Skip to main content

Tumor Microvasculature and Microenvironment: Therapeutic Targets for Inhibition of Tumor Angiogenesis and Metastasis

  • Chapter
  • First Online:
Pharmaceutical Perspectives of Cancer Therapeutics
  • 904 Accesses

The growth of a tumor depends on both the tumor origin and the surrounding environment. Recent developments of therapeutic strategies targeting angiogenesis and other key steps in the metastatic cascade have demonstrated significant improvements on both the inhibition of primary tumor size and the suppression of malignant secondary tumor spreading. In this chapter, we briefly introduce tumor microvasculature and microenvironment, discuss tumor angiogenesis and therapeutic approaches for inhibiting of tumor angiogenesis, and examine the potential therapeutic targets for suppression of tumor progression and metastasis. While this chapter focuses mainly on pharmaceutical approaches for targeting tumor angiogenesis and metastasis, it also mentions other approaches including gene therapy. In addition, the current challenges and future prospects in this field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  PubMed  CAS  Google Scholar 

  2. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 1989; 49: 6449–6465.

    PubMed  CAS  Google Scholar 

  3. Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  4. Freitas T, Baronzio GF. Tumor hypoxia, reoxygenation and oxygenation strategies: Possible role in photodynamic therapy. J Photochem Photobiol B Biol 1991; 11: 3–30.

    Article  CAS  Google Scholar 

  5. Chan DA, Giaccia AJ. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 2007; 26: 333–339.

    Article  PubMed  CAS  Google Scholar 

  6. Rofstad EK. Microenvironment-induced cancer metastasis. Int J Radiat Biol 2000; 76: 589–605.

    Article  PubMed  CAS  Google Scholar 

  7. Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 2007; 26: 319–331.

    Article  PubMed  CAS  Google Scholar 

  8. Subarsky P, Hill RP. The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 2003; 20: 237–250.

    Article  PubMed  CAS  Google Scholar 

  9. Xu L, Shen SS, Hoshida Y, Subramanian A, Ross K, Brunet JP, Wagner SN, Ramaswamy S, Mesirov JP, Hynes RO. Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Mol Cancer Res 2008; 6: 760–769.

    Article  PubMed  CAS  Google Scholar 

  10. Lunt SJ, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease. Clin Exp Metastasis 2008; June 16. [Epub ahead of print], doi:10.1007/s10585-008-9182-2.

    Google Scholar 

  11. Sheu BC, Chang WC, Cheng CY, Lin HH, Chang DY, Huang SC. Cytokine regulation networks in the cancer microenvironment. Front Biosci 2008; 13: 6255–6268.

    Article  PubMed  CAS  Google Scholar 

  12. Bennaceur K, Chapman J, Brikci-Nigassa L, Sanhadji K, Touraine JL, Portoukalian J. Dendritic cells dysfunction in tumour environment. Cancer Lett 2008; June 26. [Epub ahead of print], doi:10.1016/j.canlet.2008.05.017.

    Google Scholar 

  13. Zou W, Chen L. Inhibitory B7-family molecules in the tumor microenvironment. Nat Rev Immunol 2008; 8: 467–477.

    Article  PubMed  CAS  Google Scholar 

  14. Ursini-Siegel J, Muller WJ. The ShcA adaptor protein is a critical regulator of breast cancer progression. Cell Cycle 2008; 7: 1936–1943.

    Article  PubMed  CAS  Google Scholar 

  15. Naumov GN, Folkman J, Straume O. Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin Exp Metastasis 2008; June 18. [Epub ahead of print], doi:10.1007/s10585-008-9176-0.

    Google Scholar 

  16. Itano N, Zhuo L, Kimata K. Impact of the hyaluronan-rich tumor microenvironment on cancer initiation and progression. Cancer Sci 2008; 99: 1720–1725.

    Article  PubMed  CAS  Google Scholar 

  17. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007; 6: 273–286.

    Article  PubMed  CAS  Google Scholar 

  18. Angiogenesis Foundation (2008) Understanding Angiogenesis at http://www.angio.org/patients/cancer/understanding_angiogenesis.html

  19. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 15: 53–65.

    Article  Google Scholar 

  20. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD. Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 1984; 51: 624–634.

    PubMed  CAS  Google Scholar 

  21. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996; 69: 135–174.

    Article  PubMed  CAS  Google Scholar 

  22. Kerbel RS, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2: 727–739.

    Article  PubMed  CAS  Google Scholar 

  23. Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA 2002; 99: 11399–11404.

    Article  PubMed  CAS  Google Scholar 

  24. Achilles EG, Fernandez A, Allred EN, Kisker O, Udagawa T, Beecken WD, Flynn E, Folkman J. Heterogeneity of angiogenic activity in a human liposarcoma: A proposed mechanism for ‘no take’ of human tumors in mice. J Natl CancerInst 2001; 93: 1075–1081.

    Article  CAS  Google Scholar 

  25. Hudlická O. Growth of capillaries in skeletal and cardiac muscle. Circ Res 1982; 50: 451–461.

    PubMed  Google Scholar 

  26. Berges G, Benjamin L. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2002; 3: 401–410.

    Article  CAS  Google Scholar 

  27. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363–1380.

    Article  PubMed  CAS  Google Scholar 

  28. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med 2001; 7: 1194–1201.

    Article  PubMed  CAS  Google Scholar 

  29. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362–367.

    PubMed  CAS  Google Scholar 

  30. Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 1998; 125: 1457–1468.

    PubMed  CAS  Google Scholar 

  31. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J 1999; 18: 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  32. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000; 105: 1527–1536.

    Article  PubMed  CAS  Google Scholar 

  33. Rafii S. Circulating endothelial precursors: Mystery, reality, and promise. J Clin Invest 2000; 105: 17–19.

    Article  PubMed  CAS  Google Scholar 

  34. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    PubMed  CAS  Google Scholar 

  35. Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schäfer B, Hossfeld DK, Fiedler W. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106–3112.

    PubMed  CAS  Google Scholar 

  36. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001; 193: 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  37. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001; 97: 3354–3360.

    Article  PubMed  CAS  Google Scholar 

  38. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone marrow microenvironment. Nature Med 2002; 8: 841–849.

    PubMed  CAS  Google Scholar 

  39. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  PubMed  CAS  Google Scholar 

  40. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109: 337–346.

    PubMed  CAS  Google Scholar 

  41. Naik RP, Jin D, Chuang E, Gold EG, Tousimis EA, Moore AL, Christos PJ, de Dalmas T, Donovan D, Rafii S, Vahdat LT. Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res Treat 2008; 107: 133–138.

    Article  PubMed  Google Scholar 

  42. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther 2002; 9: 631–641.

    Article  PubMed  CAS  Google Scholar 

  43. Kerbel RS, Benezra R, Lyden DC, Hattori K, Heissig B, Nolan DJ, Mittal V, Shaked Y, Dias S, Bertolini F, Rafii S. Endothelial progenitor cells are cellular hubs essential for neoangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proc Natl Acad Sci USA 2008; 105: E54.

    Article  PubMed  CAS  Google Scholar 

  44. Folkman J, Brem H (1992) Angiogenesis and inflammation. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: Basic principles and clinical correlates, 2nd edn. Raven Press, New York, 1992, pp. 821–839.

