado–Joseph disease), SCA6, SCA7, and SCA17]. The mutated genes appear to be unrelated except for the fact that each possesses a (CAG) n /Q n expansion. These diseases are characterized by insoluble protein aggregates in the affected areas. The aggregates contain the mutated protein. The CAG-expansions are widely thought to confer a pathological gain of function to the mutated protein, although in some cases a pathological decrease of function may also contribute. In eight of the Q n -expansion disorders, the disease phenotype occurs when n is greater than about 36. Disease expansions may result in n values up to about 80, but larger values may sometimes occur. In the third group, the nucleotide expansion is in a coding exon and gives rise to an elongation of a polyalanine (A n ) stretch in the mutated expressed protein. At least nine diseases have been shown to be due to an A n expansion. Eight of the mutations are in transcription factors, and in one case the mutation is in the polyadenylate-binding protein. The disease phenotypes variably include mental retardation and malformations of the brain, genitourinary tract, skull, and digits. Both the normal size of the amino acid repeat and the pathological length of the repeat tend to be smaller in the A n -expansion diseases than in the Q n -expansion diseases. Although many of the trinucleotide-expansion diseases are rare (some exceedingly rare), they offer insights into pathophysiological processes that may pertain to the more common neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson disease (PD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer disease

ARX:

Aristaless-related homeobox

BDNF:

Brain-derived neurotrophic factor

BPES:

Blepharophimosis, ptosis and epicanthus inversus

CBP:

CREB binding protein

CCD:

Cleidocranial dysplasia

CCHS:

Congenital central hypoventilation syndrome

CREB:

cAMP response-element-binding

DM:

Myotonic dystrophy

DM1:

Myotonic dystrophy type 1

DM2:

Myotonic dystrophy type 2

DMPK:

Dystrophia myotonica protein kinase

DRPLA:

Dentatorubral-pallidoluysian atrophy

FMRP:

Fragile mental retardation protein 1

FRAXE:

Fragile XE syndrome

FRDA:

Friedreich ataxia

TXTAS:

Fragile X tremor/ataxia syndrome

GST:

Glutathione S-transferase

HD:

Huntington disease

HFGS:

Hand–foot–genital syndrome

HPE:

Holoprosencephaly

Htt:

Huntingtin

ISSX:

X-linked infantile spasm syndrome

MBNL:

Muscleblind-like

MRX:

Sex-linked mental retardation

NMDAR:

N-methyl-D-aspartate receptor

NRSE:

Neuronal restrictive silencer element

OPMD:

Oculopharyngeal muscular dystrophy

PD:

Parkinson disease

PRTS:

Partington syndrome

PT:

Permeability transition

SBMA:

Spinobulbar muscular atrophy

SCA:

Spinocerebellar ataxia

SPD:

Synpolydactyly type II

TBP:

TATA-binding protein

TG:

Transglutaminase

UTR:

5-Untranslated region

WS:

West syndrome

References

  • Amato AA, Prior TW, Barohn RJ, Snyder P, Papp A, Mendell JR (1993) Kennedy’s disease: a clinicopathologic correlation with mutations in the androgen receptor gene. Neurology 43:791–794

    PubMed  CAS  Google Scholar 

  • Andreassen OA, Dedeoglu A, Ferrante RJ, Jenkins BG, Ferrante KL, Thomas M, Friedlich A, Browne SE, Schilling G, Borchelt DR, Hersch SM, Ross CA, Beal MF (2001) Creatine increases survival and delays motor symptoms in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 8:479–491

    Article  PubMed  CAS  Google Scholar 

  • Bahl S, Virdi K, Mittal U, Sachdeva MP, Kalla AK, Holmes SE, O’Hearn E, Margolis RL, Jain S, Srivastava AK, Mukerji M (2005) Evidence of a common founder for SCA12 in the Indian population. Ann Hum Genet 69:528–534

    Article  PubMed  CAS  Google Scholar 

  • Bailey CDC, Johnson GVW (2006) The protective effects of cystamine in the R6/2 Huntington’s disease mouse involve mechanisms other than the inhibition of transglutaminase. Neurobiol Aging 27:871–879

    Article  PubMed  CAS  Google Scholar 

  • Banno H, Katsuno M, Suzuki K, Takeuchi Y, Kawashima M, Suga N, Takamori M, Ito M, Nakamura T, Matsuo K, Yamada S, Oki Y, Adachi H, Minamiyama M, Waza M, Atsuta N, Watanabe H, Fujimoto Y, Nakashima T, Tanaka F, Doyu M, Sobue G (2009) Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann Neurol 65:140–150

    Article  PubMed  CAS  Google Scholar 

  • Bates G (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361:1642–1644

    Article  PubMed  CAS  Google Scholar 

  • Bauer PO, Nukina N (2009) The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 110:1737–1765

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  PubMed  CAS  Google Scholar 

  • Bithell A, Johnson R, Buckley NJ (2009) Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem Soc Trans 37:1270–1275

    Article  PubMed  CAS  Google Scholar 

  • Bitoun E, Davies KE (2009) The robotic mouse: understanding the role of AF4, a cofactor of transcriptional elongation and chromatin remodelling, in Purkinje cell function. Cerebellum 8:175–183

    Article  PubMed  Google Scholar 

  • Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Stanton VP, Thirion JP, Hudson T, et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3 end of a transcript encoding a protein kinase family member. Cell 68:799–808

    Article  PubMed  CAS  Google Scholar 

  • Brown LY, Brown SA (2004) Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet 20:51–58

    Article  PubMed  CAS  Google Scholar 

  • Browne SE (2008) Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models. Ann N Y Acad Sci 1147:358–382

    Article  PubMed  CAS  Google Scholar 

  • Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546

    Article  PubMed  CAS  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MMK, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    Article  PubMed  CAS  Google Scholar 

  • Brustovetsky N, Brustovetsky T, Purl KJ, Capano M, Crompton M, Dubinsky JM (2003) Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J Neurosci 23:4858–4867

    PubMed  CAS  Google Scholar 

  • Campuzano A, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Cañizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  • Cary GA, La Spada AR (2008) Androgen receptor function in motor neuron survival and degeneration. Phys Med Rehabil Clin N Am 19:479–494, viii

    PubMed  Google Scholar 

  • Caviston JP, Holzbaur EL (2009) Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 19:147–155

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti L, Bristulf J, Foss GS, Davies KE (1998) Expression of the murine homologue of FMR2 in mouse brain and during development. Hum Mol Genet 7:441–448

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel J-P, Cha JH, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  • Chow MK, Mackay JP, Whisstock JC, Scanlon MJ, Bottomley SP (2004) Structural analysis of the Josephin domain of the polyglutamine protein ataxin-3. Biochem Biophys Res Commun 322:387–394

    Article  PubMed  CAS  Google Scholar 

  • Conneally PM (1984) Huntington’s disease: genetics and epidemiology. Am J Hum Genet 36:506–526

    PubMed  CAS  Google Scholar 

  • Cooper AJL, Jeitner TM, Gentile V, Blass JP (2002) Cross linking of polyglutamine domains catalyzed by tissue transglutaminase is greatly favored with pathological length repeats: does transglutaminase activity play a role in (CAG) n /Q n -expansion diseases? Neurochem Int 40:53–67

    Article  PubMed  CAS  Google Scholar 

  • Cooper JM, Schapira AH (2003) Friedreich’s ataxia: disease mechanisms, antioxidants and coenzyme Q10 therapy. Biofactors 18:163–171

    Article  PubMed  CAS  Google Scholar 

  • Cornett J, Cao F, Wang CE, Ross CA, Bates GP, Li SH, Li XJ (2005) Polyglutamine expansion of huntingtin impairs nuclear export. Nat Genet 37:198–204

    Article  PubMed  CAS  Google Scholar 

  • Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY (1998) Mutations of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24:879–892

    Article  Google Scholar 

  • Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unraveling trinucleotide repeat disorders. Human Mol Genet 9:909–916

    Article  CAS  Google Scholar 

  • Cummings CJ, Zoghbi HY (2001) Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1:281–328

    Article  Google Scholar 

  • Cusimano A, D’Adamo MC, Pessia M (2004) An episodic ataxia type-1 mutation in the S1 segment sensitizes the hKv1.1 potassium channel to extracellular Zn2+. FEBS Lett 576:237–244

    Article  PubMed  CAS  Google Scholar 

  • Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, Swanson MS, Ranum LP (2009) RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 5(8):e1000600. Epub 2009 Aug 14

    Article  PubMed  CAS  Google Scholar 

  • David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70

    Article  PubMed  CAS  Google Scholar 

  • Dedeoglu AD, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJL, Ratan RR, Beal MF, Hersch SM, Ferrante RJ (2002) Therapeutic effects of the transglutaminase inhibitor, cystamine, in a murine model of Huntington’s disease. J Neurosci 22:8942–8950

    PubMed  CAS  Google Scholar 

  • D’Huist C, Kooy RF (2009) Fragile X syndrome: from molecular genetics to therapy. J Med Genet 46:577–584

    Article  CAS  Google Scholar 

  • Di Prospero NA, Fischbeck KH (2005) Therapeutic development for triplet repeat expansion diseases. Nat Rev Genet 6:756–765

    Article  PubMed  CAS  Google Scholar 

  • Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Eng J Med 335:1169–1175

    Article  Google Scholar 

  • Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY, Clark HB, Orr HT (2003) Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38:375–387

    Article  PubMed  CAS  Google Scholar 

  • Figueroa KP, Farooqi S, Harrup K, Frank J, O’Rahilly S, Pulst SM (2009) Genetic variance in the spinocerebellar ataxia type 2 (ATXN2) gene in children with severe early onset obesity. PLoS One 4:e8280

    Article  PubMed  CAS  Google Scholar 

  • Foster TC, Kumar A (2002) Calcium dysregulation in the aging brain. Neuroscientist 8:297–301

    Article  PubMed  CAS  Google Scholar 

  • Frints SG, Froyen G, Marynen P, Fryns JP (2002) X-linked mental retardation: vanishing boundaries between non-specific (MRX) and syndromic (MRXS) forms. Clin Genet 62:423–432

    Article  PubMed  CAS  Google Scholar 

  • Gårseth M, Sonnewald U, White LR, Rød M, Zwart JA, Nygaard O, Aasly J (2000) Proton magnetic resonance spectroscopy of cerebrospinal fluid in neurodegenerative disease: indication of glial energy impairment in Huntington chorea, but not Parkinson disease. J Neurosci Res 60:779–782

    Article  PubMed  Google Scholar 

  • Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansions. Nature Rev Genet 6:743–755

    Article  PubMed  CAS  Google Scholar 

  • Gécz J, Gedeon AK, Sutherland GR, Mulley JC (1996) Identification of the gene FMR2, associated with FRAXE mental retardation. Nat Genet 13:105–108

    Article  PubMed  Google Scholar 

  • Greenamyre JT, Shoulson I (1994) Huntington’s disease. In neurodegenerative diseases. In: Calne DB (ed) Neurodegenerative diseases. W. B. Saunders Company, New York, NY, pp 685–704

    Google Scholar 

  • Gu Y, Nelson DL (2003) FMR2 function: insight from a mouse knockout model. Cytogenet Genome Res 100:129–139

    Article  PubMed  CAS  Google Scholar 

  • Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena S, Goldstein LSB (2005) Polyglutamine diseases and transport problems. Deadly traffic jams and neuronal highways. Arch Neurol 62:46–51

    Article  PubMed  Google Scholar 

  • Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, Grigsby J, Gage B, Hagerman PJ (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57:127–130

    PubMed  CAS  Google Scholar 

  • Han JA, Park SC (2000) Transglutaminase-dependent modulation of transcription factor Sp1 activity. Mol Cells 10:612–618

    PubMed  CAS  Google Scholar 

  • Helmlinger D, Hardy S, Eberlin A, Devys D, Tora L (2006b) Both normal and polyglutamine-expanded ataxin-7 are components of TFTC-type GCN5 histone acetyltransferase-containing complexes. Biochem Soc Symp 73:155–163

    PubMed  CAS  Google Scholar 

  • Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, van-Dorsselaer A, Wurtz JM, Mandel JL, Tora L, Devys D (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 13:1257–1267

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger D, Tora L, Devys D (2006a) Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet 22:562–570

    Article  PubMed  CAS  Google Scholar 

  • Hilditch-Maguire. P, Trettel F, Passsani LA, Auerbach A, Persichetti F, MacDonald ME (2000) Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet 9:2789–2797

    Article  PubMed  CAS  Google Scholar 

  • Holmes SE, O’Hearn E, Margolis RL (2003) Why is SCA12 different from other SCAs? Cytogenet Genome Res 100:189–197

    Article  PubMed  CAS  Google Scholar 

  • Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5 region of PPP2R2B is associated with SCA12. Nat Genet 23:391–392

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Dalton JC, Moseley ML, Gardner KL, Bird TD, Ashizawa T, Seltzer WK, Pandolfo M, Milunsky A, Potter NT, Shoji M, Vincent JB, Day JW, Ranum LP (2004) Spinocrebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet 75:3–16

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA (2004) Myotonic dystrophy type I associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins, and deregulated alternative splicing in neurons. Hum Mol Genet 13:3079–3088

    Article  PubMed  CAS  Google Scholar 

  • Kahlem P, Green H, Djian P (1998) Transglutaminase action imitates Huntington’s disease: selective polymerization of Huntingtin containing expanded polyglutamine. Mol Cell 1:595–601

    Article  PubMed  CAS  Google Scholar 

  • Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, Mitchell D, Steinman L (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143–149

    Article  PubMed  CAS  Google Scholar 

  • Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, Steinman L (1999) Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease nuclei. Proc Natl Acad Sci USA 96:7388–7393

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    Article  PubMed  CAS  Google Scholar 

  • Kaytor MD, Wilkinson KD, Warren ST (2004) Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. J Neurochem 89:962–973

    Article  PubMed  CAS  Google Scholar 

  • Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarishi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13

    Article  PubMed  CAS  Google Scholar 

  • Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047–2053

    Article  PubMed  CAS  Google Scholar 

  • Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379–384

    Article  PubMed  CAS  Google Scholar 

  • Korade-Mirnics Z, Babitzke P, Hoffman E (1998) Myotonic dystrophy: molecular windows on a complex etiology. Nucleic Acids Res 26:1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Koroshetz WJ, Martin JB (1997) Huntington’s disease. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL (eds) The molecular and genetic basis of neurological disease. Butterworth-Heinemann, Boston, MA, pp 545–564

    Google Scholar 

  • Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG) n . Science 252:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Kuemmerle S, Gutekanst C-A, Klein AM, Li X-J, Li SH, Beal MF, Hersch SM, Ferrante RJ (1999) Huntingtin aggregates may not predict neuronal death in Huntington’s disease. Ann Neurol 46:842–849

    Article  PubMed  CAS  Google Scholar 

  • La Spada AR, Roling DB, Harding AE, Warner CL, Spiegel R, Hausmanowa-Petrusewicz I, Yee WC, Fischbeck KH (1992) Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nat Genet 2:301–304

    Article  PubMed  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79

    Article  PubMed  Google Scholar 

  • Lai TS, Tucker T, Burke JR, Strittmatter WJ, Greenberg CS (2004) Effect of tissue transglutaminase on the solubility of proteins containing expanded polyglutamine repeats. J Neurochem 88:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ, Richardson DR (2010) Frataxin, a molecule of mystery: trading stability for function in its iron-binding site. Biochem J 426:e1–3

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Cooper TA (2009) Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans 37:1281–1286

    Article  PubMed  CAS  Google Scholar 

  • Lee WW, Kim SY, Kim JY, Kim HJ, Park SS, Jeon BS (2009) Extrapyramidal signs are a common feature of spinocerebellar ataxia type 17. Neurology 73:1708–1709

    Article  PubMed  Google Scholar 

  • Lesca G, Biancalana V, Brunel MJ, Quack B, Calender A, Lespinasse J (2003) Clinical, cytogenetic, and molecular description of a FRAXE French family. Psychiatr Genet 13:43–46

    Article  PubMed  Google Scholar 

  • Lesort M, Lee M, Tucholski J, Johnson GVW (2003) Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 278:3825–3830

    Article  PubMed  CAS  Google Scholar 

  • Li SH, Li XJ (2004) Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154

    Article  PubMed  CAS  Google Scholar 

  • Limprasert P, Nouri N, Heyman RA, Nopparatana C, Kamonslip M, Deininger PL, Keats BJ (1996) Analysis of CAG repeat of the Machado-Joseph gene in human, chimpanzee and monkey populations: a variant nucleotide is associated with the number of CAG repeats. Hum Mol Genet 5:207–213

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9962

    Article  PubMed  CAS  Google Scholar 

  • Lodi R, Schapira AH, Manners D, Styles P, Wood NW, Taylor DJ, Warner TT (2000) Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubralpallidoluysian atrophy. Ann Neurol 48:72–76

    Article  PubMed  CAS  Google Scholar 

  • Lukusa T, Fryns JP (2008) Human chromosome fragility. Biochim Biophys Acta 1779:3–16

    PubMed  CAS  Google Scholar 

  • Maldonado PD, Molina-Jijón E, Villeda-Hernández J, Galván-Arzate S, Santamaría A, Pedraza-Chaverrí J (2010) NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington’s disease in rats: protective role of apocynin. J Neurosci Res 88:620–629

    PubMed  CAS  Google Scholar 

  • Mandrusiak LM, Beitel LK, Wang X, Scanlon TC, Chevalier-Larsen E, Merry DE, Trifiro MA (2003) Transglutaminase potentiates ligand-dependent proteasome dysfunction induced by polyglutamine-expanded androgen receptor. Hum Mol Genet 12:1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Mankodi A (2008) Myotonic dystrophies. Neurol India 56:298–304

    Article  PubMed  Google Scholar 

  • Margolis RL (2002) The spinocerebellar ataxias: order emerges from chaos. Curr Neurol Sci Rep 2:447–456

    Article  Google Scholar 

  • Margolis RL, Holmes SE, Rosenblatt A, Gourley L, O’Hearn E, Ross CA, Seltzer WK, Walker RH, Ashizawa T, Rasmussen A, Hayden M, Almqvist EW, Harris J, Fahn S, Macdonald ME, Mysore J, Shimohata T, Tsuji S, Potter N, Nakaso K, Adachi Y, Nakashima K, Bird T, Krause A, Greenstein P (2004) Huntington’s disease like 2 (HDL-2) in North America and Japan. Ann Neurol 56:670–674

    Article  PubMed  CAS  Google Scholar 

  • Margolis RL, Li SH, Young WS, Wagster MV, Stine OC, Kidwai AS, Ashworth RG, Ross CA (1996) DRPLA gene (atrophin-1) sequence and mRNA expression in human brain. Brain Res Mol Brain Res 36:219–226

    Article  PubMed  CAS  Google Scholar 

  • März P, Probst A, Lang S, Schwager M, Rose-John S, Otten U, Ozbek S (2004) Ataxin-10, the spinocerebellar ataxia type 10 neurodegenerative disorder protein, is essential for survival of cerebellar neurons. J Biol Chem 279:35542–35550

    Article  PubMed  CAS  Google Scholar 

  • Mastroberardino PG, Iannocola C, Nardacci R, Bernassola F, De Lurenzi V, Melino G, Moreno S, Pavone F, Oliverio S, Fésüs L, Piacentini M (2002) ‘Tissue’ transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington’s disease. Cell Death Differ 9:873–880

    Article  PubMed  CAS  Google Scholar 

  • Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191–194

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama Z, Yanagisawa NK, Aoki Y, Black JL 3rd, Lennon VA, Mori Y, Imoto K, Inuzuka T (2004) Polyglutamine repeats of spinocerebellar ataxia 6 impair the cell-death-preventing effect of CaV2.1 Ca2+ channel – loss of-function cellular model of SCA6. Neurobiol Dis 17:198–204

    Article  PubMed  CAS  Google Scholar 

  • Meola G, Moxley RT 3rd (2004) Myotonic dystrophy type 2 and related myotonic disorders. J Neurol 251:1173–1182

    Article  PubMed  Google Scholar 

  • Messaed C, Rouleau GA (2009) Molecular mechanisms underlying polyalanine diseases. Neurobiol Dis 34:397–405

    Article  PubMed  CAS  Google Scholar 

  • Miller RC, Tewari A, Miller JA, Garbern J, Van Stavern GP (2009) Neuro-ophthalmologic features of spinocerebellar ataxia type 7. J Neuroophthalmol 29:180–186

    PubMed  Google Scholar 

  • Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, Ko RW, Vasuta OC, Graham RK, Hayden MR, Murphy TH, Raymond LA (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65:178–190

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Tsvetkov AS, Kinkbeiner S (2009) Protein turnover and inclusion body formation. Autophagy 5:1037–1038

    Article  PubMed  CAS  Google Scholar 

  • Mizutani A, Wang L, Rajan H, Vig PJ, Alaynick WA, Thaler JP, Tsai CC (2005) Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. EMBO J 24:3339–3351

    Article  PubMed  CAS  Google Scholar 

  • Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I (2004) The Spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with stauffen in Drosphila. Curr Biol 14:302–308

    PubMed  CAS  Google Scholar 

  • Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, et al (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6:14–18

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah IM, Minarcik JC, Golden JA (2004) A polyalanine tract expansion in Arx forms intranuclear inclusions and results in increased cell death. J Cell Biol 167:411–416

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HD, Hall CK (2004) Molecular dynamics of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci USA 101:16180–16185

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (2009) Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 1787:1416–1424

    Article  PubMed  CAS  Google Scholar 

  • Obrietan K, Hoyt KR (2004) CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci 24:791–796

    Article  PubMed  CAS  Google Scholar 

  • Ona VO, Li M, Vonsatell J-P, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267

    Article  PubMed  CAS  Google Scholar 

  • Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    Article  PubMed  CAS  Google Scholar 

  • Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    Article  PubMed  CAS  Google Scholar 

  • Ortega Z, Díaz-Hernández M, Lucas JJ (2007) Is the ubiquitin-proteasome system impaired in Huntington’s disease? Cell Mol Life Sci 64:2245–2257

    Article  CAS  Google Scholar 

  • Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(Suppl 1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Panov AV, Burke JR, Strittmatter WJ, Greenamayre JT (2003) In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Huntington’s disease. Arch Biochem Biophys 410:1–6

    Article  PubMed  CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamayre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736

    PubMed  CAS  Google Scholar 

  • Park SC, Yeo EJ, Han JA, Hwang YC, Choi JY, Park JS, Park YH, Kim KO, Kim IG, Seong SC, Kwak SJ (1999) Aging process is accompanied by increase in transglutaminase C. J Gerentol A Biol Sci Med 54:B78–B83

    Article  CAS  Google Scholar 

  • Pearson CE, Nichol Edamura K, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nature Rev Genet 6:729–742

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355–5358

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Windle AH (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143–144

    Article  PubMed  CAS  Google Scholar 

  • Pinto JT, Van Raamsdonk J, Leavitt BR, Hayden MR, Thaler HT, Jeitner TM, Krasnikov BF, Cooper AJL (2005) Treatment of YAC128 mice with cystamine does not lead to its accumulation in plasma or brain: implications for the treatment of Huntington disease. J Neurochem 94:1087–1101

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla RA, Johnson GVW (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 80:242–247

    Article  PubMed  CAS  Google Scholar 

  • Ratovitski T, Gucek M, Jiang H, Chighladze E, Waldron E, D’Ambola J, Hou Z, Liang Y, Poirier MA, Hirschhorn RR, Graham R, Hayden MR, Cole RN, Ross CA (2009) Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem 284:10855–10867

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH, Mao P, Manczak M (2009) Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res Rev 61:33–48

    Article  PubMed  CAS  Google Scholar 

  • Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC (2010) Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 285:11061–11067

    Article  PubMed  CAS  Google Scholar 

  • Restituito S, Thompson RM, Eliet J, Raike RS, Riedl M, Charnet P, Gomez CM (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a β subunit specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 20:6394–6403

    PubMed  CAS  Google Scholar 

  • Rodrigues GG, Walker RH, Brice A, Cazeneuve C, Russaouen O, Teive HA, Munhoz RP, Becker N, Raskin S, Werneck LC, Junior WM, Tumas V (2008) Huntington’s disease-like 2 in Brazil – report of 4 patients. Mov Disord 23:2244–2247

    Article  PubMed  Google Scholar 

  • Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367–373

    Article  PubMed  Google Scholar 

  • Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC (2010) Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease. Hum Mol Genet 2010 Mar 17. [Epub ahead of print]

    Google Scholar 

  • Rosenberg RN (1996) DNA-triplet repeats and neurologic disease. New Engl J Med 335:1222–1224

    Article  PubMed  CAS  Google Scholar 

  • Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35:819–822

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Shoulson I (2009) Huntington disease. pathogenesis, biomarkers, and approaches to experimental therapeutics. Parkinsonism Rel Disord 15:S135–S138

    Article  Google Scholar 

  • Rüb U, Brunt ER, Deller T (2008) New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol 21:111–116

    Article  PubMed  Google Scholar 

  • Sarafidou T, Kahl C, Martinez-Garay I, Mangelsdorf M, Gesk S, Baker E, Kokkinaki M, Talley P, Maltby EL, French L, Harder L, Hinzmann B, Nobile C, Richkind K, Finnis M, Deloukas P, Sutherland GR, Kutsche K, Moschonas NK, Siebert R, Gécz J, and European Collaborative Consortium for the Study of ADLTE (2004) Folate-sensitive fragile site FRA10A is due to an expansion of a CGG repeat in a novel gene FRA10AC1, encoding a nuclear protein. Genomics 84:69–81

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, Ishino F, Saito Y, Murayama S, Yoshida M, Hashizume Y, Takahashi Y, Tsuji S, Shimizu N, Toda T, Ishikawa K, Mizusawa H (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA) n . Am J Hum Genet 85:544–557

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66

    Article  PubMed  CAS  Google Scholar 

  • Sawa A (2001) Mechanisms for neuronal cell death and dysfunction in Huntington’s disease: pathological cross-talk between the nucleus and the mitochondria? J Mol Med 79:375–381

    Article  PubMed  CAS  Google Scholar 

  • Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15:95–105

    Article  PubMed  CAS  Google Scholar 

  • Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 96:4604–4609

    Article  PubMed  CAS  Google Scholar 

  • Schilling G, Savonenko AV, Klevytska A, Morton JL, Tucker SM, Poirier M, Gale A, Chan N, Gonzales V, Slunt HH, Coonfield ML, Jenkins NA, Copeland NG, Ross CA, Borchelt DR (2004) Nuclear-targeting of mutant huntingtin fragments produces Huntington’s disease-like phenotypes in transgenic mice. Hum Mol Genet 13:1599–1610

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer JK, Krivda JP, D’Souza-Schorey C (2009) Neurodegeneration in Niemann-Pick Type C disease and Huntington’s disease: impact of defects in membrane trafficking. Curr Drug Targets 10:653–665

    PubMed  CAS  Google Scholar 

  • Seidel K, Brunt ER, de Vos RA, Dijk F, van der Want HJ, Rüb U, den Dunnen WF (2009) The p62 antibody reveals various cytoplasmic protein aggregates in spinocerebellar ataxia type 6. Clin Neuropathol 28:344–349

    PubMed  CAS  Google Scholar 

  • Serra HG, Byam CE, Lande JD, Tousey SK, Zoghbi HY, Orr HT (2004) Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet 13:2535–2543

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, De Biase I, Gómez M, Delatycki MB, Ashizawa T, Bidichandani SI (2004) Friedreich ataxia in carriers of unstable borderline GAA triplet-repeat alleles. Ann Neurol 56:898–901

    Article  PubMed  CAS  Google Scholar 

  • Shelbourne P, Johnson K (1992) Myotonic dystrophy: another case of too many repeats? Hum Mutat 1:183–189

    Article  PubMed  CAS  Google Scholar 

  • Shoesmith Berke SJ, Flores Schmied FA, Brunt ER, Ellerby LM, Paulson HL (2004) Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J Neurochem 89:908–918

    Article  CAS  Google Scholar 

  • Smith R, Bacos K, Fedele V, Soulet D, Walz HA, Obermüller S, Lindqvist A, Björkqvist M, Klein P, Onnerfjord P, Brundin P, Mulder H, Li JY (2009) Mutant huntingtin interacts with β-tubulin and disrupts vesicular transport and insulin secretion. Hum Mol Genet 18:3942–3954

    Article  PubMed  CAS  Google Scholar 

  • Spindler M, Beal MF, Henchcliffe C (2009) Coenzyme Q10 effects in neurodegenerative diseases. Neuropsychiatr Dis Treat 5:597–610

    PubMed  CAS  Google Scholar 

  • Steffan JS, Arawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL (2004) SUMO modification and Huntington’s disease pathology. Science 304:100–104

    Article  PubMed  CAS  Google Scholar 

  • Strelnikov V, Nemtsova M, Chesnokova G, Kuleshov N, Zaletayev D (1999) A simple multiplex FRAXA FRAXE, and FRAXF PCR assay convenient for wide screening programs. Hum Mutat 13:166–169

    Article  PubMed  CAS  Google Scholar 

  • Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X (2010) Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 1892:135–142

    Google Scholar 

  • Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GR (1979a) Heritable fragile sites on human chromosomes. I. Factors affecting expression in lymphocyte culture. Am J Hum Genet 31:125–135

    PubMed  CAS  Google Scholar 

  • Sutherland GR (1979b) Heritable fragile sites on human chromosomes. II. Distribution, phenotypic effects, and cytogenetics. Am J Hum Genet 31:136–148

    PubMed  CAS  Google Scholar 

  • Sutherland GR (2003) Rare fragile sites. Cytogenet Genome Res 100:77–84

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kastuno M, Banno H, Sobue G (2009) Pathogenesis-targeting therapeutics for spinal and bulbar muscular atrophy (SBMA). Neuropathology 29:509–516

    Article  PubMed  Google Scholar 

  • Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, Cooper JM, Schapira AH (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47:80–86

    Article  PubMed  CAS  Google Scholar 

  • The Huntington Disease Collaborative Research Group. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington disease chromosome. Cell 72:971–983

    Article  Google Scholar 

  • Uitti RJ (1994) Cerebellar degenerations. In neurodegenerative diseases. In: Calne DB (ed) Neurodegenerative diseases. W. B. Saunders Company, New York, NY, pp 787–806

    Google Scholar 

  • Van Raamsdonk JM, Pearson J, Bailey CDC, Rogers DA, Johnson GVW, Hayden MR, Leavitt BR (2005) Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. J Neurochem 95:210–220

    Article  PubMed  CAS  Google Scholar 

  • Vincent JB, Yuan QP, Schalling M, Adolfsson R, Azevedo MH, Macedo A, Bauer A, DallaTorre C, Medeiros HM, Pato MT, Pato CN, Bowen T, Guy CA, Owen MJ, O’Donovan MC, Paterson AD, Petronis A, Kennedy JL (2000) Long repeat tracts in major psychosis. Am J Med Genet (Neuropsychiatric Genetics) 96:873–876

    Article  CAS  Google Scholar 

  • Wakamiya M, Matsuura T, Liu Y, Schuster GC, Gao R, Xu W, Sarkar PS, Lin X, Ashizawa T (2006) The role of ataxin 10 in the pathogenesis of spinocerebellar ataxia type 10. Neurology 67:607–613

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang CE, Orr A, Tydlacka S, Li SH, Li XJ (2008) Impaired ubiquitin-proteasome system activity in the synapses of Huntington’s disease mice. J Cell Biol 180:1177–1189

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang H, Xia Y, Jiang H, Shen L, Wang S, Shen R, Xu Q, Luo X, Tang B (2010) Spinocerebellar ataxia type 6: systematic patho-anatomical study reveals different phylogenetically defined regions of the cerebellum and neural pathways undergo different evolutions of the degenerative process. Neuropathology 2010 Jan 26. [Epub ahead of print]

    Google Scholar 

  • Waragai M, Lammers CH, Takeuchi S, Imafuku I, Udagawa Y, Kanazawa I, Kawabata M, Mouradian MM, Okazawa H (1999) PQBP-1, a novel polyglutamine tract-binding protein, inhibits transcription activation by BRn-2 and affects cell survival. Hum Mol Gent 8:977–987

    Article  CAS  Google Scholar 

  • Warby SC, Doty CN, Graham RK, Shively J, Singaraja RR, Hayden MR (2009) Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci 40:121–127

    Article  PubMed  CAS  Google Scholar 

  • The US – Venezuela Collaborative Research Project and Wexler NS (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA 101:3498–3503

    Article  PubMed  CAS  Google Scholar 

  • Wu LL, Fan Y, Li S, Li XJ, Zhou XF (2010) Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J Biol Chem 285:5614–5623

    Article  PubMed  CAS  Google Scholar 

  • Xifró X, Giralt A, Saavedra A, García-Martínez JM, Díaz-Hernández M, Lucas JJ, Alberch J, Pérez-Navarro E (2009) Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington’s disease: role in excitotoxicity. Neurobiol Dis 36:461–469

    Article  PubMed  CAS  Google Scholar 

  • Zainelli GM, Dudeck NL, Ross CA, Kim SY, Muma NA (2005) Mutant huntingtin protein: a substrate for transglutaminase 1, 2, and 3. J Neuropathol Exp Neurol 64:58–65

    PubMed  CAS  Google Scholar 

  • Zainelli GM, Ross CA, Troncos JC, Muma NA (2003) Transglutaminase cross-links in intranuclear inclusions in Huntington disease. J Neuropathol Exp Neurol 62:14–24

    PubMed  CAS  Google Scholar 

  • Zalfa F, Bagni C (2004) Molecular insights into mental retardation: multiple functions for the fragile X mental retardation protein? Curr Issues Mol Biol 6:73–88

    PubMed  CAS  Google Scholar 

  • Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem 284:7425–7429

    Article  PubMed  CAS  Google Scholar 

  • Zoltewicz JS, Stewart NJ, Leung R, Peterson AS (2004) Atrophin 2 recruits histone deacylase and is required for the function of multiple signaling centers during mouse embryogenesis. Development 131:3–14

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Coni L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Gen 35:76–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John T. Pinto for helpful suggestions. Part of the work cited from the authors’ laboratory was supported by NIH grant 2P01 AG14930.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. L. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cooper, A.J.L., Blass, J.P. (2011). Trinucleotide-Expansion Diseases. In: Blass, J. (eds) Neurochemical Mechanisms in Disease. Advances in Neurobiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7104-3_11

Download citation

Publish with us

Policies and ethics