Skip to main content

Chlorophyta on Land

Independent Lineages of Green Eukaryotes from Arid Lands

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

Familiar examples of green algae (Chlorophyta) on land include those that participate in symbiotic associations with fungi, forming lichens (e.g., Coccomyxa, Myrmecia, Stichococcus, Trebouxia, Ahmadjian, 1958; Friedl, 1997), and taxa that grow richly on natural and man-made surfaces or on leaves of citrus and magnolia trees (e.g., Prasiola, Trentepohlia, Cephaleuros, Rindi and Guiry, 2004; Rindi et al., 2005). Besides these examples, green algae can occur in rock (endolithic), or at the surface (epidaphic), or just below the surface (endedaphic) of soil (Friedmann et al., 1967; Bell, 1993). Green algae are components of desert soil communities known as biological soil crusts or cryptogamic crusts (Evans and Johansen, 1999; Belnap and Lange, 2001). Crust communities are found on all continents on Earth, in arid and semi-arid habitats, where soil moisture is limiting and vascular plant cover is sparse (e.g., Johansen, 1993; Evans and Johansen, 1999; Green and Broady, 2001). Along with cyanobacteria, fungi, lichens, diatoms, and bryophytes, desert green algae form water-stable soil aggregates that have important ecological roles in nutrient cycling, water retention, and stabilization of soils (Evans and Johansen, 1999). The fragile nature of desert crust communities makes them highly susceptible to disturbance by trampling and fire, and has lead to numerous studies on the recovery of crusts after disturbance (Belnap and Eldridge, 2001; Nagy et al., 2005). Reviews of the ecology of crusts can be found in West (1990), Eldridge and Greene (1994), Evans and Johansen (1999), and Belnap and Lange (2001). This paper provides background information about the taxonomy of green algae from arid soil communities, and highlights recent studies that address the fine scale distribution, evolutionary relationships, diversification, and origins of Chlorophyta on land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadjian, V. (1958) A guide for the identification of algae occurring as lichen symbionts. Botaniska Notiser 111: 632-644.

    Google Scholar 

  • Bell, R.A. (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J. Phycol. 29: 133-139.

    Article  Google Scholar 

  • Belnap, J. and Eldridge, D.J. (2001) Disturbance and recovery of biological soil crusts, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 363-384.

    Google Scholar 

  • Belnap, J. and O.L. Lange (2001) BiologicalSoil Crusts: Structure, Function, and Management, Springer, Berlin.

    Google Scholar 

  • Bischoff, H.W. and Bold, H.C. (1963) Phycological Studies. IV. Some soil algae from Enchanted Rock and related algal species. The University of Texas Publication No. 6318.

    Google Scholar 

  • Bold, H.C. (1970) Taxonomy and systematics in the algae. Part IV. Some aspects of the taxonomy of soil algae. Ann. New York Acad. Sci. 175: 601-616.

    Article  Google Scholar 

  • Buchheim, M.A., Buchheim, J.A. and Chapman, R.L. (1997) Phylogeny of Chloromonas: a study of 18s rRNA gene sequences. J. Phycol. 33: 286-293.

    Article  CAS  Google Scholar 

  • Cameron, R.E. (1960) Communities of soil algae occurring in the Sonoran Desert in Arizona. J. Arizona Acad. Sci. 1:85-88.

    Google Scholar 

  • Cameron, R.E. (1964) Terrestrial algae of southern Arizona. Trans. Amer. Microscop. Soc. 83: 212-218.

    Article  Google Scholar 

  • Cameron, R.E. and Blank, G.B. (1966) Desert algae: soil crusts and diaphanous substrata as algal habitats. Jet Propulsion Laboratory Technical Report 32-971.

    Google Scholar 

  • Chantanachat, S. and Bold, H.C. (1962) Phycological Studies. II. Some algae from arid soils. The University of Texas Publication No. 6218.

    Google Scholar 

  • Deason, T.R. and Floyd, G.L. (1987) Comparative ultrastructure of three species of Chlorosarcina (Chlorosarcinaceae, Chlorophyta). J. Phycol. 23: 187-195.

    Google Scholar 

  • Durrell, L.W. (1959) Algae in Colorado soils. Amer. Midland Nat. 61: 322-328.

    Article  Google Scholar 

  • Eldridge, D.J. (2001) Biological soil crusts of Australia, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 119-132.

    Google Scholar 

  • Eldridge, D.J. and Greene, R.S.B. (1994) Microbiotic soil crusts - a review of their roles in soil and ecological processes in the rangelands of Australia. Aus. J. Soil Res. 32: 389-415.

    Article  Google Scholar 

  • Evans, R.D. and Johansen, J.R. (1999) Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18: 183-225.

    Article  Google Scholar 

  • Flechtner, V.R. (1999) Enigmatic soil algae. Soil algal flora of the western USA and Baja California, Mexico, In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 233-241.

    Google Scholar 

  • Flechtner, V.R., Johansen, J.R. and Clark, W.H. (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat. 58: 295-311.

    Google Scholar 

  • Friedl, T. (1997) The evolution of the green algae. Plant Syst. Evol. 11: 87-101.

    CAS  Google Scholar 

  • Friedl, T. and Zeltner, C. (1994) Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18s ribosomal RNA gene sequence comparisons. J. Phycol. 30: 500-506.

    Article  CAS  Google Scholar 

  • Friedmann, E.I., Lipkin, Y. and Ocampo-Paus, R. (1967) Desert algae of the Negev (Israel). Phycologia 7: 185-200.

    Google Scholar 

  • Garcia-Pichel, F. (2000) Cyanobacteria. In: J. Lederberg (ed.) Encyclopedia of Microbiology. 2nd ed., Academic Press, San Diego, pp. 907-929.

    Google Scholar 

  • Garcia-Pichel, F., López-Cortés, A. and Nübel, U. (2001) Phylogenetic and morphological diversity of cyanobacteria in desert soil crusts from the Colorado Plateau. Appl. Environ. Microb. 67: 1902-1910.

    Article  CAS  Google Scholar 

  • Gerloff-Elias A., Spijkerman, E. and Pröschold, T. (2005) Effect of external pH on the growth, pho-tosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6). Plant Cell Environ. 28: 1218-1229.

    Article  CAS  Google Scholar 

  • Green, T.G.A. and Broady, P.A. (2001) Biological soil crusts of Antarctica, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 133-139.

    Google Scholar 

  • Grondin, A. and Johansen, J.R. (1993) Microbial spatial heterogeneity in microbiotic crusts in Colorado National Monument. I. Algae. Great Basin Nat. 53: 24-30.

    Google Scholar 

  • Hawkes, C.V. and Flechtner, V.R. (2002) Biological soil crusts in a xeric Florida shrubland: composi-tion, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb. Ecol. 43: 1-12.

    Article  CAS  PubMed  Google Scholar 

  • Hilton, R.L. and Trainor, F.R. (1963) Algae from a Connecticut soil. Plant and Soil 19: 396-398.

    Article  Google Scholar 

  • Hoham R.W., Bonome, T.A., Martin, C.W. and Leebens-Mack, J.H. (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J. Phycol. 38: 1051-1064.

    Article  CAS  Google Scholar 

  • Hoppert, M., Reimer, R., Kemmling, A., Schroder, A., Gunzl, B. and Heinken, T. (2004) Structure and reactivity of a biological soil crust Geomicrobiology J. 21: 183-191.

    Google Scholar 

  • Hu, C.X., Zhang, D.L., Huang, Z.B. and Liu, Y.D. teria and green algae within desert crusts and 257: 97-111.

    Google Scholar 

  • from a xeric sandy soil in Central Europe. (2003) The vertical microdistribution of cyanobac-the development of the algal crusts. Plant and Soil

    Google Scholar 

  • Huss, V.A.R. and Sogin, M.L. (1990) Phylogenetic position of some Chlorella species within the Chlorococcales based upon complete small-subunit ribosomal RNA sequences. J. Mol. Evol. 31: 432-442.

    Article  CAS  PubMed  Google Scholar 

  • Huss, V.A.R., Frank. C., Hartmann, E.C., Hirmer, M., Kloboucek, A., Seidel, B.M., Wenzeler, P. and Kessler, E. (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycol. 35: 587-598.

    Google Scholar 

  • Johansen, J.R. (1993) Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 29: 140-147.

    Article  Google Scholar 

  • Johansen, J.R., Ashley, J. and Rayburn, W.R. (1993) The effects of rangefire on soil algal crusts in semiarid shrub-steppe of the Lower Columbia Basin and their subsequent recovery. Great Basin Nat. 53: 73-88.

    Google Scholar 

  • Lewis, L.A. and Flechtner, V.R. (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diver-sity of North American taxa. Taxon 51: 443-451.

    Article  Google Scholar 

  • Lewis, L.A. and Flechtner, V.R. (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. J. Phycol. 40: 1127-1137.

    Article  Google Scholar 

  • Lewis, L.A. and Lewis, P.O. (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst. Biol. 54: 936-947.

    Article  PubMed  Google Scholar 

  • Lewis, L.A. and McCourt, R.M. (2004) Green algae and the origin of land plants. Am. J. Bot. 91: 1535-1556.

    Article  Google Scholar 

  • Lewis, L.A., Wilcox, L.W., Fuerst, P.A. and Floyd, G.L. (1992) Concordance of molecular and ultra-structural data in the study of zoosporic green algae. J. Phycol. 28: 375-380.

    Article  CAS  Google Scholar 

  • Liska, A.J., Shevchenko, A., Pick, U. and Katz, A. (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Phys. 136: 2806-2817.

    Article  CAS  Google Scholar 

  • Melkonian, M. (1978) Structure and significance of cruciate flagellar root systems in green algae: comparative investigations in species of Chlorosarcinopsis (Chlorosarcinales). Plant Syst. Evol. 130: 265-292.

    Article  Google Scholar 

  • Metting, B. (1981) The systematics and ecology of soil algae. Bot. Rev. 47: 195-312.

    Article  CAS  Google Scholar 

  • Nakayama, T., Watanabe, S., Mitsui, K., Uchida, H. and Inouye, I. (1996) The phylogenetic relation-ship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA data. Phycol. Res. 44: 47-55.

    Article  CAS  Google Scholar 

  • Nagy, M.L., Johansen, J.R., St Clair, L.L. and Webb, B.L. (2005) Recovery patterns of microbiotic soil crusts 70 years after arsenic contamination. J. Arid Environ. 63: 304-323.

    Article  Google Scholar 

  • Pollio, A., Cennamo, P., Ciniglia, C., De Stefano, M., Pinto, G. and Huss, V.A.R. (2005) Chlamydomonas pitschmannii Ettl, a little known species from thermoacidic environments. Protist 156: 287-302.

    Article  PubMed  Google Scholar 

  • Rindi, F. and Guiry, M.D. (2004) Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43: 225-235.

    Article  Google Scholar 

  • Rindi, F., Sherwood, A.R. and Guiry, M.D. (2005) Taxonomy and distribution of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in the Hawaiian Islands. Phycologia 44: 270-284.

    Article  Google Scholar 

  • Shields, L.M. and Drouet, F. (1962) Distribution of terrestrial algae within the Nevada Test Site. Am. J. Bot. 49: 547-554.

    Article  Google Scholar 

  • Smith, S.M., Abed, R.M.M. and Garcia-Pichel, F. (2004) Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA. Microb. Ecol. 48: 200-208.

    Article  CAS  PubMed  Google Scholar 

  • Soldo, D., Hari, R., Sigg, L. and Behra, R. (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquatic Toxic. 71: 307-317.

    Article  CAS  Google Scholar 

  • Trainor, F.R. (1962) Temperature tolerance of algae in dry soil. News Bull. Phycol. Soc. Amer. 15: 3-4.

    Google Scholar 

  • Ullmann, I. and Büdel, B. (2001) Biological soil crusts of Africa, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 107-118.

    Google Scholar 

  • Van Thielen, N. and Garbary, D.J. (1999) Life in the rocks - endolithic algae, In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publisher, Dordrecht, pp. 245-253.

    Google Scholar 

  • Verses, P.A. and Trainor, F.R. (1966) Dactylococcus dissociatus, a new species from a Connecticut cornfield soil. Phycologia 6: 79-82.

    Google Scholar 

  • Watanabe, S. and Floyd, G.L. (1989) Comparative ultrastructure of the zoospores of nine species of Neochloris (Chlorophyta). Plant Syst. Evol. 168: 195-219.

    Article  Google Scholar 

  • Watanabe, S. and Floyd, G.L. (1996) Considerations on the systematics of coccoid green algae and related organisms based on the ultrastructure of swarmers, In: B.R. Chaudhary and S.B. Agrawal (eds.) Cytology, Genetics and Molecular Biology of Algae. SPB Academic Publishers, Amsterdam, The Netherlands, pp. 1-19.

    Google Scholar 

  • West, N.E. (1990) Structure and function of microphytic soil crusts in wild ecosystems of arid to semi-arid regions. Adv. Ecol. Res. 20: 179-223.

    Article  Google Scholar 

  • Wilcox, L.W., Lewis, L.A., Fuerst, P.A., and Floyd, G.L. (1992) Assessing the relationships of autosporic and zoosporic chlorococcalean green algae with 18S rDNA sequence data. J. Phycol. 28: 381-386.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lewis, L.A. (2007). Chlorophyta on Land. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_31

Download citation

Publish with us

Policies and ethics