    Google Scholar 

  45. Polverini P, Leibovich S. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab Invest 1984; 51: 635–642.

    PubMed  CAS  Google Scholar 

  46. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinases-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol 2000; 2: 737–744.

    Article  PubMed  CAS  Google Scholar 

  47. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000; 103: 481–490. 1998; 10: 159–164.

    Article  PubMed  CAS  Google Scholar 

  48. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA. Matrix metalloproteinase-2 (MMP-2) is required for the switch to the angiogenic phenotype in a novel tumor model. Proc Natl Acad Sci USA 2000; 97: 3884–3889.

    Article  PubMed  CAS  Google Scholar 

  49. Kadish JL, Butterfield CE, Folkman J. The effect of fibrin on cultured vascular endothelial cells. Tissue Cell 1979; 11: 99–108.

    Article  PubMed  CAS  Google Scholar 

  50. Schulze-Osthoff K, Risau W, Vollmer E, Sorg C. In situ detection of basic fibroblast growth factor by highly specific antibodies. Am J Pathol 1990; 137: 85–92.

    PubMed  CAS  Google Scholar 

  51. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B. Tumor induction of VEGF promotor activity in stromal cells. Cell 1998; 94: 715–725.

    Article  PubMed  CAS  Google Scholar 

  52. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–1998.

    Article  PubMed  CAS  Google Scholar 

  53. Möhle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 1997; 94: 663–668.

    Article  PubMed  Google Scholar 

  54. Verheul HM, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxterman HJ, Pinedo HM. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997; 3: 2187–2190.

    PubMed  CAS  Google Scholar 

  55. Folkman J (1984) Angiogenesis. In: Jaffe EA (ed) Biology of Endothelial Cells. Nijhoff, Boston, MA, pp. 412–428.

    Chapter  Google Scholar 

  56. Folkman J, Long DM, Becker FF. Growth and metastasis of tumor in organ culture. Cancer 1963; 16: 453–467.

    Article  PubMed  CAS  Google Scholar 

  57. Folkman J, Cole P, Zimmerman S. Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg 1966; 164: 491–502.

    Article  PubMed  CAS  Google Scholar 

  58. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972; 175: 409–416.

    Article  PubMed  CAS  Google Scholar 

  59. Folkman J. The vascularization of tumors. Sci Am 1976; 234: 58–73.

    Article  PubMed  CAS  Google Scholar 

  60. Gimbrone MA Jr, Cotran RS, Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 1974; 60: 673–684.

    Article  PubMed  CAS  Google Scholar 

  61. Gimbrone MA Jr, Cotran RS, Leapman SB, Folkman J. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J Natl Cancer Inst 1974b; 52: 413–427.

    PubMed  Google Scholar 

  62. Ausprunk DH, Knighton DR, Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 1975; 79: 597–628.

    PubMed  CAS  Google Scholar 

  63. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976; 263: 797–800.

    Article  PubMed  CAS  Google Scholar 

  64. Auerbach R, Arensman R, Kubai L, Folkman J. Tumor-induced angiogenesis: Lack of inhibition by irradiation. Int J Cancer 1975; 15: 241–245.

    Article  PubMed  CAS  Google Scholar 

  65. Brouty-Boyé D, Zetter BR. Inhibition of cell motility by interferon. Science 1980; 208: 516–528.

    Article  PubMed  Google Scholar 

  66. Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297: 307–312.

    Article  PubMed  CAS  Google Scholar 

  67. Crum R, Szabo S, Folkman J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 1985; 230: 1375–1378.

    Article  PubMed  CAS  Google Scholar 

  68. Ingber DM, Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 1990; 348: 555–557.

    Article  PubMed  CAS  Google Scholar 

  69. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  PubMed  Google Scholar 

  70. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  PubMed  Google Scholar 

  71. Folkman J. Endogenous angiogenesis inhibitors. Acta Pathol Microbiol Immunol Scand 2004; 112: 496–507.

    CAS  Google Scholar 

  72. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin. An endothelial cell-specific inhibitor of protein synthesis. Science 2002; 295: 140–143.

    Article  PubMed  CAS  Google Scholar 

  73. Fràter-Schröder M, Risau W, Hallmann R, Gautschi, P, Bohlen P. Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 1987; 84: 5277–5281.

    Article  PubMed  Google Scholar 

  74. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res 2005; 65: 3967–3979.

    Article  PubMed  CAS  Google Scholar 

  75. Abdollahi A, Hahnfeldt P, Maercker C, Gröne HJ, Debus J, Ansorge W, Folkman J, Hlatky L, Huber PE. Endostatin’s antiangiogenic signaling network. Mol Cell 2004; 13: 649–663.

    Article  PubMed  CAS  Google Scholar 

  76. Inoue K, Korenaga H, Tanaka NG, Sakamoto N, Kadoya S. The sulfated polysaccharide – peptidoglycan complex potently inhibits embryonic angiogenesis and tumor growth in the presence of cortisone acetate. Carbohydr Res 1988; 181: 135–142.

    Article  PubMed  CAS  Google Scholar 

  77. Remembering Judah Folkman (2008) Angiogenesis: Blood Vessel Growth and the Treatment of Disease at http://www.childrenshospital.org/cfapps/research/data_admin/Site2580/mainpageS2580P4.html

  78. NIH clinical trials at www.clinicaltrials.gov

  79. Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404–407.

    Article  PubMed  CAS  Google Scholar 

  80. Kerbel RS. Inhibition of tumour angiogenesis as a strategy to circumvent acquired resistance to anticancer therapeutic agents. Bioessays 1991; 13: 31–36.

    Article  PubMed  CAS  Google Scholar 

  81. Kerbel RS, Viloria-Petit A, Okada F, Rak J. Establishing a link between oncogenes and tumor angiogenesis. Mol Med 1998; 4: 286–2895.

    PubMed  CAS  Google Scholar 

  82. Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: Signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 2000; 5: 24–33.

    Article  PubMed  CAS  Google Scholar 

  83. Rak J, Yu JL, Kerbel RS, Coomber BL. What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res 2002; 62: 1931–1934.

    PubMed  CAS  Google Scholar 

  84. Arbiser JL, Panigrathy D, Klauber N, Rupnick M, Flynn E, Udagawa T, D'Amato RJ. The antiangiogenic agents TNP-470 and 2-methoxyestradiol inhibit the growth of angiosarcoma in mice. J Am Acad Dermatol 1999; 40: 925–929.

    Article  PubMed  CAS  Google Scholar 

  85. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner JW, 2nd, Cordon-Cardo C, Yancopoulos GD, DePinho RA. Essential role for oncogenic Ras in tumour maintenance. Nature 1999; 400: 468–472.

    Article  PubMed  CAS  Google Scholar 

  86. Udagawa T, Fernandez A, Achilles EG, Folkman J, D'Amato RJ. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 2002; 16: 1361–1370.

    Article  PubMed  CAS  Google Scholar 

  87. Fernandez A, Udagawa T, Schwesinger C, Beecken W, Achilles-Gerte E, McDonnell T, D'Amato R. Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 2001; 93: 208–213.

    Article  PubMed  CAS  Google Scholar 

  88. Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS. Neutralizing antibodies against epidermal growth factor and ErB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151: 1523–1530.

    PubMed  CAS  Google Scholar 

  89. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: Herceptin acts as an anti-angiogenic cocktail. Nature 2002; 416: 279–280.

    Article  PubMed  CAS  Google Scholar 

  90. Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS. Impact of oncogenes on tumor angiogenesis: mutant K-ras upregulation of VEGF/VPF is necessary but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 1998; 95: 3609–3614.

    Article  PubMed  CAS  Google Scholar 

  91. Ren JG, Jie C, Talbot C. How PEDF prevents angiogenesis: A hypothesized pathway. Medical Hypotheses 2005; 64: 74–78.

    Article  CAS  Google Scholar 

  92. Gengrinovitch S, Greenberg SM, Cohen T, Gitay-Goren H, Rockwell P, Maione TE, Levi BZ, Neufeld G. Platelet factor-4 inhibits the mitogen activity of VEGF121 and VEGF165 using several concurrent mechanisms. J Biol Chem 1995; 270: 15059–15065.

    Article  PubMed  CAS  Google Scholar 

  93. Dvorak HF, Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst 1989; 81: 497–502.

    Article  PubMed  CAS  Google Scholar 

  94. Sidky YA, Borden EC. Inhibition of angiogenesis by interferons: Effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 1987; 47: 5155–5161.

    PubMed  CAS  Google Scholar 

  95. Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247: 77–79.

    Article  PubMed  CAS  Google Scholar 

  96. Eder JP Jr, Supko JG, Clark JW, Puchalski TA, Garcia-Carbonero R, Ryan DP, Shulman LN, Proper J, Kirvan M, Rattner B, Connors S, Keogan MT, Janicek MJ, Fogler WE, Schnipper L, Kinchla N, Sidor C, Phillips E, Folkman J, Kufe DW. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 2002; 20: 3772–3784.

    Article  PubMed  CAS  Google Scholar 

  97. National Cancer Institute (2008) Understanding Cancer Series: Angiogenesis at www.cancer.gov/cancertopics/understandingcancer/angiogenesis/

  98. Qian DZ, Kato Y, Shabbeer S, Wei Y, Verheul HM, Salumbides B, Sanni T, Atadja P, Pili R. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res 2006; 12: 634–642.

    Article  PubMed  CAS  Google Scholar 

  99. Yeh CH, Peng HC, Yang RS, Huang TF. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha (v) beta (3) blockade of endothelial cells. Mol Pharmacol 2001; 59: 1333–1342.

    PubMed  CAS  Google Scholar 

  100. Sharma MC, Sharma M. The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des 2007; 13: 3568–3575.

    Article  PubMed  CAS  Google Scholar 

  101. Khan GN, Merajver SD. Modulation of angiogenesis for cancer prevention: strategies based on antioxidants and copper deficiency. Curr Pharm Des 2007; 13: 3584–3590.

    Article  PubMed  CAS  Google Scholar 

  102. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.

    Article  PubMed  CAS  Google Scholar 

  103. Dvorak HF. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  104. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851–858.

    Article  PubMed  CAS  Google Scholar 

  105. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  106. Rosenthal RA, Megyesi JF, Henzel WJ, Ferrara N, Folkman J. Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor. Growth Factors 1990; 4: 53–59.

    Article  PubMed  CAS  Google Scholar 

  107. Connolly DT. Vascular permeability factor: a unique regulator of blood vessel function. J Cell Biochem 1991; 47: 219–223.

    Article  PubMed  CAS  Google Scholar 

  108. Dvorak HF, Sioussat TM, Brown LF, Berse B, Nagy JA, Sotrel A, Manseau EJ, Van de Water L, Senger DR. Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: Concentration in tumor blood vessels. J Exp Med 1991; 174: 1275–1278.

    Article  PubMed  CAS  Google Scholar 

  109. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992; 13: 18–32.

    PubMed  CAS  Google Scholar 

  110. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: Identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5: 1806–1814.

    Article  PubMed  CAS  Google Scholar 

  111. Tischer E, Gospodarowicz D, Mitchell R, Silva M, Schilling J, Lau K, Crisp T, Fiddes JC, Abraham JA. Vascular endothelial growth factor: a new member of the platelet-derived growth factor gene family. Biochem Biophys Res Commun 1989; 165: 1198–1206.

    Article  PubMed  CAS  Google Scholar 

  112. Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, Neufeld G. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 1997; 272: 7151–7158.

    Article  PubMed  CAS  Google Scholar 

  113. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 1996; 271: 7788–7795.

    Article  PubMed  CAS  Google Scholar 

  114. Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M. Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 1997; 272: 31582–31588.

    Article  PubMed  CAS  Google Scholar 

  115. Korpelainen EI, Alitalo K. Signaling angiogenesis and lymphangiogenesis. Curr Opin Cell Biol 1998; 10: 159–164.

    Article  PubMed  CAS  Google Scholar 

  116. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989–999.

    Article  PubMed  Google Scholar 

  117. Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995; 10: 135–147.

    PubMed  CAS  Google Scholar 

  118. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 1991; 6: 1677–1683.

    PubMed  CAS  Google Scholar 

  119. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Bohlen P. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992; 187: 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  120. Landgren E, Schiller P, Cao Y, Claesson-Welsh L. Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 1998; 16: 359–367.

    Article  PubMed  CAS  Google Scholar 

  121. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994; 269: 26988–26995.

    PubMed  CAS  Google Scholar 

  122. Bartoli M, Gu X, Tsai NT, Venema RC, Brooks SE, Marrero MB, Caldwell RB. Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells. J Biol Chem 2000; 275: 33189–33192.

    Article  PubMed  CAS  Google Scholar 

  123. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–579.

    Google Scholar 

  124. Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 1996; 56: 1615–1620.

    PubMed  CAS  Google Scholar 

  125. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–442.

    Article  PubMed  CAS  Google Scholar 

  126. Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo KT, Manseau EJ, Dvorak HF. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 1996; 56: 172–181.

    PubMed  CAS  Google Scholar 

  127. Saleh M, Stacker SA, Wilks AF. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 1996; 56: 393–401.

    PubMed  CAS  Google Scholar 

  128. Pavco PA, Bouhana KS, Gallegos AM, Agrawal A, Blanchard KS, Grimm SL, Jensen KL, Andrews LE, Wincott FE, Pitot PA, Tressler RJ, Cushman C, Reynolds MA, Parry TJ. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin Cancer Res 2000; 6: 2094–2103.

    PubMed  CAS  Google Scholar 

  129. Davidoff AM, Nathwani AC, Spurbeck WW, Ng CY, Zhou J, Vanin EF. rAAV-mediated long-term liver-generated expression of an angiogenesis inhibitor can restrict renal tumor growth in mice. Cancer Res 2002; 62: 3077–3083.

    PubMed  CAS  Google Scholar 

  130. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–844.

    Article  PubMed  CAS  Google Scholar 

  131. Zhang W, Ran S, Sambade M, Huang X, Thorpe PE. A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model. Angiogenesis 2002; 5: 35–44.

    Article  PubMed  CAS  Google Scholar 

  132. Prewett M, Huber J, Li Y, Santiago A, O'Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin DJ. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999; 59: 5209–5218.

    PubMed  CAS  Google Scholar 

  133. Zhu Z, Rockwell P, Lu D, Kotanides H, Pytowski B, Hicklin DJ, Bohlen P, Witte L. Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain-containing receptor single-chain antibodies from a phage display library. Cancer Res 1998; 58: 3209–3214.

    PubMed  CAS  Google Scholar 

  134. Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ, Kim YH, Schreck R, Wang X, Risau W, Ullrich A, Hirth KP, McMahon G. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.

    PubMed  CAS  Google Scholar 

  135. Olofsson B, Jeltsch M, Eriksson U, Alitalo K. Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol 1999; 10: 528–535.

    Article  PubMed  CAS  Google Scholar 

  136. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–248.

    Article  PubMed  CAS  Google Scholar 

  137. Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 1999; 59: 1592–1598.

    PubMed  CAS  Google Scholar 

  138. Detmar M, Velasco P, Richard L, Claffey KP, Streit M, Riccardi L, Skobe M, Brown LF. Expression of vascular endothelial growth factor induces an invasive phenotype in human squamous cell carcinomas. Am J Pathol 2000; 156: 159–167.

    Article  PubMed  CAS  Google Scholar 

  139. Risau W. What, if anything, is an angiogenic factor? Cancer Metastasis Rev 1996; 15: 149–151.

    Article  PubMed  CAS  Google Scholar 

  140. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    PubMed  CAS  Google Scholar 

  141. Shih SC, Claffey KP. Role of AP-1 and HIF-1 transcription factors in TGF-beta activation of VEGF expression. Growth Factors 2001; 19: 19–34.

    Article  PubMed  CAS  Google Scholar 

  142. Hadj-Slimane R, Lepelletier Y, Lopez N, Garbay C, Raynaud F. Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Biochimie 2007; 89: 1234–1244.

    Article  PubMed  CAS  Google Scholar 

  143. Wang S, Liu H, Ren L, Pan Y, Zhang Y. Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia 2008; 10: 399–407.

    PubMed  CAS  Google Scholar 

  144. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS. VEGF-Trap; a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002; 99: 11393–11398.

    Article  PubMed  CAS  Google Scholar 

  145. Kim LS, Huang S, Lu W, Lev DC, Price JE. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 2004; 21: 107–118.

    Article  PubMed  CAS  Google Scholar 

  146. Lu Y, Zhang J, Beech DJ, Myers LK, Jennings LK. p16 downregulates VEGF and inhibits angiogenesis in breast cancer cells. Cancer Ther 2003; 1: 143–151.

    Google Scholar 

  147. Davidoff AM, Leary MA, Ng CY, Vanin EF. Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg 2001; 36: 30–36.

    Article  PubMed  CAS  Google Scholar 

  148. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223: 1296–1298.

    Article  PubMed  CAS  Google Scholar 

  149. Hori A, Sasada R, Matsutani E, Naito K, Sakura Y, Fujita T, Kozai Y. Suppression of solid tumor growth by immuno-neutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 1991; 51: 6180–6184.

    PubMed  CAS  Google Scholar 

  150. Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to endothelium. Nature Med 1996; 2: 992–997.

    Article  PubMed  CAS  Google Scholar 

  151. Griffioen AW, Tromp SC, Hillen HF. Angiogenesis modulates the tumour immune response. Int J Exp Pathol 1998; 76: 363–368.

    Google Scholar 

  152. Griffioen AW, Damen CA, Mayo KH, Barendsz-Janson AF, Martinotti S, Blijham GH, Groenewegen G. Angiogenesis inhibitors overcome tumor induced endothelial cell anergy. Int J Cancer 1999; 80: 315–319.

    Article  PubMed  CAS  Google Scholar 

  153. Coleman AB, Lugo TG. Normal human melanocytes that express a bFGF transgene still require exogenous bFGF for growth in vitro. J Invest Dermatol 1998; 110: 793–799.

    Article  PubMed  CAS  Google Scholar 

  154. Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, Scott RM, Black PM, Sallan SE, Folkman J. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 1994; 344: 82–86.

    Article  PubMed  CAS  Google Scholar 

  155. Lin RY, Argenta PA, Sullivan KM, Adzick NS. Diagnostic and prognostic role of basic fibroblast growth factor in Wilm's tumor patients. Clin Cancer Res 1995; 1: 327–331.

    PubMed  CAS  Google Scholar 

  156. Nanus DM, Schmitz-Dräger BJ, Motzer RJ, Lee AC, Vlamis V, Cordon-Cardo C, Albino AP, Reuter VE. Expression of basic fibroblast growth factor in primary human renal tumors: correlation with poor survival. J Natl Cancer Inst 1993; 85: 1597–1599.

    Article  PubMed  CAS  Google Scholar 

  157. Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 1994; 86: 356–361.

    Article  PubMed  CAS  Google Scholar 

  158. Fennewald SM, Rando RF. Inhibition of high affinity basic fibroblast growth factor binding by oligonucleotides. J Biol Chem 1995; 270: 21718–21721.

    Article  PubMed  CAS  Google Scholar 

  159. Hasan J, Clamp A, Whitworth M, Byers R, Bicknell R, Gallagher J, Jayson GC. Inhibition of bFGF activity by size-defined oligosaccharide derivatives of low molecular weight heparin in the sponge angiogenesis assay. Am Assoc Cancer Res 2004; 45: #947.

    Google Scholar 

  160. Etscheid M, Beer N, Kress JA, Seitz R, Dodt J. Inhibition of bFGF/EGF-dependent endothelial cell proliferation by the hyaluronan-binding protease from human plasma. Euro J Cell Biol 2004; 82: 597–604.

    Article  CAS  Google Scholar 

  161. Kaban LB, Mulliken JB, Ezekowitz RA, Ebb D, Smith PS, Folkman J. Antiangiogenic therapy of a recurrent giant cell tumor of the mandible with interferonα-2a. Pediatrics 1999; 103: 1145–1149.

    Article  PubMed  CAS  Google Scholar 

  162. Marler JJ, Rubin JB, Trede NS, Connors S, Grier H, Upton J, Mulliken JB, Folkman J. Successful antiangiogenic therapy of giant cell angioblastoma with interferon alfa 2b: report of 2 cases. Pediatrics 2002; 109: 1–5.

    Article  Google Scholar 

  163. Hoppeler H, Kayar SR. Capillarity and oxidative capacity of muscles. News Physiol Sci 1988; 3: 113–116.

    Google Scholar 

  164. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  PubMed  CAS  Google Scholar 

  165. Simon JM. Hypoxia and angiogenesis. Bull Cancer 2007; 94: 160–165.

    Google Scholar 

  166. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604–4613.

    PubMed  CAS  Google Scholar 

  167. Warren BA (1979) The vascular morphology of tumors. In:Peterson H-I (ed) Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental Human Tumors CRC Press, Florida, pp. 1–47.

    Google Scholar 

  168. Ide AG, Baker NH, Warren SL. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. AJR Am J Roentgenol 1939; 42: 891–899.

    Google Scholar 

  169. Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 1996; 93: 10595–19599.

    Article  PubMed  CAS  Google Scholar 

  170. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 1996; 271: 2746–2753.

    Article  PubMed  CAS  Google Scholar 

  171. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, Harris AL. Targeting gene expression to hypoxic tumor cells. Nat Med 1997; 3: 515–520.

    Article  PubMed  CAS  Google Scholar 

  172. Folkman J (2002) Angiogenesis in arthritis. In: Smolen J, Lipsky P (eds) Targeted Therapies in Rheumatology. Martin Dunitz, London, pp. 111–131.

    Google Scholar 

  173. Iervolino A, Trisciuoglio D, Ribatti D, Candiloro A, Biroccio A, Zupi G, Del Bufalo D. Bcl-2 overexpression in human melanoma cells increases angiogenesis through VEGF mRNA stabilization and HIF-1-mediated transcriptional activity. FASEB J 2002; 16: 1453–1455.

    PubMed  CAS  Google Scholar 

  174. Blancher C, Moore JW, Talks KL, Houlbrook S, Harris AL. Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 2000; 60: 7106–7113.

    PubMed  CAS  Google Scholar 

  175. Chen WT, Huang CJ, Wu MT, Yang SF, Su YC, Chai CY. Hypoxia-inducible factor-1alpha is associated with risk of aggressive behavior and tumor angiogenesis in gastrointestinal stromal tumor. Jpn J Clin Oncol 2005; 35: 207–213.

    Article  PubMed  Google Scholar 

  176. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999; 59: 5830–5835.

    PubMed  CAS  Google Scholar 

  177. Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P, Brakenhoff R, Pantel K. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 2003; 63: 5679–5684.

    PubMed  CAS  Google Scholar 

  178. Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 2007; 67: 563–572.

    Article  PubMed  CAS  Google Scholar 

  179. Maynard MA, Ohh M. The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci 2007; 64: 2170–2180.

    Article  PubMed  CAS  Google Scholar 

  180. Algire GH, Chalkely HW, Legallais FY, Park H. Vascular reactions of normal and malignant tumors in vivo: I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 1945; 6: 73–85.

    Google Scholar 

  181. Obermair A, Kucera E, Mayerhofer K, Speiser P, Seifert M, Czerwenka K, Kaider A, Leodolter S, Kainz C, Zeillinger R. Vascular endothelial growth factor (VEGF) in human breast cancer: correlation with disease-free survival. Int J Cancer 1997; 74: 455–458.

    Article  PubMed  CAS  Google Scholar 

  182. Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M, Matsubara I, Vinante O, Bonoldi E, Boracchi P, Gatti C, Suzuki, H, Tominaga T. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 1997; 89: 139–144.

    Article  PubMed  CAS  Google Scholar 

  183. Linderholm B, Tavelin B, Grankvist K, Henriksson R. Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol 1998; 16: 3121–3128.

    PubMed  CAS  Google Scholar 

  184. Heffelfinger SC, Miller MA, Yassin R, Gear R. Angiogenic growth factors in preinvasive breast disease. Clin Cancer Res 1999; 5: 2867–2876.

    PubMed  CAS  Google Scholar 

  185. Ao A, Wang H, Kamarajugadda S, Lu J. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci 2008; 105: 7821–7826.

    Article  PubMed  CAS  Google Scholar 

  186. Melillo G. Hypoxia-inducible factor 1 inhibitors. Methods Enzymol 2007; 435: 385–402.

    Article  PubMed  CAS  Google Scholar 

  187. Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther 2004; 3: 233–244.

    PubMed  CAS  Google Scholar 

  188. Yeo E-J, Chun Y-S, Park J-W. New anticancer strategies targeting HIF-1. Biochem Pharmacol 2004; 68: 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  189. Oh SH, Woo JK, Jin Q, Kang HJ, Jeong JW, Kim KW, Hong WK, Lee HY. Identification of novel antiangiogenic anticancer activities of deguelin targetinghypoxia inducible factor-1 alpha. Int J Cancer 2008; 122: 5–14.

    Article  PubMed  CAS  Google Scholar 

  190. Singh RP, Agarwal R. Inducible nitric oxide synthase-vascular endothelial growth factor axis: a potential target to inhibit tumor angiogenesis by dietary agents. Curr Cancer Drug Targets 2007; 7: 475–483.

    Article  PubMed  CAS  Google Scholar 

  191. Fang J, Ding M, Yang L, Liu LZ, Jiang BH. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal 2007; 19: 2487–2497.

    Article  PubMed  CAS  Google Scholar 

  192. Hampl M, Tanaka T, Albert PS, Lee J, Ferrari N, Fine HA. Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Hum Gene Ther 2001; 12: 1713–1729.

    Article  PubMed  CAS  Google Scholar 

  193. Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP, Kalluri R. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 2000; 60: 2520–2526.

    PubMed  CAS  Google Scholar 

  194. Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP, Kalluri R. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000; 275: 1209–1215.

    Article  PubMed  CAS  Google Scholar 

  195. Zhang M, Maass N, Magit D, Sager R. Transactivation through Ets and Ap1 transcription sites determines the expression of the tumor-suppressing gene maspin. Cell Growth Differ 1997; 8: 179–186.

    PubMed  CAS  Google Scholar 

  196. Watanabe M, Nasu Y, Kashiwakura Y, Kusumi N, Tamayose K, Nagai A, Sasano T, Shimada T, Daida H, Kumon H. Adenoassociated virus 2-mediated intratumoral prostate cancer gene therapy: long-term maspin expression efficiently suppresses tumor growth. Hum Gene Ther 2005; 16: 699–710.

    Article  PubMed  CAS  Google Scholar 

  197. Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factorreceptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226: 324–328.

    Article  PubMed  CAS  Google Scholar 

  198. Griscelli F, Li H, Bennaceur-Griscelli A, Soria J, Opolon P, Soria C, Perricaudet M, Yeh P, Lu H. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 1998; 95: 6367–6372.

    Article  PubMed  CAS  Google Scholar 

  199. Indraccolo S, Gola E, Rosato A, Minuzzo S, Habeler W, Tisato V, Roni V, Esposito G, Morini M, Albini A, Noonan DM, Ferrantini M, Amadori A, Chieco-Bianchi L. Differential effects of angiostatin, endostatin and interferon-α (1) gene transfer on in vivo growth of human breast cancer cells. Gene Ther 2002; 9: 867–878.

    Article  PubMed  CAS  Google Scholar 

  200. Indraccolo S, Morini M, Gola E, Carrozzino F, Habeler W, Minghelli S, Santi L, Chieco-Bianchi L, Cao Y, Albini A, Noonan DM. Effects of angiostatin gene transfer on functional properties and in vivo growth of Kaposi's sarcoma cells. Cancer Res 2001; 61: 5441–5446.

    PubMed  CAS  Google Scholar 

  201. Gyorffy S, Palmer K, Gauldie J. Adenoviral vector expressing murine Angiostatin inhibits a model of breast cancer metastatic growth in the lungs of mice. Am J Pathol 2001; 159: 1137–1147.

    Article  PubMed  CAS  Google Scholar 

  202. Sacco MG, Catò EM, Ceruti R, Soldati S, Indraccolo S, Caniatti M, Scanziani E, Vezzoni P. Systemic gene therapy with anti-angiogenic factors inhibits spontaneous breast tumor growth and metastasis in MMTVneu transgenic mice. Gene Ther 2001; 8: 67–70.

    Article  PubMed  CAS  Google Scholar 

  203. Ma HI, Lin SZ, Chiang YH, Li J, Chen SL, Tsao YP, Xiao X. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther 2002; 9: 2–11.

    Article  PubMed  CAS  Google Scholar 

  204. Ma HI, Guo P, Li J, Lin SZ, Chiang YH, Xiao X, Cheng SY. Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res 2002b; 62: 756–763.

    PubMed  CAS  Google Scholar 

  205. Zhang X, Wu J, Fei Z, Gao D, Li X, Liu X, Liang J, Wang X. Angiostatin K (1-3) gene for treatment of human gliomas: an experimental study. Chin Med J 2000; 113: 996–1001.

    PubMed  CAS  Google Scholar 

  206. Griscelli F, Li H, Cheong C, Opolon P, Bennaceur-Griscelli A, Vassal G, Soria J, Soria C, Lu H, Perricaudet M, Yeh P. Combined effects of radiotherapy and Angiostatin gene therapy in glioma tumor model. Proc Natl Acad Sci USA 2000; 97: 6698–6703.

    Article  PubMed  CAS  Google Scholar 

  207. Rodolfo M, Catò EM, Soldati S, Ceruti R, Asioli M, Scanziani E, Vezzoni P, Parmiani G, Sacco MG. Growth of human melanoma xenografts is suppressed by systemic angiostatin gene therapy. Cancer Gene Ther 2001; 8: 491–496.

    Article  PubMed  CAS  Google Scholar 

  208. Matsumoto G, Ohmi Y, Shindo J. Angiostatin gene therapy inhibits the growth of murine squamous cell carcinoma in vivo. Oral Oncol 2001; 37: 369–378.

    Article  PubMed  CAS  Google Scholar 

  209. Scappaticci FA, Smith R, Pathak A, Schloss D, Lum B, Cao Y, Johnson F, Engleman EG, Nolan GP. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther 2001; 3: 186–196.

    Article  PubMed  CAS  Google Scholar 

  210. Scappaticci FA, Contreras A, Smith R, Bonhoure L, Lum B, Cao Y, Engleman EG, Nolan GP. Statin-AE: A novel angiostatin-endostatin fusion protein with enhanced antiangiogenic and antitumor activity. Angiogenesis 2001; 4: 263–268.

    Article  PubMed  CAS  Google Scholar 

  211. Shichinohe T, Bochner BH, Mizutani K, Nishida M, Hegerich-Gilliam S, Naldini L, Kasahara N. Development of lentiviral vectors for antiangiogenic gene delivery. Cancer Gene Ther 2001; 8: 879–889.

    Article  PubMed  CAS  Google Scholar 

  212. Andrawiss M, Maron A, Beltran W, Opolon P, Connault E, Griscelli F, Yeh P, Perricaudet M, Devauchelle P. Adenovirus-mediated gene transfer in canine eyes: A preclinical study for gene therapy of human uveal melanoma. J Gene Med 2001; 3: 228–239.

    Article  PubMed  CAS  Google Scholar 

  213. Harada H, Nakagawa K, Iwata S, Saito M, Kumon Y, Sakaki S, Sato K, Hamada K. Restoration of wild type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas. Cancer Res 1999; 59: 3783–3789.

    PubMed  CAS  Google Scholar 

  214. Steiner MS, Zhang Y, Farooq F, Lerner J, Wang Y, Lu Y. Adenoviral vector containing wild type p16 suppresses prostate cancer growth and prolongs survival by inducing cell senescence. Cancer Gene Ther 2000; 7: 360–372.

    Article  PubMed  CAS  Google Scholar 

  215. Abe T, Okamura K, Ono M, Kohno K, Mori T, Hori S, Kuwano M. Induction of vascular endothelial tubular morphogenesis by human glioma cells: amodel system for tumor angiogenesis. J Clin Invest 1993; 92: 54–61.

    Article  PubMed  CAS  Google Scholar 

  216. Qiu Z, Cui FL, Xu CL, Gu ZQ, Sun YH. Suppression of invasion and angiogenesis in human prostate cancer PC-3 cells by adenovirus-mediated co-transfer of PTEN and P27. Zhonghua Nan Ke Xue 2007; 13: 201–205.

    PubMed  CAS  Google Scholar 

  217. Hajitou A, Grignet C, Devy L, Berndt S, Blacher S, Deroanne CF, Bajou K, Fong T, Chiang Y, Foidart JM, Noël A. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cell. FASEB J 2002; 16: 1802–1804.

    PubMed  CAS  Google Scholar 

  218. te Velde EA, Vogten JM, Gebbink MF, van Gorp JM, Voest EE, Borel Rinkes IH. Enhanced antitumour efficacy by combining conventional chemotherapy with Angiostatin or endostatin in a liver metastasis model. Br J Surg 2002; 89: 1302–1309.

    Article  Google Scholar 

  219. Wilczynska U, Kucharska A, Szary J, Szala S. Combined delivery of an antiangiogenic protein (angiostatin) and an immunomodulatory gene (interleukin-12) in the treatment of murine cancer. Acta Biochim Pol 2001; 48: 1077–1084.

    PubMed  CAS  Google Scholar 

  220. Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM. Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 2002; 105: 2185–2191.

    Article  PubMed  CAS  Google Scholar 

  221. Mauceri HJ, Seetharam S, Beckett MA, Schumm LP, Koons A, Gupta VK, Park JO, Manan A, Lee JY, Montag AG, Kufe DW, Weichselbaum RR. Angiostatin potentiates cyclophosphamide treatment of metastatic disease. Cancer Chemother Pharmacol 2002; 50: 412–418.

    Article  PubMed  CAS  Google Scholar 

  222. Tandle A, Blazer DG 3rd, Libutti SK. Antiangiogenic gene therapy of cancer: Recent developments. J Transl Med 2004; 2: 22–42.

    Article  PubMed  CAS  Google Scholar 

  223. Abdollahi A, Hlatky L, Huber PE. Endostatin: the logic of antiangiogenic therapy. Drug Resist Updat 2005; 8: 59–74.

    Article  PubMed  CAS  Google Scholar 

  224. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O'Reilly MS. Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 2001; 61: 2207–2211.

    PubMed  CAS  Google Scholar 

  225. Shibata D. Clonal diversity in tumor progression. Nat Genet 2006; 38: 402–403.

    Article  PubMed  CAS  Google Scholar 

  226. Nicolson, G L. Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res 1987; 47: 1473–1487.

    PubMed  CAS  Google Scholar 

  227. Lazo PA, Klein-Szanto AJP, Tsichlis P N. T-cell lymphoma lines derived from rat thymomas induced by Moloney murine leukemia virus: phenotypic diversity and its implications. J Virol 1990; 64: 3948–3959.

    PubMed  CAS  Google Scholar 

  228. Marshall E. Breast cancer research: a special report. Search for a killer: Focus shifts from fat to hormones. Science 1993; 259: 618–621.

    Article  PubMed  CAS  Google Scholar 

  229. Steeg PS, Hartsough MT, Clare SE (1998) Nm23, breast differentiation, and cancer metastasis. In: Bowcock AM (ed) Breast Cancer. Humana Press, Totowa, New Jersey, 1998, pp. 267–283.

    Google Scholar 

  230. Nicolson GL. Cancer metastasis. Sci Am 1979; 240: 66–76.

    Article  PubMed  CAS  Google Scholar 

  231. Netland PA, Zetter BR. Organ-specific adhesion of metastatic tumor cells in vitro. Science 1984; 224: 1113–1115.

    Article  PubMed  CAS  Google Scholar 

  232. Nicolson GL. Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 1988; 7: 143–188.

    Article  PubMed  CAS  Google Scholar 

  233. Boxberger HJ, Paweletz N, Spiess E, Kriehuber R. An in vitro model study of BSp73 rat tumour cell invasion into endothelial monolayer. Anticancer Res 1989; 9: 1777–1786.

    PubMed  CAS  Google Scholar 

  234. Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med 1998; 49: 407–424.

    Article  PubMed  CAS  Google Scholar 

  235. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis correlates with metastasis in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8.

    Article  PubMed  CAS  Google Scholar 

  236. Weinstat-Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J 1994; 8: 401–407.

    PubMed  CAS  Google Scholar 

  237. Liotta LA, Saidel MG, Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 1976; 36: 889–894.

    PubMed  CAS  Google Scholar 

  238. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988; 133: 95–109.

    PubMed  CAS  Google Scholar 

  239. Kalebic T, Garbisa S, Glaser B, Liotta LA. Basement membrane collagen: degradation by migrating endothelial cells. Science 1983; 221: 281–283.

    Article  PubMed  CAS  Google Scholar 

  240. Nagy JA, Brown LF, Senger DR, Lanir N, Van de Water L, Dvorak AM, Dvorak HF. Pathogenesis of tumor stroma generation: A critical role for leaky blood vessels and fibrin deposition. Biochem Biophys Acta 1989; 948: 305–326.

    PubMed  CAS  Google Scholar 

  241. Skinner SA, Tutton PJ, O'Brien PE. Microvascular architecture of experimental colon tumors in the rat. Cancer Res 1990; 50: 2411–2417.

    PubMed  CAS  Google Scholar 

  242. Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.

    Article  PubMed  CAS  Google Scholar 

  243. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1995; 1: 27–31.

    Article  PubMed  CAS  Google Scholar 

  244. Chambers AF. The metastatic process: basic research and clinical implications. Oncol Res 1999; 11: 161–168.

    PubMed  CAS  Google Scholar 

  245. Hanahan D, Christofori G, Naik P, Arbeit J. Transgenic mouse models of tumor angiogenesis: The angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996; 32: 2386–2393.

    Article  Google Scholar 

  246. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  247. Folkman J, Kalluri R. Tumor Angiogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR, Ralph R, Bast RCJ, Gansler TS, Holland JF, Frei E III. (eds) Cancer Medicine, 6th edn. Hamilton, Canada, 2003.

    Google Scholar 

  248. Smith-McCune KK, Weidner N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 1994; 54: 800–804.

    PubMed  CAS  Google Scholar 

  249. Hicks RM, Chowaniec J. Experimental induction, histology, and ultrastructure of hyperplasia and neoplasia of the urinary bladder epithelium. Int Rev Exp Pathol 1978; 18: 199–280.

    PubMed  CAS  Google Scholar 

  250. Sillman F, Boyce J, Fruchter R. The significance of atypical vessels and neovascularization in cervical neoplasia. Am J Obstet Gynecol 1981; 139: 154–159.

    PubMed  CAS  Google Scholar 

  251. Srivastava A, Laidler P, Davies RP, Horfan K. The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol 1988; 133: 419–423.

    PubMed  CAS  Google Scholar 

  252. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284: 67–68.

    Article  PubMed  CAS  Google Scholar 

  253. Tremblay PL, Huot J, Auger FA. Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 2008; 68: 5167–5176.

    Article  PubMed  CAS  Google Scholar 

  254. Benjamin LE, Bergers G. Angiogenesis: Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3: 401–410.

    Article  PubMed  CAS  Google Scholar 

  255. Brown JM, Giaccia AJ. The Unique Physiology of Solid Tumors: Opportunities (and Problems) for Cancer Therapy. Cancer Res 1998; 58: 1408–1416.

    PubMed  CAS  Google Scholar 

  256. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J Clin Invest 1972; 52: 2745–2756.

    Article  Google Scholar 

  257. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 2007; 74: 72–84.

    Article  PubMed  CAS  Google Scholar 

  258. Folkman J. Antiangiogenesis. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Biologic Therapy of Cancer. Lippincott, Philadelphia, 1991, pp. 743–753.

    Google Scholar 

  259. Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on inerstitial hypertension, peritumor edema, and lymphaticmetastasis: insights from a mathematical model. Cancer Res 2007; 67: 2729–2735.

    Article  PubMed  CAS  Google Scholar 

  260. Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 1992; 52: 5110–5114.

    PubMed  CAS  Google Scholar 

  261. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004; 6: 553–563.

    PubMed  CAS  Google Scholar 

  262. Ansiaux R, Baudelet C, Jordan BF, Beghein N, Sonveaux P, De Wever J, Martinive P, Grégoire V, Feron O, Gallez B. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. ClinCancer Res 2005; 11: 743–750.

    CAS  Google Scholar 

  263. National Cancer Institute (2008) Executive Summary of the Tumor Microenvironment Think Tank at http://dcb.nci.nih.gov/thinktank/Executive_Summary_of_the_Tumor_Microenvironment_Think_Tank.cfm

  264. Ingber DE. Can cancer be reversed by engineering the tumor microenvironment? Semin Cancer Biol 2008; 18: 356–364.

    Article  CAS  Google Scholar 

  265. Cairns RA, Kalliomaki T, Hill RP. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 2001; 61: 8903–8908.

    PubMed  CAS  Google Scholar 

  266. Cairns RA, Hill RP. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of humancervical carcinoma. Cancer Res 2004; 64: 2054–2061.

    Article  PubMed  CAS  Google Scholar 

  267. Young SD, Marshall RS, Hill RP. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 1988; 85: 9533–9537.

    Article  PubMed  CAS  Google Scholar 

  268. Stackpole CW, Groszek L, Kalbag SS. Benign-tomalignant B16 melanoma progression induced in two stages in vitro by exposure to hypoxia. J Natl Cancer Inst 1994; 86: 361–367.

    Article  PubMed  CAS  Google Scholar 

  269. Rofstad EK, Danielsen T. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer 1999; 80: 1697–1707.

    Article  PubMed  CAS  Google Scholar 

  270. Semenza GL. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001; 7: 345–350.

    Article  PubMed  CAS  Google Scholar 

  271. Roth U, Curth K, Unterman TG, Kietzmann T. The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2004; 279: 2623–2631.

    Article  PubMed  CAS  Google Scholar 

  272. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999; 237: 97–132.

    Article  PubMed  CAS  Google Scholar 

  273. Mabjeesh NJ, Amir S. Hypoxia-inducible factor (HIF) in human tumorigenesis. Histol Histopathol 2007; 22: 559–572.

    PubMed  CAS  Google Scholar 

  274. Hockel M, Vaupel P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93: 266–276.

    Article  PubMed  CAS  Google Scholar 

  275. Dong LW, Wang WY, Yue YT, Li M. Effects of flavones extracted from Portulaca oleracea on ability of hypoxia tolerance in mice and its mechanism. Zhong Xi Yi Jie He Xue Bao. 2005 3: 450–454.

    Article  PubMed  CAS  Google Scholar 

  276. Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, Park JW. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 2003; 95: 516–525.

    Article  PubMed  CAS  Google Scholar 

  277. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, Willard MT, Zhong H, Simons JW, Giannakakou P. 2ME2 inhibits tumor growth and angiogenesis by disruptingmicrotubules and dysregulating HIF. Cancer Cell 2003; 3: 363–375.

    Article  PubMed  CAS  Google Scholar 

  278. Li X, Lu Y, Liang K, Pan T, Mendelsohn J, Fan Z. Requirement of hypoxia-inducible factor-1alpha down-regulation in mediating the antitumor activity of the anti-epidermal growth factor receptor monoclonal antibody cetuximab. Mol Cancer Ther 2008; 7: 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  279. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 2008; 26: 2839–2845.

    Article  PubMed  CAS  Google Scholar 

  280. Hill RP, Perris R. “Destemming” cancer stem cells. J Natl Cancer Inst 2007; 99: 1435–1440.

    Article  PubMed  CAS  Google Scholar 

  281. Craig T, Jordan MLG, Noble M. Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.

    Article  Google Scholar 

  282. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells – perspectives on current status and future directions: AACRWorkshop on cancer stem cells. Cancer Res 2006; 66: 9339–9344.

    Article  PubMed  CAS  Google Scholar 

  283. van Kempen LC, Leenders WP. Tumours can adapt to anti-angiogenic therapy depending on the stromal context: lessons from endothelial cell biology. Br J Cancer 2006; 94: 552–560.

    Article  CAS  Google Scholar 

  284. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  285. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late stage pancreatic islet tumors. Cancer Cell 2005; 8: 299–309.

    Article  PubMed  CAS  Google Scholar 

  286. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438: 932–936.

    Article  PubMed  CAS  Google Scholar 

  287. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, Kerbel RS. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006; 313: 1785–1787.

    Article  PubMed  CAS  Google Scholar 

  288. Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, Sahani DV, Kalva SP, Cohen KS, Scadden DT, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Shellito PC, Mino-Kenudson M, Lauwers GY. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 2005; 23: 8136–8139.

    Article  PubMed  Google Scholar 

  289. O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the Serpin Antithrombin III. Science 1999; 285: 1926–1928.

    Article  PubMed  Google Scholar 

  290. Kerbel RS, Viloria-Petit A, Klement G, Rak J. 'Accidental' anti-angiogenic drugs. Anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 2000; 36: 1248–1257.

    Article  PubMed  CAS  Google Scholar 

  291. Thijssen VL, van Beijnum JR, Mayo KH, Griffioen AW. Identification of Novel Drug Targets for Angiostatic Cancer Therapy; It Takes Two to Tango. Curr Pharmaceu Design 2007; 13: 3576–3583.

    Article  CAS  Google Scholar 

  292. Lee TY, Lin CT, Kuo SY, Chang DK, Wu HC. Peptide-mediatedtargeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res 2007; 67: 10958–10965.

    Article  PubMed  CAS  Google Scholar 

  293. Lo A, Lin CT, Wu HC. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol Cancer Ther 2008; 7: 579–589.

    Article  PubMed  CAS  Google Scholar 

  294. Wu H-C, Huang C-T, Chang D-K. Anti-angiogenic therapeutic drugs for treatment of human cancer. J Cancer Mol 2008; 4: 37–45.

    CAS  Google Scholar 

  295. Trachtenberg J, Bogaards A, Weersink RA, Haider MA, Evans A, McCluskey SA, Scherz A, Gertner MR, Yue C, Appu S, Aprikian A, Savard J, Wilson BC, Elhilali M. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: Assessment of safety and treatment response. J Urol 2007; 178: 1974–1979.

    Article  PubMed  CAS  Google Scholar 

  296. Sessa C, Guibal A, Del Conte G, Rüegg C. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol 2008; 5: 378–391.

    Article  PubMed  CAS  Google Scholar 

  297. Keedy VL, Sandler AB. Inhibition of angiogenesis in the treatment of non-small cell lung cancer. Cancer Sci 2007; 98: 1825–1830.

    Article  PubMed  CAS  Google Scholar 

  298. Shimizu K, Asai T, Fuse C, Sadzuka Y, Sonobe T, Ogino K, Taki T, Tanaka T, Oku N. Applicability of anti-neovascular therapy to drug-resistant tumor: suppression of drug-resistant P388 tumor growth with neovessel-targeted liposomal adriamycin. Int J Pharm 2005; 296: 133–141.

    Article  PubMed  CAS  Google Scholar 

  299. Shimizu K, Asai T, Oku N. Antineovascular therapy, a novel antiangiogenic approach. Expert Opin Ther Targets 2005; 9: 63–76.

    Article  PubMed  CAS  Google Scholar 

  300. Asai T, Miyazawa S, Maeda N, Hatanaka K, Katanasaka Y, Shimizu K, Shuto S, Oku N. Antineovascular therapy with angiogenic vessel-targeted polyethyleneglycol-shielded liposomal DPP-CNDAC. Cancer Sci 2008; 99: 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  301. Maeda N, Miyazawa S, Shimizu K, Asai T, Yonezawa S, Kitazawa S, Namba Y, Tsukada H, Oku N. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs. Biol Pharm Bull 2006; 29: 1936–1940.

    Article  PubMed  CAS  Google Scholar 

  302. Shimizu K, Sawazaki Y, Tanaka T, Asai T, Oku N. Chronopharmacologic cancer treatment with an angiogenic vessel-targeted liposomal drug. Biol Pharm Bull 2008; 31: 95–98.

    Article  PubMed  CAS  Google Scholar 

  303. Gimmi CD. Current stumbling blocks in oncology drug development. Ernst Schering Res Found Workshop 2007; 59: 135–149.

    Article  PubMed  Google Scholar 

  304. Kwon HJ. Discovery of new small molecules and targets towards angiogenesis via chemical genomics approach. Curr Drug Targets 2006; 7: 397–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Some original results are derived from research projects supported by National Institutes of Health grant CA107162 (YL). We thank Andrew Lu for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Madu, C.O., Lu, Y. (2009). Tumor Microvasculature and Microenvironment: Therapeutic Targets for Inhibition of Tumor Angiogenesis and Metastasis. In: Lu, Y., Mahato, R. (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0131-6_1

Download citation

Publish with us

Policies and ethics