Chlorophyta on Land

Independent Lineages of Green Eukaryotes from Arid Lands
  • Louise A. Lewis
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Familiar examples of green algae (Chlorophyta) on land include those that participate in symbiotic associations with fungi, forming lichens (e.g., Coccomyxa, Myrmecia, Stichococcus, Trebouxia, Ahmadjian, 1958; Friedl, 1997), and taxa that grow richly on natural and man-made surfaces or on leaves of citrus and magnolia trees (e.g., Prasiola, Trentepohlia, Cephaleuros, Rindi and Guiry, 2004; Rindi et al., 2005). Besides these examples, green algae can occur in rock (endolithic), or at the surface (epidaphic), or just below the surface (endedaphic) of soil (Friedmann et al., 1967; Bell, 1993). Green algae are components of desert soil communities known as biological soil crusts or cryptogamic crusts (Evans and Johansen, 1999; Belnap and Lange, 2001). Crust communities are found on all continents on Earth, in arid and semi-arid habitats, where soil moisture is limiting and vascular plant cover is sparse (e.g., Johansen, 1993; Evans and Johansen, 1999; Green and Broady, 2001). Along with cyanobacteria, fungi, lichens, diatoms, and bryophytes, desert green algae form water-stable soil aggregates that have important ecological roles in nutrient cycling, water retention, and stabilization of soils (Evans and Johansen, 1999). The fragile nature of desert crust communities makes them highly susceptible to disturbance by trampling and fire, and has lead to numerous studies on the recovery of crusts after disturbance (Belnap and Eldridge, 2001; Nagy et al., 2005). Reviews of the ecology of crusts can be found in West (1990), Eldridge and Greene (1994), Evans and Johansen (1999), and Belnap and Lange (2001). This paper provides background information about the taxonomy of green algae from arid soil communities, and highlights recent studies that address the fine scale distribution, evolutionary relationships, diversification, and origins of Chlorophyta on land.

Keywords

Permeability Europe Arsenic Sandstone Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadjian, V. (1958) A guide for the identification of algae occurring as lichen symbionts. Botaniska Notiser 111: 632-644.Google Scholar
  2. Bell, R.A. (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J. Phycol. 29: 133-139.CrossRefGoogle Scholar
  3. Belnap, J. and Eldridge, D.J. (2001) Disturbance and recovery of biological soil crusts, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 363-384.Google Scholar
  4. Belnap, J. and O.L. Lange (2001) BiologicalSoil Crusts: Structure, Function, and Management, Springer, Berlin.Google Scholar
  5. Bischoff, H.W. and Bold, H.C. (1963) Phycological Studies. IV. Some soil algae from Enchanted Rock and related algal species. The University of Texas Publication No. 6318.Google Scholar
  6. Bold, H.C. (1970) Taxonomy and systematics in the algae. Part IV. Some aspects of the taxonomy of soil algae. Ann. New York Acad. Sci. 175: 601-616.CrossRefGoogle Scholar
  7. Buchheim, M.A., Buchheim, J.A. and Chapman, R.L. (1997) Phylogeny of Chloromonas: a study of 18s rRNA gene sequences. J. Phycol. 33: 286-293.CrossRefGoogle Scholar
  8. Cameron, R.E. (1960) Communities of soil algae occurring in the Sonoran Desert in Arizona. J. Arizona Acad. Sci. 1:85-88.Google Scholar
  9. Cameron, R.E. (1964) Terrestrial algae of southern Arizona. Trans. Amer. Microscop. Soc. 83: 212-218.CrossRefGoogle Scholar
  10. Cameron, R.E. and Blank, G.B. (1966) Desert algae: soil crusts and diaphanous substrata as algal habitats. Jet Propulsion Laboratory Technical Report 32-971.Google Scholar
  11. Chantanachat, S. and Bold, H.C. (1962) Phycological Studies. II. Some algae from arid soils. The University of Texas Publication No. 6218.Google Scholar
  12. Deason, T.R. and Floyd, G.L. (1987) Comparative ultrastructure of three species of Chlorosarcina (Chlorosarcinaceae, Chlorophyta). J. Phycol. 23: 187-195.Google Scholar
  13. Durrell, L.W. (1959) Algae in Colorado soils. Amer. Midland Nat. 61: 322-328.CrossRefGoogle Scholar
  14. Eldridge, D.J. (2001) Biological soil crusts of Australia, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 119-132.Google Scholar
  15. Eldridge, D.J. and Greene, R.S.B. (1994) Microbiotic soil crusts - a review of their roles in soil and ecological processes in the rangelands of Australia. Aus. J. Soil Res. 32: 389-415.CrossRefGoogle Scholar
  16. Evans, R.D. and Johansen, J.R. (1999) Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18: 183-225.CrossRefGoogle Scholar
  17. Flechtner, V.R. (1999) Enigmatic soil algae. Soil algal flora of the western USA and Baja California, Mexico, In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 233-241.Google Scholar
  18. Flechtner, V.R., Johansen, J.R. and Clark, W.H. (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat. 58: 295-311.Google Scholar
  19. Friedl, T. (1997) The evolution of the green algae. Plant Syst. Evol. 11: 87-101.Google Scholar
  20. Friedl, T. and Zeltner, C. (1994) Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18s ribosomal RNA gene sequence comparisons. J. Phycol. 30: 500-506.CrossRefGoogle Scholar
  21. Friedmann, E.I., Lipkin, Y. and Ocampo-Paus, R. (1967) Desert algae of the Negev (Israel). Phycologia 7: 185-200.Google Scholar
  22. Garcia-Pichel, F. (2000) Cyanobacteria. In: J. Lederberg (ed.) Encyclopedia of Microbiology. 2nd ed., Academic Press, San Diego, pp. 907-929.Google Scholar
  23. Garcia-Pichel, F., López-Cortés, A. and Nübel, U. (2001) Phylogenetic and morphological diversity of cyanobacteria in desert soil crusts from the Colorado Plateau. Appl. Environ. Microb. 67: 1902-1910.CrossRefGoogle Scholar
  24. Gerloff-Elias A., Spijkerman, E. and Pröschold, T. (2005) Effect of external pH on the growth, pho-tosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6). Plant Cell Environ. 28: 1218-1229.CrossRefGoogle Scholar
  25. Green, T.G.A. and Broady, P.A. (2001) Biological soil crusts of Antarctica, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 133-139.Google Scholar
  26. Grondin, A. and Johansen, J.R. (1993) Microbial spatial heterogeneity in microbiotic crusts in Colorado National Monument. I. Algae. Great Basin Nat. 53: 24-30.Google Scholar
  27. Hawkes, C.V. and Flechtner, V.R. (2002) Biological soil crusts in a xeric Florida shrubland: composi-tion, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb. Ecol. 43: 1-12.CrossRefPubMedGoogle Scholar
  28. Hilton, R.L. and Trainor, F.R. (1963) Algae from a Connecticut soil. Plant and Soil 19: 396-398.CrossRefGoogle Scholar
  29. Hoham R.W., Bonome, T.A., Martin, C.W. and Leebens-Mack, J.H. (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J. Phycol. 38: 1051-1064.CrossRefGoogle Scholar
  30. Hoppert, M., Reimer, R., Kemmling, A., Schroder, A., Gunzl, B. and Heinken, T. (2004) Structure and reactivity of a biological soil crust Geomicrobiology J. 21: 183-191.Google Scholar
  31. Hu, C.X., Zhang, D.L., Huang, Z.B. and Liu, Y.D. teria and green algae within desert crusts and 257: 97-111.Google Scholar
  32. from a xeric sandy soil in Central Europe. (2003) The vertical microdistribution of cyanobac-the development of the algal crusts. Plant and SoilGoogle Scholar
  33. Huss, V.A.R. and Sogin, M.L. (1990) Phylogenetic position of some Chlorella species within the Chlorococcales based upon complete small-subunit ribosomal RNA sequences. J. Mol. Evol. 31: 432-442.CrossRefPubMedGoogle Scholar
  34. Huss, V.A.R., Frank. C., Hartmann, E.C., Hirmer, M., Kloboucek, A., Seidel, B.M., Wenzeler, P. and Kessler, E. (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycol. 35: 587-598.Google Scholar
  35. Johansen, J.R. (1993) Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 29: 140-147.CrossRefGoogle Scholar
  36. Johansen, J.R., Ashley, J. and Rayburn, W.R. (1993) The effects of rangefire on soil algal crusts in semiarid shrub-steppe of the Lower Columbia Basin and their subsequent recovery. Great Basin Nat. 53: 73-88.Google Scholar
  37. Lewis, L.A. and Flechtner, V.R. (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diver-sity of North American taxa. Taxon 51: 443-451.CrossRefGoogle Scholar
  38. Lewis, L.A. and Flechtner, V.R. (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. J. Phycol. 40: 1127-1137.CrossRefGoogle Scholar
  39. Lewis, L.A. and Lewis, P.O. (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst. Biol. 54: 936-947.CrossRefPubMedGoogle Scholar
  40. Lewis, L.A. and McCourt, R.M. (2004) Green algae and the origin of land plants. Am. J. Bot. 91: 1535-1556.CrossRefGoogle Scholar
  41. Lewis, L.A., Wilcox, L.W., Fuerst, P.A. and Floyd, G.L. (1992) Concordance of molecular and ultra-structural data in the study of zoosporic green algae. J. Phycol. 28: 375-380.CrossRefGoogle Scholar
  42. Liska, A.J., Shevchenko, A., Pick, U. and Katz, A. (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Phys. 136: 2806-2817.CrossRefGoogle Scholar
  43. Melkonian, M. (1978) Structure and significance of cruciate flagellar root systems in green algae: comparative investigations in species of Chlorosarcinopsis (Chlorosarcinales). Plant Syst. Evol. 130: 265-292.CrossRefGoogle Scholar
  44. Metting, B. (1981) The systematics and ecology of soil algae. Bot. Rev. 47: 195-312.CrossRefGoogle Scholar
  45. Nakayama, T., Watanabe, S., Mitsui, K., Uchida, H. and Inouye, I. (1996) The phylogenetic relation-ship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA data. Phycol. Res. 44: 47-55.CrossRefGoogle Scholar
  46. Nagy, M.L., Johansen, J.R., St Clair, L.L. and Webb, B.L. (2005) Recovery patterns of microbiotic soil crusts 70 years after arsenic contamination. J. Arid Environ. 63: 304-323.CrossRefGoogle Scholar
  47. Pollio, A., Cennamo, P., Ciniglia, C., De Stefano, M., Pinto, G. and Huss, V.A.R. (2005) Chlamydomonas pitschmannii Ettl, a little known species from thermoacidic environments. Protist 156: 287-302.CrossRefPubMedGoogle Scholar
  48. Rindi, F. and Guiry, M.D. (2004) Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43: 225-235.CrossRefGoogle Scholar
  49. Rindi, F., Sherwood, A.R. and Guiry, M.D. (2005) Taxonomy and distribution of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in the Hawaiian Islands. Phycologia 44: 270-284.CrossRefGoogle Scholar
  50. Shields, L.M. and Drouet, F. (1962) Distribution of terrestrial algae within the Nevada Test Site. Am. J. Bot. 49: 547-554.CrossRefGoogle Scholar
  51. Smith, S.M., Abed, R.M.M. and Garcia-Pichel, F. (2004) Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA. Microb. Ecol. 48: 200-208.CrossRefPubMedGoogle Scholar
  52. Soldo, D., Hari, R., Sigg, L. and Behra, R. (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquatic Toxic. 71: 307-317.CrossRefGoogle Scholar
  53. Trainor, F.R. (1962) Temperature tolerance of algae in dry soil. News Bull. Phycol. Soc. Amer. 15: 3-4.Google Scholar
  54. Ullmann, I. and Büdel, B. (2001) Biological soil crusts of Africa, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 107-118.Google Scholar
  55. Van Thielen, N. and Garbary, D.J. (1999) Life in the rocks - endolithic algae, In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publisher, Dordrecht, pp. 245-253.Google Scholar
  56. Verses, P.A. and Trainor, F.R. (1966) Dactylococcus dissociatus, a new species from a Connecticut cornfield soil. Phycologia 6: 79-82.Google Scholar
  57. Watanabe, S. and Floyd, G.L. (1989) Comparative ultrastructure of the zoospores of nine species of Neochloris (Chlorophyta). Plant Syst. Evol. 168: 195-219.CrossRefGoogle Scholar
  58. Watanabe, S. and Floyd, G.L. (1996) Considerations on the systematics of coccoid green algae and related organisms based on the ultrastructure of swarmers, In: B.R. Chaudhary and S.B. Agrawal (eds.) Cytology, Genetics and Molecular Biology of Algae. SPB Academic Publishers, Amsterdam, The Netherlands, pp. 1-19.Google Scholar
  59. West, N.E. (1990) Structure and function of microphytic soil crusts in wild ecosystems of arid to semi-arid regions. Adv. Ecol. Res. 20: 179-223.CrossRefGoogle Scholar
  60. Wilcox, L.W., Lewis, L.A., Fuerst, P.A., and Floyd, G.L. (1992) Assessing the relationships of autosporic and zoosporic chlorococcalean green algae with 18S rDNA sequence data. J. Phycol. 28: 381-386.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Louise A. Lewis
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations