Skip to main content

Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2714))

Abstract

Computer-aided drug discovery and design involve the use of information technologies to identify and develop, on a rational ground, chemical compounds that align a set of desired physicochemical and biological properties. In its most common form, it involves the identification and/or modification of an active scaffold (or the combination of known active scaffolds), although de novo drug design from scratch is also possible. Traditionally, the drug discovery and design processes have focused on the molecular determinants of the interactions between drug candidates and their known or intended pharmacological target(s). Nevertheless, in modern times, drug discovery and design are conceived as a particularly complex multiparameter optimization task, due to the complicated, often conflicting, property requirements.

This chapter provides an updated overview of in silico approaches for identifying active scaffolds and guiding the subsequent optimization process. Recent groundbreaking advances in the field have also analyzed the integration of state-of-the-art machine learning approaches in every step of the drug discovery process (from prediction of target structure to customized molecular docking scoring functions), integration of multilevel omics data, and the use of a diversity of computational approaches to assist target validation and assess plausible binding pockets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klabunde T, Everts A (2005) GPCR antitarget modeling: pharmacophore models for biogenic amine binding GPCRs to avoid GPCR-mediated side effects. Chembiochem 6:876–889

    Article  CAS  PubMed  Google Scholar 

  2. Raschi E, Vasina V, Poluzzi E et al (2008) The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res 57:181–195

    Article  CAS  PubMed  Google Scholar 

  3. Crivori P (2008) Computational models for P-glycoprotein substrates and inhibitors. In: Vaz RJ, Klabunde T (eds) Anti-atrgets: prediction and prevention of drug side effects. Wiley-VCH, Weinheim

    Google Scholar 

  4. Zamora I (2008) Site of metabolism predictions: facts and experiences. In: Vaz RJ, Klabunde T (eds) Anti-targets: prediction and prevention of drug side effects. Wiley-VCH, Weinheim

    Google Scholar 

  5. Fallico M, Alberca LN, Prada Gori DN et al (2022) Machine learning search of novel selective NaV1.2 and NaV1.6 inhibitors as potential treatment against Dravet syndrome. In: Ribeiro PRDA, Cota VR, Barone DAC, de Oliveira ACM (eds) Computational neuroscience. LAWCN 2021. Communications in computer and information science, vol 1519. Springer, Cham

    Google Scholar 

  6. Fatoba AJ, Okpeku M, Adeleke MA (2021) Subtractive genomics approach for identification of novel therapeutic drug targets in Mycoplasma genitalium. Pathogens 10:921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Süntar I (2020) Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev 19:1199–1209

    Article  Google Scholar 

  8. Entzeroth M, Flotow H, Condron P (2009) Overview of high-throughput screening. Curr Protoc Pharmacol Chapter 9:Unit 9.4

    Google Scholar 

  9. Maia EHB, Assis LC, de Oliveira TA et al (2020) Structure-based virtual screening: from classical to artificial intelligence. Front Chem 8:343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mouchlis VD, Afantitis A, Serra A et al (2021) Advances in de novo drug design: from conventional to machine learning methods. Int J Mol Sci 22:1676

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kirsch P, Hartman AM, Hirsch AKH et al (2019) Concepts and core principles of fragment-based drug design. Molecules 24:4309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Romano P, Giugno R, Pulvirenti A (2011) Tools and collaborative environments for bioinformatics research. Brief Bioinform 12:549–561

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gorgulla C, Boeszoermenyi A, Wang ZF et al (2020) An open-source drug discovery platform enables ultra-large virtual screens. Nature 580:663–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cox PB, Gupta R (2022) Contemporary computational applications and tools in drug discovery. ACS Med Chem Lett 13:1016–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Prada Gori DN, Alberca LN, Rodriguez S et al (2022) LIDeB Tools: a Latin American resource of freely available, open-source cheminformatics apps. Artif Intell Life Sci 2:10049

    Google Scholar 

  16. Hartenfeller M, Schneider G (2011) De novo drug design. Methods Mol Biol 672:299–323

    Article  CAS  PubMed  Google Scholar 

  17. Kuttruff CA, Eastgate MD, Baran PS (2014) Natural product synthesis in the age of scalability. Nat Prod Rep 31:419–432

    Article  CAS  PubMed  Google Scholar 

  18. Nicolaou CA, Brown N (2013) Multi-objective optimization methods in drug design. Drug Discov Today Technol 10:e427–e435

    Article  PubMed  Google Scholar 

  19. Talevi A (2016) Tailored multi-target agents. Applications and design considerations. Curr Pharm Des 22:3164–3170

    Article  CAS  PubMed  Google Scholar 

  20. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  21. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:542–553

    Article  Google Scholar 

  22. Gupta S, Kesarla R, Omri A (2013) Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm 2013:848043

    PubMed Central  PubMed  Google Scholar 

  23. Miller DC, Klute W, Calabrese A et al (2009) Optimising metabolic stability in lipophilic chemical space: the identification of a metabolic stable pyrazolopyrimidine CRF-1 receptor antagonist. Bioorg Med Chem Lett 19:6144–6147

    Article  CAS  PubMed  Google Scholar 

  24. Wager TT, Hou X, Verhoest PR et al (2016) Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci 7:767–775

    Article  CAS  PubMed  Google Scholar 

  25. Glen RC, Galloway WR, Spring DR et al (2016) Multiple-parameter optimization in drug discovery: example of the 5-HT1B GPCR. Mol Inform 35:599–605

    Article  CAS  PubMed  Google Scholar 

  26. Ghose AK, Ott GR, Hudkins RL (2017) Technically Extended MultiParameter Optimization (TEMPO): an advanced robust scoring scheme to calculate central nervous system druggability and monitor lead optimization. ACS Chem Neurosci 8:147–154

    Article  CAS  PubMed  Google Scholar 

  27. Winter R, Montanari F, Steffen A et al (2019) Efficient multi-objective molecular optimization in a continuous latent space. Chem Sci 10:8016–8024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pennington LD, Muegge I (2021) Holistic drug design for multiparameter optimization in modern small molecule drug discovery. Bioorg Med Chem Lett 41:128003

    Article  CAS  PubMed  Google Scholar 

  29. He X (2009) Integration of physical, chemical, mechanical and biopharmaceutical properties in solid dosage oral form development. In: Solid dosage oral forms: pharmaceutical theory and practice. Academic Press, Burlington

    Google Scholar 

  30. Csermely P, Korcsmáros T, Kiss HJ et al (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang J, Guo Z, Fu Y et al (2017) Weak-binding molecules are not drugs?-toward a systematic strategy for finding effective weak-binding drugs. Brief Bioinform 18:321–332

    CAS  PubMed  Google Scholar 

  32. Talevi A (2022) Antiseizure medication discovery: recent and future paradigm shifts. Epilepsia Open 7(Suppl 1):S133–S141

    PubMed Central  PubMed  Google Scholar 

  33. Gashaw I, Ellinghaus P, Sommer A et al (2011) What makes a good drug target. Drug Discov Today 16:1037–1043

    Article  CAS  PubMed  Google Scholar 

  34. Knowles J, Gromo G (2003) Target selection in drug discovery. Nat Rev Drug Discov 2:63–69

    Article  CAS  PubMed  Google Scholar 

  35. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53:5858–5867

    Article  CAS  PubMed  Google Scholar 

  36. Yuan Y, Pei J, Lai L (2013) Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Des 19:2326–2333

    Article  CAS  PubMed  Google Scholar 

  37. Barril X (2013) Druggability predictions: methods, limitations and applications. Wires Comput Mol Sci 3:327–338

    Article  CAS  Google Scholar 

  38. Talevi A, Carrillo C, Comini M (2019) The thiol-polyamine metabolism of Trypanosoma cruzi: molecular targets and drug repurposing strategies. Curr Med Chem 26:6614–6635

    Article  CAS  PubMed  Google Scholar 

  39. Tonge PJ (2018) Drug-target kinetics in drug discovery. ACS Chem Neurosci 9:29–39

    Article  CAS  PubMed  Google Scholar 

  40. Feng Y, Wang Q, Wang T (2017) Drug target protein-protein interaction networks: a systematic perspective. Biomed Res Int 2017:1289259

    Article  PubMed Central  PubMed  Google Scholar 

  41. Viacava Follis A (2021) Centrality of drug targets in protein networks. BMC Bioinf 22:527

    Article  CAS  Google Scholar 

  42. Sabetian S, Shamsir MS (2019) Computer aided analysis of disease linked protein networks. Bioinformation 15:513–522

    Article  PubMed Central  PubMed  Google Scholar 

  43. Casas AI, Hassan AA, Larsen SJ et al (2019) From single drug targets to synergistic network pharmacology in ischemic stroke. Proc Natl Acad Sci U S A 116:7129–7136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Schidlitzki A, Bascuñana P, Srivastava PK et al (2020) Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol Dis 134:104664

    Article  CAS  PubMed  Google Scholar 

  45. Kim B, Jo J, Han J et al (2017) In silico re-identification of properties of drug target proteins. BMC Bioinf 18:248

    Article  Google Scholar 

  46. Dezső Z, Ceccarelli M (2020) Machine learning prediction of oncology drug targets based on protein and network properties. BMC Bioinf 21:104

    Article  Google Scholar 

  47. Chen S, Jiang H, Cao Y et al (2016) Drug target identification using network analysis: taking active components in Sini decoction as an example. Sci Rep 6:24245

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ji X, Freudenberg JM, Agarwal P (2019) Integrating biological networks for drug target prediction and prioritization. Methods Mol Biol 1903:203–218

    Article  CAS  PubMed  Google Scholar 

  49. Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23:1875–1882

    Article  CAS  PubMed  Google Scholar 

  50. Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Han B, Salituro FG, Blanco MJ (2020) Impact of allosteric modulation in drug discovery: innovation in emerging chemical modalities. ACS Med Chem Lett 11:1810–1819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Liu T, Ish-Shalom S, Torng W et al (2018) Biological and functional relevance of CASP predictions. Proteins 86(Suppl 1):374–386

    Article  CAS  PubMed  Google Scholar 

  53. Clark JJ, Orban ZJ, Carlson HA (2020) Predicting binding sites from unbound versus bound protein structures. Sci Rep 10:15856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kuzmanic A, Bowman GR, Juarez-Jimenez J et al (2020) Investigating cryptic binding sites by molecular dynamics simulations. Acc Chem Res 53:654–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Smith RD, Carlson HA (2021) Identification of cryptic binding sites using MixMD with standard and accelerated molecular dynamics. J Chem Inf Model 61:1287–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Paul F, Weikl TR (2016) How to distinguish conformational selection and induced fit based on chemical relaxation rates. PLoS Comput Biol 12:e1005067

    Article  PubMed Central  PubMed  Google Scholar 

  57. Vajda S, Beglov D, Wakefield AE et al (2018) Cryptic binding sites on proteins: definition, detection, and druggability. Curr Opin Chem Biol 44:1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Martinez-Rosell G, Lovera S, Sands ZA et al (2020) PlayMolecule CrypticScout: predicting protein cryptic sites using mixed-solvent molecular simulations. J Chem Inf Model 60:2314–2324

    Article  CAS  PubMed  Google Scholar 

  59. Zheng W (2021) Predicting cryptic ligand binding sites based on normal modes guided conformational sampling. Proteins 89:416–426

    Article  CAS  PubMed  Google Scholar 

  60. Aromolaran O, Aromolaran D, Isewon I et al (2021) Machine learning approach to gene essentiality prediction: a review. Brief Bioinform 22(5):bbab128

    Article  PubMed  Google Scholar 

  61. Basler G (2015) Computational prediction of essential metabolic genes using constraint-based approaches. Gene Essentiality 1279:183–204

    Article  CAS  Google Scholar 

  62. Pushpakom S, Iorio F, Eyers PA et al (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58

    Article  CAS  PubMed  Google Scholar 

  63. Talevi A, Bellera CL (2020) Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov 15:397–401

    Article  PubMed  Google Scholar 

  64. Szymanski P, Markowicz M, Mikiciuk-Olasik E (2012) Adaptation of high-throughput screening in drug discovery – toxicological screening. Int J Mol Sci 13:427–452

    Article  CAS  PubMed  Google Scholar 

  65. Harris CJ, Hill RD, Sheppard DW, Slater MJ, Stouten PF (2011) The design and application of target-focused compound libraries. Comb Chem High Throughput Screen 14(6):521–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Baek M, DiMaio F, Anishchenko I et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Lin Z, Akin H, Rao R et al (2022) Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv 2022.07.20.500902

    Google Scholar 

  70. Mirdita M, Schütze K, Moriwaki Y et al (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444

    Article  CAS  PubMed  Google Scholar 

  72. Procacci P (2016) Reformulating the entropic contribution of molecular docking scoring functions. J Comput Chem 37(19):1819–1827

    Article  CAS  PubMed  Google Scholar 

  73. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  CAS  PubMed  Google Scholar 

  74. Bello M, Martínez-Archundia M, Correa-Basurto J (2013) Automated docking for novel drug discovery. Expert Opin Drug Discov 8:821–834

    Article  CAS  PubMed  Google Scholar 

  75. Bodnarchuck MS (2016) Water, water, everywhere… It’s time to stop and think. Drug Discov Today 21:1139–1146

    Article  Google Scholar 

  76. Mysinger MM, Schoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50:1561–1573

    Article  CAS  PubMed  Google Scholar 

  77. Li H, Sze KH, Lu G et al (2020) Machine-learning scoring functions for structure-based virtual screening. Wires Comput Mol Sci 11:e1478

    Article  Google Scholar 

  78. Zhang X, Shen C, Guo X et al (2021) ASFP (Artificial Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions. J Cheminform 13:6

    Article  PubMed Central  PubMed  Google Scholar 

  79. Yang C, Chen EA, Zhang Y (2022) Protein-ligand docking in the machine-learning era. Molecules 27:4568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ge H, Wang Y, Li C et al (2013) Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing. J Chem Inf Model 53:2757–2764

    Article  CAS  PubMed  Google Scholar 

  81. Wang L, Wu Y, Deng Y et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    Article  CAS  PubMed  Google Scholar 

  82. Llanos MA, Alberca LN, Larrea SCV et al (2022) Homology modeling and molecular dynamics simulations of Trypanosoma cruzi phosphodiesterase b1. Chem Biodivers 19:e202100712

    Article  CAS  PubMed  Google Scholar 

  83. Lavechia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331

    Article  Google Scholar 

  84. Lemmen C, Zimmermann M, Lengauer T (2002) Multiple molecular superpositioning as an effective tool for virtual database screening. In: Virtual screening: an alternative or complement to high-throughput screening? 1st edn. Kluwer Academic Publishers, Marburg

    Google Scholar 

  85. Kristensen TG, Nielsen J, Pedersen CNS (2013) Methods for similarity-based virtual screening. Comput Struct Biotechnol J 5:e201302009

    Article  PubMed Central  PubMed  Google Scholar 

  86. Talevi A, Bruno-Blanch LE (2016) Virtual screening applications in the search of novel antiepileptic drug candidates. In: Antiepileptic drug discovery. Novel approaches. Humana Press, New York

    Chapter  Google Scholar 

  87. Schneidman-Duhovny D, Dror O, Inbar Y et al (2008) Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. J Comput Biol 15:737–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Cottrell SJ, Gillet VJ, Taylor R et al (2004) Generation of multiple pharmacophore hypothesis using multiobjective optimization techniques. J Comput Aided Mol Des 18:665–682

    Article  CAS  PubMed  Google Scholar 

  89. Pirhadi S, Shiri F, Ghasemi JB (2013) Methods and applications of structure based pharmacophores in drug discovery. Curr Top Med Chem 13:1036–1047

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Q, Muegge I (2006) Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem 9:1536–1548

    Article  Google Scholar 

  91. Krüger DM, Evers A (2010) Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 5:148–158

    Article  PubMed  Google Scholar 

  92. Talevi A, Gavernet L, Bruno-Blanch LE (2009) Combined virtual screening strategies. Curr Comput Aided Drug Des 5:23–37

    Article  CAS  Google Scholar 

  93. Pouliot M, Jeanmart S (2016) Pan Assay Interference Compounds (PAINS) and other promiscuous compounds in antifungal research. J Med Chem 59:497–503

    Article  CAS  PubMed  Google Scholar 

  94. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening – an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  95. Zhu T, Cao S, Su PC et al (2013) Hit identification and optimization in virtual screening: practical recommendations based upon a critical literature analysis. J Med Chem 56:6560–6572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Ripphausen P, Nisius B, Pletason L et al (2010) Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem 53:8461–8467

    Article  CAS  PubMed  Google Scholar 

  97. Neetoo-Isseliee Z, MacKenzie AE, Southern C et al (2013) High-throughput identification and characterization of novel, species-selective GPR35 agonists. J Pharmacol Exp Ther 344:568–578

    Article  Google Scholar 

  98. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716

    Article  CAS  PubMed  Google Scholar 

  99. Schuster D, Laggner C, Langer T (2005) Why drugs fail – a study on side effects in new chemical entities. Curr Pharm Des 11:3545–3559

    Article  CAS  PubMed  Google Scholar 

  100. Talevi A (2016) Computational approaches for innovative antiepileptic drug discovery. Expert Opin Drug Discov 11:1001–1016

    Article  CAS  PubMed  Google Scholar 

  101. Wang S, Dong G, Sheng C (2019) Structural simplification of natural products. Chem Rev 119:4180–4220

    Article  CAS  PubMed  Google Scholar 

  102. Brown N, Lewis RA (2006) Exploiting QSAR methods in lead optimization. Curr Opin Drug Discov Devel 9:419–424

    CAS  PubMed  Google Scholar 

  103. Wong WWL, Burkowski FJ (2009) A constructive approach for discovering new drug leads: using a kernel methodology for the inverse-QSAR problem. J Cheminform 1:4

    Article  PubMed Central  PubMed  Google Scholar 

  104. Miyako T, Kaneko H, Funatsu K (2016) Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J Chem Inf Model 56:286–299

    Article  Google Scholar 

  105. Waring MJ, Arrowsmith J, Leach AR et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486

    Article  CAS  PubMed  Google Scholar 

  106. Cook D, Brown D, Alexander R et al (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419–431

    Article  CAS  PubMed  Google Scholar 

  107. Roberts RA, Kavanagh SL, Mellor HR et al (2014) Reducing attrition in drug development: smart loading preclinical safety assessment. Drug Discov Today 19:341–347

    Article  CAS  PubMed  Google Scholar 

  108. Veber DF, Johnson SR, Cheng HY et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  109. Price DA, Blagg J, Jones L et al (2009) Physicochemical drug properties associated with in vivo toxicological outcomes: a review. Expert Opin Drug Metab Toxicol 5:921–931

    Article  CAS  PubMed  Google Scholar 

  110. Sutherland JJ, Raymond JW, Stevens JL et al (2012) Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem 55:6455–6466

    Article  CAS  PubMed  Google Scholar 

  111. Doak BC, Zheng J, Dobritzsch D et al (2016) How beyond rule of 5 drugs and clinical candidates bind to their targets. J Med Chem 59:2312–2327

    Article  CAS  PubMed  Google Scholar 

  112. Doak BC, Over B, Giordanetto F et al (2014) Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 21:1115–1142

    Article  CAS  PubMed  Google Scholar 

  113. Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41

    Article  CAS  PubMed  Google Scholar 

  114. Bergström CAS, Charman WN, Porter CJH (2016) Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev 101:6–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks CONICET and University of La Plata, where he holds permanent positions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Talevi, A. (2024). Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics