Skip to main content

Computational Prediction of Essential Metabolic Genes Using Constraint-Based Approaches

  • Protocol
  • First Online:
Gene Essentiality

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1279))

Abstract

In this chapter, we describe the application of constraint-based modeling to predict the impact of gene deletions on a metabolic phenotype. The metabolic reactions taking place inside cells form large networks, which have been reconstructed at a genome-scale for several organisms at increasing levels of detail. By integrating mathematical modeling techniques with biochemical principles, constraint-based approaches enable predictions of metabolite fluxes and growth under specific environmental conditions or for genetically modified microorganisms. Similar to the experimental knockout of a gene, predicting the essentiality of a metabolic gene for a phenotype further allows to generate hypotheses on its biological function and design of genetic engineering strategies for biotechnological applications. Here, we summarize the principles of constraint-based approaches and provide a detailed description of the procedure to predict the essentiality of metabolic genes with respect to a specific metabolic function. We exemplify the approach by predicting the essentiality of reactions in the citric acid cycle for the production of glucose from fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feist AM, Herrgård MJ, Thiele I et al (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Henry CS, DeJongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira AP, Nielsen J, Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39

    Article  PubMed Central  PubMed  Google Scholar 

  4. Thiele I, Vo TD, Price ND et al (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 187:5818–5830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Oh Y-K, Palsson BØ, Park SM et al (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799

    Article  CAS  PubMed  Google Scholar 

  6. Nogales J, Palsson BØ, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2:79

    Article  PubMed Central  PubMed  Google Scholar 

  7. Oberhardt MA, Puchałka J, Fryer KE et al (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190:2790–2803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Quek L-E, Nielsen LK (2008) On the reconstruction of the Mus musculus genome-scale metabolic network model. Genome Inform 21:89–100

    Article  CAS  PubMed  Google Scholar 

  9. Plata G, Hsiao T-L, Olszewski KL et al (2010) Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol 6:408

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chang RL, Ghamsari L, Manichaikul A et al (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518

    Article  PubMed Central  PubMed  Google Scholar 

  11. Milne CB, Eddy JA, Raju R et al (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5:130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Orth JD, Conrad TM, Na J et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 7:535

    Article  PubMed Central  PubMed  Google Scholar 

  13. Heavner BD, Smallbone K, Barker B et al (2012) Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55

    Article  PubMed Central  PubMed  Google Scholar 

  14. Thiele I, Swainston N, Fleming RMT et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425

    Article  CAS  PubMed  Google Scholar 

  15. Wodke JAH, Puchałka J, Lluch-Senar M et al (2013) Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol 9:653

    Article  PubMed Central  PubMed  Google Scholar 

  16. Arnold A, Nikoloski Z (2014) Bottom-up metabolic reconstruction of Arabidopsis and its application to determining the metabolic costs of enzyme production. Plant Physiol 165:1380–1391

    Article  CAS  PubMed  Google Scholar 

  17. Teusink B, Passarge J, Reijenga CA et al (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329

    Article  CAS  PubMed  Google Scholar 

  18. Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representations in metabolic pathways. Proc Int Conf Intell Syst Mol Biol 1:328–336

    CAS  PubMed  Google Scholar 

  19. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182

    Article  Google Scholar 

  20. Schilling CH, Letscher D, Palsson BØ (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248

    Article  CAS  PubMed  Google Scholar 

  21. Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5:164–176

    Article  CAS  PubMed  Google Scholar 

  22. Famili I, Mahadevan R, Palsson BØ (2005) k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. Biophys J 88:1616–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Steuer R, Gross T, Selbig J et al (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci U S A 103:11868–11873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Conradi C, Flockerzi D, Raisch J et al (2007) Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc Natl Acad Sci U S A 104:19175–19180

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ederer M, Gilles ED (2007) Thermodynamically feasible kinetic models of reaction networks. Biophys J 92:1846–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bulik S, Grimbs S, Huthmacher C et al (2009) Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws—a promising method for speeding up the kinetic modelling of complex metabolic networks. FEBS J 276:410–424

    Article  CAS  PubMed  Google Scholar 

  27. Jamshidi N, Palsson BØ (2010) Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J 98:175–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Varma A, Palsson BØ (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998

    Article  CAS  Google Scholar 

  29. Edwards JS, Ibarra RU, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    Article  CAS  PubMed  Google Scholar 

  30. Famili I, Forster J, Nielsen J et al (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100:13134–13139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  CAS  PubMed  Google Scholar 

  32. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Melzer G, Esfandabadi ME, Franco-Lara E et al (2009) Flux Design: in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3:120

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hädicke O, Klamt S (2010) CASOP: a computational approach for strain optimization aiming at high productivity. J Biotechnol 147:88–101

    Article  PubMed  Google Scholar 

  35. Yang L, Cluett WR, Mahadevan R (2011) EMILiO: a fast algorithm for genome-scale strain design. Metab Eng 13:272–281

    Article  CAS  PubMed  Google Scholar 

  36. Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14:47–58

    Article  CAS  PubMed  Google Scholar 

  37. Larhlimi A, Basler G, Grimbs S et al (2012) Stoichiometric capacitance reveals the theoretical capabilities of metabolic networks. Bioinformatics 28:i502–i508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Park JH, Lee KH, Kim TY et al (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Asadollahi MA, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11:328–334

    Article  CAS  PubMed  Google Scholar 

  40. Choi HS, Lee SY, Kim TY et al (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl Environ Microbiol 76:3097–3105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sohn SB, Kim TY, Park JM et al (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750

    Article  CAS  PubMed  Google Scholar 

  42. Poblete-Castro I, Binger D, Rodrigues A et al (2013) In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 15:113–123

    Article  CAS  PubMed  Google Scholar 

  43. Kleessen S, Nikoloski Z (2012) Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations. BMC Syst Biol 6:16

    Article  PubMed Central  PubMed  Google Scholar 

  44. Covert MW, Palsson BØ (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol 221:309–325

    Article  CAS  PubMed  Google Scholar 

  45. Shlomi T, Eisenberg Y, Sharan R et al (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 3:101

    Article  PubMed Central  PubMed  Google Scholar 

  46. O’Brien EJ, Lerman JA, Chang RL et al (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9:693

    PubMed Central  PubMed  Google Scholar 

  47. Gianchandani EP, Chavali AK, Papin JA (2010) The application of flux balance analysis in systems biology. Wiley Interdiscip Rev Syst Biol Med 2:372–382

    Article  CAS  PubMed  Google Scholar 

  48. Schellenberger J, Que R, Fleming RMT et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Schellenberger J, Park JO, Conrad TM et al (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chelliah V, Laibe C, Le Novère N (2013) BioModels Database: a repository of mathematical models of biological processes. Methods Mol Biol 1021:189–199

    Article  PubMed  Google Scholar 

  51. Herrgård MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160

    Article  PubMed Central  PubMed  Google Scholar 

  52. Mintz-Oron S, Meir S, Malitsky S et al (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci U S A 109:339–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Clarke BL (1988) Stoichiometric network analysis. Cell Biophys 12:237–253

    Article  CAS  PubMed  Google Scholar 

  54. Heinrich R, Schuster S (1996) The regulation of cellular systems. Springer, New York

    Book  Google Scholar 

  55. Feist AM, Palsson BØ (2010) The biomass objective function. Curr Opin Microbiol 13:344–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Papp B, Pál C, Hurst LD (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429:661–664

    Article  CAS  PubMed  Google Scholar 

  57. Gianchandani EP, Oberhardt MA, Burgard AP et al (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 9:43

    Article  PubMed Central  PubMed  Google Scholar 

  58. Gruer MJ, Guest JR (1994) Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140(Pt 10):2531–2541

    Article  CAS  PubMed  Google Scholar 

  59. Buck D, Spencer ME, Guest JR (1985) Primary structure of the succinyl-CoA synthetase of Escherichia coli. Biochemistry 24:6245–6252

    Article  CAS  PubMed  Google Scholar 

  60. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

    Article  PubMed Central  PubMed  Google Scholar 

  62. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A 102:7695–7700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Kornberg HL, Krebs HA (1957) Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179:988–991

    Article  CAS  PubMed  Google Scholar 

  64. de Figueiredo LF, Schuster S, Kaleta C et al (2009) Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics 25:152–158

    Article  PubMed  Google Scholar 

  65. Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56:398–421

    Article  CAS  PubMed  Google Scholar 

  66. Schaechter M, Maaloe O, Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 19:592–606

    Article  CAS  PubMed  Google Scholar 

  67. Sriram G, González-Rivera O, Shanks JV (2006) Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis. Biotechnol Prog 22:1659–1663

    CAS  PubMed  Google Scholar 

  68. Poolman MG, Miguet L, Sweetlove LJ et al (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Żur I, Skoczowski A, Pieńkowski S et al (2002) Kinetics of 14C-labelled sucrose, myo-inositol and phosphatidylcholine uptake during induction and differentiation in Brassica napus callus culture. Acta Physiol Plant 24:11–17

    Google Scholar 

  70. Whiteside MD, Garcia MO, Treseder KK (2012) Amino acid uptake in arbuscular mycorrhizal plants. PLoS One 7:e47643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Covert MW, Schilling CH, Palsson BØ (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213:73–88

    Article  CAS  PubMed  Google Scholar 

  72. Folger O, Jerby L, Frezza C et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501

    Article  PubMed Central  PubMed  Google Scholar 

  73. Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266:14440–14445

    CAS  PubMed  Google Scholar 

  74. Tanaka M, Okuno Y, Yamada T et al (2003) Extraction of a thermodynamic property for biochemical reactions in the metabolic pathway. Genome Inform 14:370–371

    Google Scholar 

  75. Henry CS, Jankowski MD, Broadbelt LJ et al (2006) Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90:1453–1461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Hoppe A, Hoffmann S, Holzhütter H-G (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst Biol 1:23

    Article  PubMed Central  PubMed  Google Scholar 

  77. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Maskow T, von Stockar U (2005) How reliable are thermodynamic feasibility statements of biochemical pathways? Biotechnol Bioeng 92:223–230

    Article  CAS  PubMed  Google Scholar 

  79. Vojinović V, von Stockar U (2009) Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways. Biotechnol Bioeng 103:780–795

    Article  PubMed  Google Scholar 

  80. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  PubMed  Google Scholar 

  81. Reed JL, Palsson BØ (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14:1797–1805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Lee S, Phalakornkule C, Domach MM et al (2000) Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Comput Chem Eng 24:711–716

    Article  CAS  Google Scholar 

  83. Burgard AP, Nikolaev EV, Schilling CH et al (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14:301–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Larhlimi A, David L, Selbig J et al (2012) F2C2: a fast tool for the computation of flux coupling in genome-scale metabolic networks. BMC Bioinformatics 13:57

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

I thank Tino Krell and Juan Luis Ramos for critical reading of the manuscript. This research was supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Basler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Basler, G. (2015). Computational Prediction of Essential Metabolic Genes Using Constraint-Based Approaches. In: Lu, L. (eds) Gene Essentiality. Methods in Molecular Biology, vol 1279. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2398-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2398-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2397-7

  • Online ISBN: 978-1-4939-2398-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics