Skip to main content

Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues

  • Chapter
Biotechnology for Agro-Industrial Residues Utilisation

Abstract

Solid-state fermentations (SSF) have attracted a renewed interest and attention from researchers due to recent developments in the field of microbial-biotechnology. Hence, for the practical, economical and environmentally-friendly bioconversion of agro-industrial wastes, solid state or substrate fermentation has been researched globally and proved to be the ideal technology for this purpose. In this chapter some important aspects of solid-state cultivation system have been discussed, including the variety of substrates and microorganisms used in SSF for the production of various end products; and the performance control of system by regulation of important factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah AL, Tengerdy RP, and Murphy VG (1985) Optimization of solid-state fermentation of wheat straw. Biotechnol Bioeng 27:20–27

    Article  PubMed  CAS  Google Scholar 

  • Ahmed SY, Lonsane BK, Ghildyal NP, and Ramakrishna SV, (1987a) Design of solid-state fermenter for production of fungal metabolites on large-scale. Biotechnol Tech 1:97–102

    Article  CAS  Google Scholar 

  • Aidoo K E, Henry R, and Wood BJB (1982) Solid substrate fermentations. Adv Appl Microbiol 28:201–237

    Article  CAS  Google Scholar 

  • Baldensperger J, Le MerJ, Hannibal L, and Quinto PJ (1985) Solid-state fermentation of banana wastes. Biotechnol Lett 7(10):743–748

    Article  CAS  Google Scholar 

  • Barrios-Gonzalez J, Rodriguez GM, and Tomasini A (1990) Environmental and nutritional factors controlling aflotoxin production in cassava SSF. J Ferment Bioeng 70(5):329–333

    Article  CAS  Google Scholar 

  • Barrios-Gonzalez J, Tomasini A, Viniegra-Gonzalez G, and Lopez L (1988a) Penicillin production by solid-state fermentation. Biotechnol Lett 10(11):793–798

    Article  CAS  Google Scholar 

  • Barrios-Gonzaloz J, Tomasini A, Viniegra-Gonzalez G, and Lopez L (1988b) Solid-State Fermentation in Bioconversion of Agro-Industrial Raw Materials (M. Raimbault ed). ORSTOM Centre Montpellier, Montpellier, France, pp. 39–51

    Google Scholar 

  • Bhumiratna A, Flegel TW, Glinsukon T, and Somporan W (1980) Isolation and analysis of moulds from soy sauce koji in Thailand. Appl Environ Microbiol 39: 430–435

    Google Scholar 

  • Bone DH, and Munoz EL (1984) Solid-state fermentation of oat straw by Poyporus spp. Biotechnol Lett 6(10):657–662

    Article  CAS  Google Scholar 

  • Bushell ME, and Slater JH (1981) Mixed Culture Fermentations. Special publication No 5 Soc. General Microbiology, Academic Press, London

    Google Scholar 

  • Castaneda GS, Rojas M, Bacquet G, Raimbault M, and Gonzalez GV (1990) Heat transfer simulation in solid-state fermentation. Biotechnol Bioeng 35:802–808

    Article  Google Scholar 

  • Considine PJ, O’Rorke A, Hackett TJ, and Coughlan MP (1988) Hydrolysis of beet pulp polysaccharides by extracts of solid-state cultures of Penicillium capsulatum. Biotechnol Bioeng 31(5):433–438

    Article  PubMed  CAS  Google Scholar 

  • Czajkowska D, and Ilnicka O (1988) Biosynthesis of protein by microscopic fungi in solid-state fermentation. Acta Biotechnologica 8(5):407–413

    Article  CAS  Google Scholar 

  • Daubresse P, Ntibashirwa S, Gheysen A, and Meyer JA (1987) A process for protein enrichment of cassava by SSF in rural conditions. Biotechnol Bioeng 29:962–968

    Article  PubMed  CAS  Google Scholar 

  • Deschamps F, and Huet MC (1984) β-glucosidase production in agitated solid-state fermentation. Biotechnol Lett 6:55–60

    Article  CAS  Google Scholar 

  • Desgrenges C, and Durand A (1990) Effect of pCO2 on growth, conidiation and enzyme production in solid-state culture on A. niger and T. viride. Enzyme Microb Technol 12:546–551

    Article  Google Scholar 

  • Desfarges C, Larroche C, and Gros JB (1987) Spore production of P. roquefortii by SSF: stoichiometry, growth and sporulation behaviour. Biotechnol Bioeng 29:1050–58

    Article  PubMed  CAS  Google Scholar 

  • Durand A (1998) Solid state fermentation. Biofuture 181:41–43

    Article  Google Scholar 

  • Durand A, and Chereau D (1988) A new pilot reactor for solid-state fermentation: application to protein enrichment of sugar beet pulp. Biotechnol Bioeng 31:476–486

    Article  PubMed  CAS  Google Scholar 

  • Fernandez MF, Pe’rez-Correa R, and Agosin E (2004) Engineering aspects of SSF. In Concise Encyclopedia of Bioresource Technology, (A. Pandey, ed.). The Haworth press Inc. NY, pp.690–699

    Google Scholar 

  • Fogarty WM, and Kelly CT (1979) Progress in Industrial Microbiology (M. J. Bull, ed.). 15 Elsevier

    Google Scholar 

  • Gervais P, and Bazelin C (1986) Development of a solid substrate fermenter allowing the control of the substrate water activity. Biotechnol Lett 8(3):191–196

    Article  CAS  Google Scholar 

  • Gervais P, Belin JM, Grajek W, and Sarrett M (1988) Influence of water activity on aroma production by Trichoderma viride growing on solid substrate. J Ferment Technol 66(4):403–407

    Article  CAS  Google Scholar 

  • Gervais P (1989) New sensor allowing continuous water activity measurement of submerged or solid-state fermentations. Biotechnol Bioeng 33: 266–271

    Article  PubMed  CAS  Google Scholar 

  • Gervais P (1990) Water activity: A fundamental parameter of aroma production by microorganisms. Appl Microbiol Biotechnol 33(1):72–75

    Article  CAS  Google Scholar 

  • Gervais P, and Sarrette M (1990) Influence of age of mycelium and water activity of the medium on aroma production. J Ferment Technol 69(1):46–50

    CAS  Google Scholar 

  • Gibbon WR, Westby CA, and Dobbs TL (1984) A continuous farm scale solid phase fermentation process for fuel ethanol and protein production from fodder beets. Biotechnol Bioeng 26:1098–1107

    Article  Google Scholar 

  • Gonzalez-Blanco P, Sancedo-Castarieda G, and Viniegra-Gonzalez G (1990) Protein enrichment of sugarcane by-products using solid state cultures of Aspergillus terreus. J Ferment Bioeng 70:351–354

    Article  CAS  Google Scholar 

  • Grajek W (1988) Production of protein by thermophilic fungi from sugar beet pulp in SSF. Biotechnol Bioeng 32(2):255–260

    Article  PubMed  CAS  Google Scholar 

  • Grajek W, and Gervais P (1987) Influence of water activity on the enzyme biosynthesis and enzyme activities produced by Trichoderma viride TS in solid state fermentation. Enz Microbial Technol 11:658–668

    Article  Google Scholar 

  • Gujral GS, Bisaria R, Madan M, and Vasudevan P (1987) SSF of saccharum munja residues into food through Pleurotus cultivation. J Ferment Technol 65(1):101–106

    Article  CAS  Google Scholar 

  • Han YW (1987) Oxygen requirements for growth of Candida utilis on semi-solid straw substrate. Biotechnol Bioeng 30(5):672–674

    Article  PubMed  CAS  Google Scholar 

  • Han YW, and Anderson AW (1975) Semisolid fermentation of rye-grass straw. Appl Microbiol 30:930–934

    PubMed  CAS  Google Scholar 

  • Hang YD, Lee CY, and Woodams EE (1986) Solid-state fermentation of grape pomace for ethanol production. Biotechnol Lett 8(1):53–56

    Article  CAS  Google Scholar 

  • Hardin M (2004) Design of bioreactors in SSF. In Concise Encyclopedia of Bioresource Technology (A. Pandey, ed.). The Haworth press Inc. NY, pp. 679–688

    Google Scholar 

  • Hesseltine CW (1972) Biotechnology report: Solid-state fermentations. Biotechnol Bioeng 14:517–532

    Article  PubMed  CAS  Google Scholar 

  • Hesseltine CW (1977) Solid-state fermentation. Process Biochem 12:24–27(a), 30–32(b)

    Google Scholar 

  • Ito K, Yoshida K, Ishikawa T, and Kobayashi S (1990) Volatile compounds produced by the fungus Aspergillus oryzae in rice koji and their changes during cultivation. J Ferment Bioeng 70(3):169–172

    Article  CAS  Google Scholar 

  • Jermini MFG, and Demain AL (1989) SSF for cephalosporin production by S. clavuligerus and Cephalosporium acremonium. Experentia 45:1061–1065

    Article  CAS  Google Scholar 

  • Karanth NG (1988) CFTRI work on solid state fermentation. In International Seminar on SSF. ORSTOM, Montepellier, France, pp. 25–27

    Google Scholar 

  • Kargi F, and Curme JA (1985) Solid-state fermentation of sweet sorghum to ethanol in a rotary drum fermenter. Biotechnol Bioeng 27:1122–1125

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Hosobuchi M, and Ryu D (1985) Cellulase production by a solid-state culture system. Biotechnol Bioeng 27:1445–1450

    Article  PubMed  CAS  Google Scholar 

  • Koutinas, AA, Malbranque F, Wang R-H, Campbell GM, and Webb C, (2007). Development of an oat-based biorefinery for the production of lactic acid by Rhizopus oryzae and various value-added co-products. J Agric Food Chem 55:1755–1761

    Article  PubMed  CAS  Google Scholar 

  • Kumar PKR, and Lonsane BK (1987a) Extraction of gibberellic acid from dry mouldy bran produced under solid-state fermentation. Process Biochem 22:139–143

    CAS  Google Scholar 

  • Kumar PKR, and Lonsane BK (1987b) Potential of fed-batch culture in solid-state fermentation for production of gibberellic acid. Biotechnol Lett 9:179–182

    Article  CAS  Google Scholar 

  • Kumar PKR, and Lonsane BK (1987c) Gibberellic acid by SSF: consistent and improved yields. Biotechnol Bioeng 30:267–271

    Article  PubMed  CAS  Google Scholar 

  • Laukevics JJ, Apsite AF, Viesturs HE, and Tengerdy RE (1984) Solid-state fermentation of wheat straw for fungal protein. Biotechnol Bioeng 26:1465–1474

    Article  PubMed  CAS  Google Scholar 

  • Lindenfelser LA, and Ciegler A (1975) Solid-substrate fermentations for ochratoxin-A production. Appl Microbiol 29:322–327

    Google Scholar 

  • Lonsane BK, Ghildyal NP, Budiatman S, and Ramakrishna, SV (1985) Engineering aspects of solid-state fermentation. Enzyme Microb Technol 7: 258–265

    Article  CAS  Google Scholar 

  • Lotong N, and Suwarnarit P (1983) Production of soya sauce koji mold spore inoculum in plastic bags. Appl Environ Microbiol 46:1224–1226

    PubMed  Google Scholar 

  • Macris BJ, Kekos D, Evangelidou X, Panayotou MG, and Rodis P (1987) SSF of straw for CMCase and B-glucosidase production. Biotechnol Lett 9(9):661–664

    Article  CAS  Google Scholar 

  • Madamwar D, Patel S, and Parik H (1989) Solid-state fermentation for cellulases and betaglucosidase production by Aspergillus niger. J Ferment Bioeng 67:424–426

    Article  CAS  Google Scholar 

  • Malathi S, and Chakrabarty R (1991) Production of alkaline protease by a new Aspergillus flavus isolated under solid-substrate fermentation. Appl Environ Microbiol 57(3): 712–716

    PubMed  CAS  Google Scholar 

  • Maltseva OV, Golovleva LA, Leont’evskii AH, Nerud F, Misurcova Z, and Musilek V (1989) Dynamics of enzymes generating hydrogen peroxide in SSF of Panus tigrinus on wheat straw. Folia Microbiol 34(3):261–266

    Article  CAS  Google Scholar 

  • Matteau PP, and Bone DH (1980) Solid-state fermentation of maple wood by Polyporus anceps. Biotechnol Lett 2:127–132

    Article  CAS  Google Scholar 

  • Mishra C, and Leatham GF (1990) Recovery and fractionation of the extracellular degradative enzymes from cultures on a solid lignocellulosic substrate. J Ferment Bioeng 69(1):8–15

    Article  CAS  Google Scholar 

  • Mitchell DA, Greenfield PF, and Doelle HW (1986) A model substrate for solid state fermentation. Biotechnol Lett 8(11):827–832

    Article  CAS  Google Scholar 

  • Mitchell DA, Doelle HW, and Greenfield PF (1988) Improvement of growth of Rhizopus oligosporus on a model solid substrate. Biotechnol Lett 10:497–501

    Article  CAS  Google Scholar 

  • Mitchell DA, Greenfield PF, and Doelle HW (1990) An empirical model of growth of Rhizopus oligosporus in SSF. World J Microbiol Biotechnol 6(2): 201–208

    Article  CAS  Google Scholar 

  • Mitchell DA, Von Meien OF, Krieger N (2004) Modelling in SSF. In Concise Encyclopedia of Bioresource Technology (A. Pandey, ed.). The Haworth press Inc. NY, pp. 709–717

    Google Scholar 

  • Moloney AP, O’Rorke A, Considine PJ, and Coughlan MP (1984) Enzymatic saccharification of sugar beet pulp. Biotechnol Bioeng 26:714–718

    Article  PubMed  CAS  Google Scholar 

  • Moser A (1988) Bioprocess Technology. Kinetics and Reactors. Springer-Verlag, Berlinpp. 198–204

    Google Scholar 

  • Mudgett RE, and Paradis AJ (1985) SSF of natural birch lignin by P. chrysosporium. Enzyme Microb Technol 7:150–154

    Article  CAS  Google Scholar 

  • Munoz GR, Valencia JRT, Sanchez S, and Farres A (1991) Production of microbial lipases in a SSF system. Biotechnol Lett 13(4): 277–280

    Article  Google Scholar 

  • Nigam P, and Singh D (1996a) Processing of agricultural wastes in solid state fermentation for microbial-protein production. J Sci Ind Res 55(5–6) pp 373–380

    CAS  Google Scholar 

  • Nigam P, and Singh D (1996b) Processing of agricultural wastes in solid state fermentation for cellulase production. J Sci Ind Res 55(5–6): 457–463

    CAS  Google Scholar 

  • Nigam P, and Singh D (1994) Solid-state (substrate) fermentation systems and their applications in Biotechnology. J Basic Microbiol 34(6):405–423

    Article  CAS  Google Scholar 

  • Nigam P (1988) Protein enrichment of bagasse by solid-state fermentation for animal feed. Proceedings of 5th Convention and Symposium of Bioenergy Society of India, Baroda Oct 30–31 Dept of non-conventional energy resources, New Delhi

    Google Scholar 

  • Nigam P (1989a) Mixed culture solid state fermentation of bagasse for animal feed. Production. In Proceedings of 52nd Annual Convention of Sugar-Technologists’ Association of India, pp. G 53–59

    Google Scholar 

  • Nigam P (1989b) Studies on dairy-effluent utilization in SSF of bagasse for feed production. In Symposium Impact of Pollution in and from Food Industries and its Management CFTRI, Mysore May 4–5, pp. FPM 13:29

    Google Scholar 

  • Nigam P (1990) Investigation of some factors important for SSF of bagasse for animal feed production. Enz Microbial Technol 12(10):808–811

    Article  CAS  Google Scholar 

  • Nigam P, and Prabhu KA (1985) Fermentation of bagasse for animal feed. International Sugar Journal 87(1033):17–19

    CAS  Google Scholar 

  • Nigam P, Pandey A, and Prabhu KA (1987a) A note on utilization of bagasse for the production of proteinaceous cattle feed. Biological Wastes 19(4):275–280

    Article  Google Scholar 

  • Nigam P, Pandey A, and Prabhu KA (1987b) Cellulase and ligninase production by Basidiomycetes culture in solid-state fermentation. Biological Wastes 20(1):1–9

    Article  CAS  Google Scholar 

  • Nigam P, and Vogel M (1988) Selection of preculture conditions for solid-state fermentation of sugar beet pulp. Biotechnol Lett 10(10):755–758

    Article  Google Scholar 

  • Nigam P, and Vogel M (1990a) Protein-enrichment solid-state fermentation of sugar beet pulp. American Society of Micribiology Conference on Biotechnology. ASM Chicago, Illenois,pp. 7–10

    Google Scholar 

  • Nigam P, and Vogel M (1990b) Process for the Production of Beet Pulp Feed by Fermentation. Patent No. DE 3812612 C2 1.3.1 990

    Google Scholar 

  • Nishio N, Tai K, and Nagai S (1979) Hydrolase production by A. niger in solid-state cultivation. Eur J Appl Micrbiol Biotechnol 8:263–270

    Article  CAS  Google Scholar 

  • Opoku AR, and Adoga PA (1980) Two-stage fermentation method for production of protein-enriched feed from cassava. Enzyme Microb Technol 2:241–243

    Article  CAS  Google Scholar 

  • Oriol E, Raimbault M, Roussos S, and Gonzalea GV (1988) Water and water quality in SSF of cassava starch by A. niger. Appl Microbiol Biotechnol 27:498–503

    CAS  Google Scholar 

  • Pandey A (1990) Improvements in solid-state fermentation for gluco-amylase production. Biological Wastes 34(1):11–19

    Article  CAS  Google Scholar 

  • Pandey A (1992) Recent process developments in SSF. Process Biochem 27: 109–117

    Article  CAS  Google Scholar 

  • Pandey A, Francis F, Sabu A, and Soccol CR (2004) General aspects of SSF. In: Concise Encyclopedia of Bioresource Technology (A. Pandey, ed.). The Haworth press Inc. NY, pp. 702–708

    Google Scholar 

  • Pandey A, Soccol CR, Rodreguez-Leon JA, and Nigam P. (2001) Solid state fermentation in Biotechnology: Fundamentals and Applications. Asiatech publishers Inc, Delhi

    Google Scholar 

  • Prado FC, Vandenberghe LPS, Lisboa C, Paca J, Pandey A, and Soccol CR (2004) Relation between citric acid production and respiration rate of Aspergillus niger in solid state fermentation. Eng Life Sci 4: 179–186

    Article  CAS  Google Scholar 

  • Prema P, Thakur MS, Prapulla SG, Ramakrishna SV, and Lonsane BK (1988) Production of gibberellic acid by solid-state fermentation. Indian J microbiol 28:78–81

    Google Scholar 

  • Rafmbault M, and Alazard D (1980) Culture method to study fungal growth in solid fermentation. EurJAppl Microbiol Biotechnol 9:199–209

    Article  Google Scholar 

  • Ramakrishna SV, Suseela T, Ghildyal NP, Jaleel SA, Prema P, Lonsane BK, and Ahmed SY (1982) Recovery of amyloglucosidase from mouldy bran. Indian J Technol 20:476–480

    CAS  Google Scholar 

  • Ramesh MV, and Lonsane BK (1987a) Solid-state fermentation for production of alpha-amylase. Biotechnol Lett 9:323–328

    Article  CAS  Google Scholar 

  • Ramesh MV, and Lonsane BK (1987b) A novel bacterial thermostble alpha-amylase system produced under solid-state fermentation. Biotechnol Lett 9: 501–504

    Article  CAS  Google Scholar 

  • Ramesh MV, and Lonsane BK (1990) Chracteristics and novel features of thermostable alpha-amylase produced under solid-state fermentation. Starch/Starke 42:233–238

    Article  CAS  Google Scholar 

  • Rathbun BL, and Shuler ML (1983) Heat and mass transfer effects in static solid-substrate fermentations. Biotechnol Bioeng 25:929–938

    Article  PubMed  CAS  Google Scholar 

  • Reid ID (1989a) Solid-state fermentation for biological delignification. Enz Microbiol Tech 11:786–802

    Article  CAS  Google Scholar 

  • Reid ID (1989b) Optimization of SSF for selective delignification of aspen wood. Enzyme Microb Technol 11:804–809

    Article  CAS  Google Scholar 

  • Revah S, and Lebeault JM (1988) In Solid-State Fermentation in Bioconversion of Agro-industrial Raw Materials (M. Raimbault, ed.). ORSTOM, Centre Montpellier, France,pp. 53–59

    Google Scholar 

  • Robinson T, and Nigam P (2008) Remediation of textile dye-waste water using a white rot fungus Bjerkandera adusta through solid-state fermentation (SSF). Appl Biochem Biotechnol 151(2-3):618–28

    Article  PubMed  CAS  Google Scholar 

  • Rodriquez JA, Echevania J, Rodriguez FJ, Sierra N, Daniel A, and Martiner O (1985) Biotechnol Lett 7(8):577–580

    Article  Google Scholar 

  • Shamala TR, and Sreekantiah KR (1986) Production of cellulase and D-xylanase by some selected fungal isolates. Enzyme Microb Technol 8:178–182

    Article  CAS  Google Scholar 

  • Siessere V, and Said S (1989) Pectic enzymes production in SSF using citrus peel pellets. Biotechnol Lett 11(5):343–344

    Article  CAS  Google Scholar 

  • Silman RW (1980) Enzyme formation during solid-state fermentation in rotating vessel. Biotechnol Bioeng 22:411–420

    Article  PubMed  CAS  Google Scholar 

  • Singh AB, Abidi AB, Darmwal NS, and Agrawal AK (1989) Evaluation of chemical for biodegradation of agricultural lignocellulosic wastes by A. niger. MIRCEN J Appl Microbiol Biotechnol 5(4):451–456

    Article  CAS  Google Scholar 

  • Singh K, Rai SN, Neelkantan S, and Han YW (1990) Biochemical profiles of solid state fermented wheat straw with Coprinus fimetarius. Indian J Anim Sci 60(8):484–490

    Google Scholar 

  • Smith RE, Osothsilp C, Bicho P, and Gregory KF (1986) Improvement in the protein content of cassava by S. pulverulentum in solid state culture. Biotechnol Lett 8(1):31–36

    Article  CAS  Google Scholar 

  • Steinkraus KH (1984) Solid-state (solid substrate) food/beverage fermentations involving fungi. Acta Biotechnol 4:83–88

    Article  Google Scholar 

  • Thakur MS, Karanth NG, and Krishna N (1990) Production of Fungal rennet using solid state fermentation. Appl Microbiol Biotechnol 32:409–413

    Article  CAS  Google Scholar 

  • Vezina C, and Singh K (1975) Transformation of organic compounds by fungal spores. In The Filamentous Fungi vol. 1, (J.E. Smith, J.E. and D.R. Berry, eds.). Edward Arnold, London, pp. 158–192

    Google Scholar 

  • Vieira MJF, Spadaro ACC, and Said S (1991) Separation of the components of pectolytic complex produced by T. vulgaris in solid state culture. Biotechnol Lett 13(1): 39–42

    Article  Google Scholar 

  • Viesturs UE, Apsite AF, Laukevics JJ, Ose VP, Bekers MJ, and Tengerdy RP (1981) SSF of wheat straw with C. cellulolyticum and T. lignorum. Biotechnol Bioeng Symp 11:359–369

    CAS  Google Scholar 

  • Viesturs UE, Strikauska SV, leite MP, Berzincs AJ, and Tengerdy RP (1987) Combined submerged and solid-state fermentation for the bioconversion of cellulose. Biotechnol Bioeng 30:282–288

    Article  PubMed  CAS  Google Scholar 

  • Wang HH, Chiou JY, Wang JY, Hong CY, and Tein WC (1984) Cephalosporin production by SSF of rice grains. J Microbiol Immunol 17:55–69

    CAS  Google Scholar 

  • Xie G, and West TP (2006) Citric acid production by Aspergillus niger on wet corn distillers grains. Lett Appl Microbiol 43(3):269–273

    Article  PubMed  CAS  Google Scholar 

  • Yadav JS (1988) SSF of wheat straw with Alcalphilic coprinus. Biotechnol Bioeng 31(5):414–417

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi H, Akita O, Obata T, Amachi T, Hara S, and Yoshizawa K (1989) Production and application of a fruity odor in a solid-state culture of Neurospora spp. Agri Biological Chem 53(1):2881–2886

    CAS  Google Scholar 

  • Yang SS, and Ling MY (1989) Tetracycline production with sweet potato residue by SSF. Biotechnol Bioeng 33:1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Yokotsuka T (1985) Fermented protein foods in the Orient, with emphasis on shoyu and miso in Japan. In Microbiology of Fermented Foods. (B.J.B. Wood, ed.). Elsevier Applied Science Publisher, London, pp. 197–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Singh nee’ Nigam, P., Pandey, A. (2009). Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues. In: Singh nee’ Nigam, P., Pandey, A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9942-7_10

Download citation

Publish with us

Policies and ethics