Skip to main content

Biotechnological Potential of Fruit Processing Industry Residues

  • Chapter

Abstract

Fruit juices and derived products such as nectars and drinks have experienced growing popularity within the last years. Orange waste, apple pomace and grape pomace are the solid by-products derived from processing of oranges, apples and grapes, respectively. Due to increasing production, their disposal represents a growing problem since the plant material is usually prone to microbial spoilage, thus limiting further exploitation. On the other hand, costs of drying, storage and shipment of by-products are economically limiting factors. Therefore, agro-industrial by-products are often utilized as feed or as fertilizer. The application of agro-industrial by-products in bioprocesses offers a wide range of alternative substrates, thus helping to solve pollution problems related to their disposal. Attempts have been made to use orange waste, apple pomace and grape pomace to generate several value-added products through microbial transformations or enzymatic modifications, such as enzymes, bioethanol, organic acids, heteropolysaccharides, aroma compounds, protein enriched feeds, prebiotic oligosaccharides and biologically active molecules.

Keywords

  • Fruit processing industry residues
  • Biotechnological applications
  • Microbial transformations
  • Enzymatic modifications

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-9942-7_14
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-9942-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames D (2008) Xethanol looks at ethanol from citrus peel waste. Ind Bioproces 30:5

    Google Scholar 

  • Aravantinos-Zafiris G, Tzia C, Oreopoulou V et al. (1994) Fermentation of orange processing wastes for citric acid production. J Sci Food Agr 65:117–120

    CAS  CrossRef  Google Scholar 

  • Bamba T, Kanauchi O, Andoh A et al. (2002) A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. J Gastroen Hepatol 17:818–824

    CAS  CrossRef  Google Scholar 

  • Bampidis VA, Robinson PH (2006) Citrus by-products as ruminant feeds: A review. Anim Feed Sci Tech 128:175–217

    CrossRef  Google Scholar 

  • Berovic M, Ostroversnik H (1997) Production of Aspergillus niger pectolytic enzymes by solid state bioprocessing of apple pomace. J Biotechnol 53:47–53

    PubMed  CAS  CrossRef  Google Scholar 

  • Bilanovic D, Shelet G, Green M (1994) Xanthan fermentation of citrus waste. Bioresour Technol 48:169–172

    CAS  CrossRef  Google Scholar 

  • Botella C, de Ory I, Webb C et al. (2005) Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26:100–106

    CAS  CrossRef  Google Scholar 

  • Botella C, Díaz A, de Ory I et al. (2007) Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem 42:98–101

    CAS  CrossRef  Google Scholar 

  • Bromarski A, Soccol CR, Christen P et al. (1998) Fruity aroma production by Ceratocystis fimbriata in solid cultures from agro-industrial wastes. Rev Microbiol 29:208–212

    Google Scholar 

  • Cardona CA, Sánchez OJ (2007) Fuel ethanol production: Process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    PubMed  CAS  CrossRef  Google Scholar 

  • Chebil L, Humeau C, Falcimaigne A et al. (2006) Enzymatic acylation of flavonoids. Process Biochem 41:2237–2251

    CAS  CrossRef  Google Scholar 

  • Christen P, Bramorski A, Revah S et al. (2000) Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes. Bioresour Technol 71:211–215

    CAS  CrossRef  Google Scholar 

  • Christen P, Meza JC, Revah S (1997) Fruity aroma production of solid state fermentation by Ceratocystis fimbriata: influence of the substrate type and the presence of precursors. Mycol Res 101:911–919

    CAS  CrossRef  Google Scholar 

  • Clague MH, Butler A (1995) On the mechanism of cis-Dioxovanadium(V)-catalyzed oxidation of bromide by hydrogen peroxide: Evidence for a reactive, binuclear vanadium(V) peroxo complex. J Am Chem Soc 117:3475–3484

    CAS  CrossRef  Google Scholar 

  • De Gregorio A, Mandalari G, Arena N et al. (2002) SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresour Technol 83:89–94

    PubMed  CrossRef  Google Scholar 

  • Dhillon SS, Gill RK, Gill SS et al. (2004) Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger. Int J Environ Stud 61:199–210

    CAS  CrossRef  Google Scholar 

  • Díaz A, Caro I, de Ory I et al. (2007) Evaluation of the conditions for the extraction of hydrolitic enzymes obtained by solid state fermentation from grape pomace. Enzyme Microb Technol 41:302–306

    CrossRef  CAS  Google Scholar 

  • Dominguez de Maria P, Alcantara AR, Carballeira JD et al. (2006) Candida rugosa lipase: A traditional and complex biocatalyst. Cur Org Chem 10:1053–1066

    CrossRef  Google Scholar 

  • FAOSTAT-FAO Statistical Database, 2005

    Google Scholar 

  • Figueroza-Espinoza M-C, Villeneuve P (2005) Phenolic acids enzymatic lipophilisation. J Agric Food Chem 53:2779–2787.

    CrossRef  CAS  Google Scholar 

  • Fonseca MJV, Said S (1994) The pectinase produced by Tubercularia vulgaris in submerged culture using pectin or orange-pulp pellets as inducer. Appl Microbiol Biotechnol 42:32–35

    CAS  CrossRef  Google Scholar 

  • Franssen MCR, van Boven HG, van der Plas HC (1987) Enzymatic halogenation of pyrazoles and pyridine derivatives. J Heterocycl Chem 24:1313–1316

    CAS  CrossRef  Google Scholar 

  • Frydman A, Weisshaus O, Bar-Peled M et al. (2004) Citrus fruit bitter flavors: isolation and fuctional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J 40:88–100

    PubMed  CAS  CrossRef  Google Scholar 

  • Galindo E. (1994) Aspects of the process for xanthan production. Trans Inst Chem Eng 72:227–237

    CAS  Google Scholar 

  • Garzón CG, Hours RA (1992) Citrus waste: An alternative substrate for pectinase production in solid-state culture. Bioresour Technol 39:93–95

    CrossRef  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: Introducing the concepts of prebiotics. J Nutr 125:1401–1412

    PubMed  CAS  Google Scholar 

  • Goldberg Y, Alper H (1994) Electrophilic halogenation of aromatics and heteroaromatics with N-halosuccinimides in a solid/liquid system using an H+ ion exchanger or ultrasonic irradiation. J Mol Cat 88:377–383

    CAS  CrossRef  Google Scholar 

  • Green M, Shelef G, Bilanovic D (1994) The effect of various citrus waste fractions on xanthan fermentation. Chem Eng J 56:B37–B41

    CAS  Google Scholar 

  • Grohmann K, Baldwin EA (1992) Hydrolysis of orange peel with pectinase and cellulase enzymes. Biotechnol Lett 14:1169–1174

    CAS  CrossRef  Google Scholar 

  • Grohmann K, Baldwin EA, Buslig BS (1994a) Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 45/46:315–327

    CrossRef  Google Scholar 

  • Grohmann K, Baldwin EA, Buslig BS et al. (1994b) Fermentation of galacturonic acid and other sugars in orange peel hydrolysates by the ethanolgenic strain of Escherichia coli. Biotechnol Lett 16:281–286

    CAS  CrossRef  Google Scholar 

  • Grohmann K, Cameron RG, Buslig BS (1995a) Fractionation and pre-treatment of orange peel by dilute acid hydrolysis. Bioresour Technol 54:129–141

    CAS  CrossRef  Google Scholar 

  • Grohmann K, Cameron RG, Buslig BS (1995b) Fermentation of sugars in orange peel hydrolysates to ethanol by recombinant Escherichia coli K011. Appl Biochem Biotechnol 51/52:423–435

    CrossRef  Google Scholar 

  • Gulloä B, Garrote G, Alonso JL et al. (2007) Production of L-lactic acid and Oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: A response surface methodology assessment. J Agric Food Chem 55:5580–5587

    CrossRef  CAS  Google Scholar 

  • Hang YD, Lee CY, Woodams EE (1986) Solid-state fermentation of grape pomace for ethanol production. Biotechnol Lett 8:53–56

    CAS  CrossRef  Google Scholar 

  • Hang YD, Woodams EE (1985) Grape pomace: A novel substrate for microbial production of citric acid. Biotechnol Lett 7:253–254

    CAS  CrossRef  Google Scholar 

  • Hang YD, Woodams EE (1994b) Apple pomace: a potential substrate for production of β-glucosidase by Aspergillus foetidus. LWT-Food Sci Technol 27:587–589

    CAS  Google Scholar 

  • Hang YD, Woodams EE (1994a) Production of fungal polygalacturonase from apple pomace. LWT-Food Sci Technol 27:194–196

    CAS  Google Scholar 

  • Hang YD,Woodams EE (1995) β-fructofuranosidase production by Aspergillus species from apple pomace. LWT-Food Sci Technol 28:340–342

    CAS  CrossRef  Google Scholar 

  • Hotchkiss AT, Olano-Martin E, Grace WE et al. (2003) Pectic oligosaccharides as prebiotics. In: Eggleston G, Côté GL (Eds) Oligosaccharides in Food and Agriculture, ACS Symposium series 849, Oxford University Press, USA

    Google Scholar 

  • Ismail AS (1996) Utilization of orange peels for the production of multi-enzyme complexes by some fungal strains. Process Biochem 1:645–650

    CrossRef  Google Scholar 

  • Jakeman DL, Withers SG (2002) Glycosynthases: New Tools for Oligosaccharide Synthesis. Trends Glycosci Glycotechnol 14:13–25

    CAS  Google Scholar 

  • Janssens L, de Pooter HL, Vandamme EJ et al. (1992) Production of flavours by microorganisms. Process Biochem 27:195–215

    CAS  CrossRef  Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    CAS  CrossRef  Google Scholar 

  • Jones P, Messner B, Nakajima J et al. (2003) UGT73C6 and UGT78D1, Glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    PubMed  CAS  CrossRef  Google Scholar 

  • Joshi VK, Parmar M, Rana NS (2006) Pectin esterase production from apple pomace in solid-state and submerged fermentations. Food Technol Biotechnol 44:253–256

    CAS  Google Scholar 

  • Joshi VK, Sandhu DK (1996) Composition of distillates from the solid state fermentation of apple pomace by different yeasts. Natl Acad Sci Lett 19:219–224

    CAS  Google Scholar 

  • Kahlow UHM, Schmid RD, Plewiss J (2001) A model of the pressure dependence of the enantioselectivity of Candida rugosa lipase towards (±)-menthol. Prot Sci 10:1942–1952

    CAS  CrossRef  Google Scholar 

  • Kang SK, Park HH, Lee JH et al. (1989) Citric acid fermentation from mandarin orange peel by Aspergillus niger. Sanop Misaengmul Hakhoechi 17:510–518

    CAS  Google Scholar 

  • Kapoor M, Beg QK, Bhushan B et al. (2000) Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem 36:467–473

    CAS  CrossRef  Google Scholar 

  • Karboune S, Safari M, Lue B-M et al. (2005) Lipase-catalyzed biosynthesis of cinnamoylated lipids in a selected organic solvent medium. J Biotechnol 119:281–290

    PubMed  CAS  CrossRef  Google Scholar 

  • Khosravi K, Shojaosadati SA (2003) A solid state of fermentation system for production of ethanol from apple pomace. Fanni va Muhandisi-i Mudarris 10:55–60

    CAS  Google Scholar 

  • Kubo A, Arai Y, Nagashima S et al. (2004) Alteration of sugar donor specificities of plant glycsyltransferases by a single point mutation. Arch Biochem Biophys 429:198–203

    PubMed  CAS  CrossRef  Google Scholar 

  • Libby RD, Shedd AL, Phipps AK et al. (1992) Defining the involvement of HOCl or Cl2 as enzyme gegenerated intermediates in chloroperoxidase-catalyzed reactions. J Biol Chem 267:1769–1775

    PubMed  CAS  Google Scholar 

  • Lim E-K (2005) Plant glycosyltransferases: Their potential as novel biocatalys. Chem Eur J 11:5486–5494

    CAS  CrossRef  Google Scholar 

  • Lim E-K, Ashford DA, Hou B et al. (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol Bioeng 87:623–631

    PubMed  CAS  CrossRef  Google Scholar 

  • Lopez Giraldo L Laguerre M, Lecomte J et al. (2007) Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzyme Microb Technol 41:721–726

    CrossRef  CAS  Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522

    PubMed  CAS  CrossRef  Google Scholar 

  • Mahmood AU, Greenman J, Scragg AH (1998) Orange and potato peel extracts: analysis and use as Bacillus substrates for the production of extracellular enzymes in continuous culture. Enzyme Microb Technol 22:130–137

    CAS  CrossRef  Google Scholar 

  • Mamma D, Kourtoglou E, Christakopoulos P (2008) Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour Technol 99:2373–2383

    PubMed  CAS  CrossRef  Google Scholar 

  • Mandalari G, Nueno Palop C, Tuohy K et al. (2007) In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl Microbiol Biotechnol 73:1173–1179

    PubMed  CAS  CrossRef  Google Scholar 

  • Manderson K, Pinart M, Tuohy KM et al. (2005) In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl Environ Microbiol 71:8383–8389

    PubMed  CAS  CrossRef  Google Scholar 

  • Martins ES, Silva D, Da Silva R et al. (2002) Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem 37:949–954

    CAS  CrossRef  Google Scholar 

  • Medeiros ABP, Soccol CR, Pandey A et al. (1999) Aroma production by Kluyveromyces marxianus in solid state fermentation using cassava bagasse as substrate. IX European Congress on Biotechnology, July 11–15, Brussels, Belgium

    Google Scholar 

  • Medina JH, Vioila H, Wolfman C et al. (1997) Overview-Flavonoids: A new family of benzodiazepine receptor ligands. Neurochem Res 22:419–425

    PubMed  CAS  CrossRef  Google Scholar 

  • Menne E, Guggenbuhl N, Roberfroid M (2000) Fn-type chicory inulin hydrolysate has a prebiotic effect in humans. J Nutr 130:1197–1199

    PubMed  CAS  Google Scholar 

  • Meza JC, Christen P, Revah S (1998) Effect of added amino acids on the production of a fruity aroma Ceratocystis fimbriata. Sci Aliments 18:627–636

    CAS  Google Scholar 

  • Morand C, Manach C, Crespy V et al. (2000) Quercetin 3-O beta-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radical Res 33: 667–676

    CAS  CrossRef  Google Scholar 

  • Nchez AS, Ysunza F, Beltraän M et al. (2002) Biodegradation of viticulture wastes by Pleurotus: a source of microbial and human food and its potential use in animal feeding. J Agric Food Chem 50:2537–2542

    CrossRef  CAS  Google Scholar 

  • Ngadi MO, Correia LR (1992) Kinetics of solid state ethanol fermentation from apple pomace. J Food Eng 17:97–116

    CrossRef  Google Scholar 

  • Noguchi A, Sasaki N, Nakao M et al. (2008) cDNA cloning of glycosyltransferases from Chinese wolfberry (Lycium barbarum L.) fruits and enzymatic synthesis of a catechin glucoside using a recombinant enzyme (UGT73A10). J Mol Catal, B Enzym 55:3921–3933

    CrossRef  CAS  Google Scholar 

  • Nogueira A, Santos LD, Paganini C et al. (2005) Evaluation of alcoholic fermentation of aqueous extract of the apple pomace. Semina: Ciéncias Agrárias, Londrina 26:179–193

    Google Scholar 

  • O’Sullivan M, Stewart D (2007) FPL will make ethanol from waste citrus peel. Ind Bioproces 29:1–2

    Google Scholar 

  • Olano-Martin E, Gibson GR, Rastall RA (2002) Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J Appl Microbiol 93:505–511

    PubMed  CAS  CrossRef  Google Scholar 

  • Olano-Martin E, Mountzouris KC, Gibson GR et al. (2001) Continuous production of oligosaccharides from pectin in an enzyme membrane reactor. J Food Sci 66:966–971

    CAS  CrossRef  Google Scholar 

  • Olano-Martin E, Rimbach GH, Gibson GR et al. (2003b) Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res 23:341–346

    PubMed  CAS  Google Scholar 

  • Olano-Martin E, Williams MR, Gibson GR et al. (2003a) Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29. FEMS Microbiol Lett 218:101–105

    PubMed  CAS  CrossRef  Google Scholar 

  • Perea A, Torres R, Rodriguez E (2007) Enzymatic synthesis of citronellol esters: A kinetics study. J Biotechnol Abst 131S:S98–S121

    Google Scholar 

  • Pericin DM, Antov MG, Popov SD (1999) Simultaneous production of biomass and pectinases by Polyporus squamosus. Acta Periodica Technol 29:183–189

    Google Scholar 

  • Pinelo M, Arnous A, Meyer AS (2006) Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Tech 17:579–590

    CAS  CrossRef  Google Scholar 

  • Predd P (2006) Fueling the future with citrus waste. Environ Sci Technol 40:5170–5171

    CrossRef  Google Scholar 

  • Rao VA (2001) The prebiotic properties of oligofructose at low intake levels. Nutr Res 6:843–848

    CrossRef  Google Scholar 

  • Rivas B, Torrado A, Torre P et al. (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56:2380–2387

    PubMed  CAS  CrossRef  Google Scholar 

  • Roche D, Prasad K, Repic O et al. (2000) Mild and regioselective oxidative bromination of anilines using potassium bromide and sodium perborate. Tetrahedron Lett 41:2083–2086

    CAS  CrossRef  Google Scholar 

  • Ruberto G, Renda A, Amico V et al. (2008) Volatile components of grape pomaces from different cultivars Sicilian Vitis vinifera L. Bioresour Technol 99:260–268

    PubMed  CAS  CrossRef  Google Scholar 

  • Safari M, Karboune S, St-Louis R et al. (2006) Enzymatic synthesis of structured phenolic lipids by incorporation of selected phenolic acids into triolein. Biocatal Biotransfor 24: 272–279

    CAS  CrossRef  Google Scholar 

  • Sandhu DK, Joshi VK (1997) Solid state fermentation of apple pomace for concomitant production of ethanol and animal feed. J Sci Ind Res 56:86–90

    CAS  Google Scholar 

  • Scerra V, Caridi A, Foti F et al. (1999) Influence of dairy Penicillium sp. on nutrient content of citrus fruit peel. Anim Feed Sci Technol 78:169–176

    CAS  Google Scholar 

  • Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds – recent developments. Trends Food Sci Tech 12:401–413

    CAS  CrossRef  Google Scholar 

  • Seyis I, Aksoz N (2005) Xylanase production from Trichoderma harzianum 1073 D3 with alternative carbon source and nitrogen sources. Food Technol Biotechnol 43:37–40

    CAS  Google Scholar 

  • Shimoda K, Harada T, Hamada H et al. (2007a) Biotransformation of raspberry ketone and zingerone by culture cells of Phytolacca americana. Phytochemistry 68:487–492

    PubMed  CAS  CrossRef  Google Scholar 

  • Shimoda K, Kondo Y, Nishida T et al. (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 67:2256–2261

    PubMed  CAS  CrossRef  Google Scholar 

  • Shimoda K, Kwon S, Utsuki A et al. (2007b) Glycosylation of capsaicin and 8-nordihydrocapsaicin by cultured cells of Catharanthus roseus. Phytochemistry 68:1391–1396

    PubMed  CAS  CrossRef  Google Scholar 

  • Shojaosadati SA, Babaeipour V (2002) Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochem 37:909–914

    CAS  CrossRef  Google Scholar 

  • Shojaosadati SA, Faraidouni R, Madadi-Nouei A et al. (1999) Protein enrichment of lignocellulosic substrates by solid state fermentation using Neurospora sitophila. Resour Conserv Recycl 27:73–87

    CrossRef  Google Scholar 

  • Soccol CR, Vandenberghe LPS (2003) Overview of applied solid-state fermentation in Brazil. Biochem Eng J 13:205–218

    CAS  CrossRef  Google Scholar 

  • Sternbach LH (1978) The benzodiazepine story. Prog Drug Res 22:229–266

    PubMed  CAS  Google Scholar 

  • Stevenson DE, Parkar SG, Zhang J et al. (2007) Combinatorial enzymic synthesis for functional testing of phenolic acid esters catalysed by Candida antarctica lipase B (Novozym 435®). Enzyme Microb Technol 40:1078–1086

    CAS  CrossRef  Google Scholar 

  • Stredansky M, Conti E (1999) Xanthan production by solid state fermentation. Process Biochem 34:581–587

    CAS  CrossRef  Google Scholar 

  • Stredansky M, Conti E, Stredanska S et al. (2000) γ-Linolenic acid production with Thamnidium elegans by solid state fermentation on apple pomace. Bioresour Technol 73:41–45

    CAS  CrossRef  Google Scholar 

  • Tuohy KM, Ziemer CJ, Klinder A, et al. (2002) A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microbial Ecol Health Dis 14:165–173

    CrossRef  Google Scholar 

  • Vendruscolo F, Albuquerque AM, Streit F et al. (2008) Apple pomace: A versatile substrate for biotechnological applications. Crit Rev Biotechnol 28:1–12

    PubMed  CAS  CrossRef  Google Scholar 

  • Villas-Bôas SG, Esposito E, Mendonca MM (2002) Novel lignocellulolytic ability of Candida utilis during solid state cultivation on apple pomace. World J Microbiol Biotechnol 18:541–545

    CrossRef  Google Scholar 

  • Vuyst LD, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    PubMed  CrossRef  Google Scholar 

  • Wilkins MR, Suryawati L, Maness NO et al. (2007b) Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J Microbiol Biotechnol 23:1161–1168

    CAS  CrossRef  Google Scholar 

  • Wilkins MR, Widmer WW, Grohmann K (2007c) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42:1614–1619

    CAS  CrossRef  Google Scholar 

  • Wilkins MR, Widmer WW, Grohmann K et al. (2007a) Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour Technol 98:1596–1601

    PubMed  CAS  CrossRef  Google Scholar 

  • Williams CM, Jackson KG (2002) Inulin and oligofructose: Effects on lipid metabolism from human studies. Br J Nutr 87:S261–S264

    PubMed  CAS  CrossRef  Google Scholar 

  • Yaipakdeea P, Robertsonb LW (2001) Enzymatic halogenation of flavanones and flavones. Phytochemistry 57:341–347

    CrossRef  Google Scholar 

  • Yang M, Davies GJ, Davis BG (2007) A glycosynthase catalyst for the synthesis of flavonoid glycosides. Angew Chem Int Ed 46:3885–3888

    CAS  CrossRef  Google Scholar 

  • Zhang Q (1988) Utilization of citrus wastes in production of citric acid. Shipin Kexue (Beijing, China) 104:21–24

    CAS  Google Scholar 

  • Zheng Z, Shetty K (2000). Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes. Process Biochem 35:825–830

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mamma, D., Topakas, E., Vafiadi, C., Christakopoulos, P. (2009). Biotechnological Potential of Fruit Processing Industry Residues. In: Singh nee’ Nigam, P., Pandey, A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9942-7_14

Download citation