Skip to main content

Advertisement

Log in

Generation of multiple pharmacophore hypotheses using multiobjective optimisation techniques

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Pharmacophore methods provide a way of establishing a structure--activity relationship for a series of known active ligands. Often, there are several plausible hypotheses that could explain the same set of ligands and, in such cases, it is important that the chemist is presented with alternatives that can be tested with different synthetic compounds. Existing pharmacophore methods involve either generating an ensemble of conformers and considering each conformer of each ligand in turn or exploring conformational space on-the-fly. The ensemble methods tend to produce a large number of hypotheses and require considerable effort to analyse the results, whereas methods that vary conformation on-the-fly typically generate a single solution that represents one possible hypothesis, even though several might exist. We describe a new method for generating multiple pharmacophore hypotheses with full conformational flexibility being explored on-the-fly. The method is based on multiobjective evolutionary algorithm techniques and is designed to search for an ensemble of diverse yet plausible overlays which can then be presented to the chemist for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Lemmen T. Lengauer (2000) J. Comput.-Aided Mol. Des. 14 215

    Google Scholar 

  • Güner, O.F. (Ed.) Pharmacophore Perception, Development, and Use in Drug Design. International University Line, La Jolla, CA, 2000.

  • O. Dror A. Shulman-Peleg R. Nussinov H. Wolfson (2004) J. Curr. Med. Chem., 11 71

    Google Scholar 

  • J.H. van Drie (2003) Curr. Pharmaceut. Des., 9 1649

    Google Scholar 

  • D. Barnum J. Greene A. Smellie P. Sprague (1996) J. Chem. Inf. Comput. Sci., 36 563

    Google Scholar 

  • A. Smellie S.L. Teig P. Towbin (1995) J. Comp. Chem., 16 171

    Google Scholar 

  • Y.C. Martin M.G. Bures E.A. Danaher J. DeLazzer I. Lico P.A. Pavlik (1993) J. Comput.-Aided Mol. Des., 7 83

    Google Scholar 

  • Y. Patel V.J. Gillet G. Bravi A.R. Leach (2002) J. Comput.-Aided Mol. Des., 16 653

    Google Scholar 

  • G. Jones P. Willett R.C. Glen (1995) J. Comput.-Aided Mol. Des., 9 532

    Google Scholar 

  • C.M. Fonseca P.J. Fleming (1998) IEEE Trans. Syst. Man Cybernet. Part a–Syst. Humans, 28 26

    Google Scholar 

  • S. Handschuh M. Wagener J. Gasteiger (1998) J. Chem. Inf. Comput. Sci., 38 220

    Google Scholar 

  • T. Wright V.J. Gillet D.V.S. Green S.D. Pickett (2003) J. Chem. Inf. Comput. Sci., 43 381

    Google Scholar 

  • V.J. Gillet W. Khatib P. Willett P.J. Fleming D.V.S. Green (2002) J. Chem. Inf. Comput. Sci., 42 375

    Google Scholar 

  • O. Nicolotti V.J. Gillet P.J. Fleming D.V.S. Green (2002) J. Med. Chem., 45 5069

    Google Scholar 

  • N. Brown B. McKay F. Gilardoni J. Gasteiger (2004) J. Chem. Inf. Comput. Sci., 44 1079

    Google Scholar 

  • Goldberg, D.E. and Richardson J., In Grefenstette, J.J. (Ed.), Genetic Algorithms with Sharing for Multimodal Function Optimisation, Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale, 1987, pp. 41–49.

  • R.C. Glen A.P. Hill G.R. Martin A.D. Robertson (1995) J. Med. Chem., 38 3566

    Google Scholar 

  • Z. Wawrzak S. Tatyana J.J. Steffens G.S. Basarab T. Lundqvist Y. Lindqvist D.B. Jordon (1999) Proteins: Struct. Funct. Genet., 35 425

    Google Scholar 

  • Höberg, T. and Norinder, U., In Krogsgaard-Larsen, P., Liljefors, T. and Madsen, U. (Eds.), A Textbook of Drug Design and Development, 2nd edn., Harwood Academic Publishers, Amsterdam, 1996, pp. 94–130.

  • T. Liljefors K.P. Bøgesø (1988) J. Med. Chem., 31 306

    Google Scholar 

  • I. Pettersson T. Liljefors (1992) J. Med. Chem., 35 2355

    Google Scholar 

  • J. Boström K. Gundertofte T. Liljefors (2000) J. Comput.-Aided Mol. Des., 14 769

    Google Scholar 

  • Kristam, R., Gillet, V.J., Lewis, R.A. and Thorner, D., J. Chem. Inf. Model., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie J. Gillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cottrell, S.J., Gillet, V.J., Taylor, R. et al. Generation of multiple pharmacophore hypotheses using multiobjective optimisation techniques. J Comput Aided Mol Des 18, 665–682 (2004). https://doi.org/10.1007/s10822-004-5523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-5523-7

Keywords

Navigation