Skip to main content

Modeling and Optimization of Nano-finishing Processes

  • Chapter
  • First Online:
Advanced Modeling and Optimization of Manufacturing Processes

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Finishing operations represent a critical and expensive phase of overall production processes. The most labor intensive, uncontrollable area in the manufacturing of precision parts involves final finishing operations, which frequently demand as much as 15% of the total manufacturing cost. The dimensional and alignment accuracy and quality of surface finish are taken care of by finishing processes such as grinding, lapping, honing, and super-finishing (i.e. traditional methods of finishing). But, the applications of these traditional abrasive finishing processes are limited to the production of work pieces of basic forms such as flat, cylindrical, etc. These finishing processes are being pushed to their limits of performance especially in components of hard materials and complicated shapes. The need to develop finishing processes with wider bounds of application areas, better quality performance, higher productivity, and automatic operation has led to the development of nano-finishing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali-Tavoli M, Zadeh NN, Khakhali A, Mehran M (2006) Multi-objective optimization of abrasive flow machining processes using polynomial neural networks and genetic algorithms. Mach Sci Technol 10:1–20

    Article  Google Scholar 

  2. Bandyopadhyay BP, Ohmori H (1999) The effect of ELID grinding on the flexural strength of silicon nitride. Int J Mach Tools Manuf 39:839–853

    Article  Google Scholar 

  3. Bandyopadhyay BP, Ohmori H, Takahashi I (1996) Ductile regime mirror finish grinding of ceramics with electrolytic in-process dressing (ELID) grinding. Mater Manuf Proc 11:789–801

    Article  Google Scholar 

  4. Barletta M (2009) Progress in abrasive fluidized bed machining. J Mater Process Technol 209(20):6087–6102

    Article  Google Scholar 

  5. Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971

    Article  MATH  Google Scholar 

  6. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind 113:184–189

    Article  Google Scholar 

  7. Biswas I, Kumar AS, Rahman M (2010) A study on the equilibrium condition of the oxide layer in ELID grinding. Int J Abras Technol 3(1):7–12

    Google Scholar 

  8. Chang GW, Yan BH, Hsu RT (2002) Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives. Int J Mach Tools Manuf 42:575–583

    Article  Google Scholar 

  9. Das M, Jain VK, Ghoshdastidar PS (2008) Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process. Int J Mach Tools Manuf 48(3–4):415–426

    Article  Google Scholar 

  10. El-Taweel TA (2008) Modeling and analysis of hybrid electrochemical turning-magnetic abrasive finishing of 6061 Al/Al2O3 composite. Int J Adv Manuf Technol 37(7–8):705–714

    Article  Google Scholar 

  11. Fang L, Zhao J, Li B, Sun K (2009) Movement patterns of ellipsoidal particle in abrasive flow machining. J Mater Process Technol 209(20):6048–6056

    Article  Google Scholar 

  12. Fathima K, Kumar AS, Rahman M, Lim HS (2003) A study on wear mechanism and wear reduction strategies in grinding wheels used for ELID grinding. Wear 254:1247–1255

    Article  Google Scholar 

  13. Fathima K, Rahman M, Kumar AS, Lim HS (2007) Modeling of ultra-precision ELID grinding. J Manuf Sci Eng 129(2):296–302

    Article  Google Scholar 

  14. Fathima K, Schinhaerl M, Geiss A, Rascher R, Sperber P (2010) A knowledge based feed-back control system for precision ELID grinding. Precis Eng 34(10):124–132

    Article  Google Scholar 

  15. Fox M, Agrawal K, Shinmura T, Komanduri R (1994) Magnetic abrasive finishing of rollers. CIRP Ann Manuf Technol 43(1):181–184

    Article  Google Scholar 

  16. Fujihara K, Ohshiba K, Komatsu T, Ueno M, Ohmori H, Bandyopadhyay BP (1997) Precision surface grinding characteristics of ceramic matrix composites and structural ceramics with electrolytic inprocess dressing. Mach Sci Technol 1:81–94

    Article  Google Scholar 

  17. Gorana VK, Jain VK, Lal GK (2004) Experimental investigations into cutting forces and active grain density during abrasive flow machining. Int J Mach Tools Manuf 44:201–211

    Article  Google Scholar 

  18. Gorana VK, Jain VK, Lal GK (2006) Forces prediction during material deformation in abrasive flow machining. Wear 260:128–139

    Article  Google Scholar 

  19. Gorana VK, Jain VK, Lal GK (2006) Prediction of surface roughness during abrasive flow machining. Int J Adv Manuf Technol 31:258–267

    Article  Google Scholar 

  20. Im IT, Mun SD, Oh SM (2009) Micro machining of an STS 304 bar by magnetic abrasive finishing. J Mech Sci Technol 23(7):1982–1988

    Article  Google Scholar 

  21. Jain VK (2009) Magnetic field assisted abrasive based micro-/nano-finishing. J Mater Process Technol 209(20):6022–6038

    Article  Google Scholar 

  22. Jain VK (2000) Advanced machining processes. Allied Publishers, New Delhi

    Google Scholar 

  23. Jain VK, Adsul SG (2000) Experimental investigation into abrasive flow machining. Int J Mach Tools Manuf 40:1003–1021

    Article  Google Scholar 

  24. Jain RK, Jain VK (1999) Simulation of surface generated in abrasive flow machining process. Robotics Comput Integr Manuf 15:403–412

    Article  Google Scholar 

  25. Jain RK, Jain VK (2000) Optimum selection of machining conditions in abrasive flow machining using neural network. J Mater Process Technol 108:62–67

    Article  Google Scholar 

  26. Jain RK, Jain VK (2001) Specific energy and temperature determination in abrasive flow machining process. Int J Mach Tools Manuf 41:1689–1704

    Article  Google Scholar 

  27. Jain RK, Jain VK (2004) Stochastic simulation of active grain density in abrasive flow machining. J Mater Process Technol 152:17–22

    Article  Google Scholar 

  28. Jain NK, Jain VK, Jha S (2007) Parametric optimization of advanced fine-finishing processes. Int J Adv Manuf Technol 34:1191–1213

    Article  Google Scholar 

  29. Jain RK, Jain VK, Kalra PK (1999) Modeling of abrasive flow machining process: a neural network approach. Wear 231:242–248

    Article  Google Scholar 

  30. Jain RK, Jain VK, Dixit PM (1999) Modeling of material removal and surface roughness in abrasive flow machining process. Int J Mach Tools Manuf 39:1903–1923

    Article  Google Scholar 

  31. Jain VK, Kumar P, Behra PK, Jayswal SC (2001) Effect of working gap and cicumferential speed on the performance of magnetic abrasive finishing process. Wear 250:384–390

    Article  Google Scholar 

  32. Jain VK, Kumar R, Dixit PM, Sidpara A (2009) Investigations into abrasive flow finishing of complex workpieces using FEM. Wear 267(1–4):71–80

    Article  Google Scholar 

  33. Jayswal SC, Jain VK, Dixit PM (2005) Modeling and simulation of abrasive finishing process. Int J Adv Manuf Technol 26:477–490

    Article  Google Scholar 

  34. Jha S, Jain VK (2006) Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Wear 261(7–8):856–866

    Article  Google Scholar 

  35. Jha S, Jain VK (2004) Design and development of the magnetorheological abrasive flow finishing process. Int J Mach Tools Manuf 44:1019–1029

    Article  Google Scholar 

  36. Kar KK, Ravikumar NL, Tailor PB, Ramkumar J, Sathiyamoorthy D (2009) Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process. J Mater Process Technol 209(4):2212–2221

    Article  Google Scholar 

  37. Kato T, Ohmori H, Zhang C, Yamazaki T, Akune Y, Hokkirigawa K (2001) Improvement of friction and wear properties of CVD-SiC films with new surface finishing method ‘ELID-grinding. Key Eng Mater 196:91–101

    Article  Google Scholar 

  38. Kim J, Choi M (1995) Simulation for the prediction of surface-accuracy in magnetic abrasive machining. J Mater Process Technol 53:630–642

    Article  MathSciNet  Google Scholar 

  39. Ko SL, Baron YM, Park JI (2007) Micro deburring for precision parts using magnetic abrasive finishing method. J Mater Process Technol 187–188:19–25

    Article  Google Scholar 

  40. Kumar G, Yadav V (2009) Temperature distribution in the workpiece due to plane magnetic abrasive finishing using FEM. Int J Adv Manuf Technol 41(11–12):1051–1058

    Article  Google Scholar 

  41. Kremen GZ, Elsayed EA, Rafalorich VI (1996) Mechanism of material removal in magnetic abrasive process and the accuracy of machining. Int J Prod Res 34(9):2629–2638

    Article  MATH  Google Scholar 

  42. Kremen GZ, Elsayed EA, Ribeiro JL (1994) Machining time estimation for magnetic abrasive processes. Int J Prod Res 32(12):2817–2825

    Article  MATH  Google Scholar 

  43. Kwak JS (2009) Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet. Int J Mach Tools Manuf 49(7–8):613–618

    Article  Google Scholar 

  44. Lee ES (2000) A study on the mirror-like grinding of die steel with optimum in-process electrolytic dressing. J Mater Process Technol 100(1–3):200–208

    Article  Google Scholar 

  45. Lim HS, Ohmori H, Lin W, Qian J (2000) High productivity and high accuracy electrode-less ELID grinding on die material. J Mould Tehchnol 15:148–149

    Google Scholar 

  46. Lim HS, Ohmori H, Lin W, Qian J (2001) Electrode-less micro ELID grinding on die and mould material. Jpn Soc Grind Eng 45:298–303

    Google Scholar 

  47. Mali HS, Manna A (2010) Optimum selection of abrasive flow machining conditions during fine finishing of Al/15 wt% SiC-MMC using Taguchi method. Int J Adv Manuf Technol. doi:10.1007/s00170-010-2565-y

  48. Mayer JE, Fang GP (1994) Effect of grit depth of cut on strength of ground ceramic. CIRP Ann Manuf Technol 43(1):299–312

    Article  Google Scholar 

  49. Mollah AA, Pratihar DK (2008) Modeling of TIG welding and abrasive flow machining processes using radial basis function networks. Int J Adv Manuf Technol 37(9–10):937–952

    Article  Google Scholar 

  50. Mori T, Hirota K, Kawashima Y (2003) Clarification of magnetic abrasive finishing mechanism. J Mater Process Technol 143–144:682–686

    Article  Google Scholar 

  51. Ohmori H, Moriyasu S, Li W, Takahashi I, Park KY, Itoh N, Bandyopadhyay BP (1999) Highly efficient and precision fabrication of cylindrical parts from hard materials with the application of ELID (electrolytic in-process dressing). Mater Manuf Process 14:1–12

    Article  Google Scholar 

  52. Ohmori H, Nakagawa T (1990) Mirror surface grinding of silicon wafers with electrolytic in-process dressing. CIRP Ann Manuf Technol 39(1):329–333

    Article  Google Scholar 

  53. Ohmori H, Nakagawa T (1997) Utilization of nonlinear conditions in precision grinding with ELID (Electrolytic In-Process Dressing) for fabrication of hard material components. CIRP Ann Manuf Technol 46(1):261–264

    Article  Google Scholar 

  54. Qian J, Wei L, Ohmori H (2000) Cylindrical grinding of bearing steel with electrolytic in-process dressing. Precis Eng 24:153–159

    Article  Google Scholar 

  55. Rahman M, Kumar AS, Lim HS, Fatima K (2003) ELID grinding technique for nano finishing of brittle materials. SADHNA J Eng Sci Indian Acad Sci 28(5):1–18

    Google Scholar 

  56. Rajeshwar G, Kozak, Rajurkar KP (1994) Modeling and computer simulation of medium flow in abrasive flow machining process. In: Proceedings of International Mechanical Engineering Congress and Exposition. Chicago, PED 68:965–971

    Google Scholar 

  57. Rao RV, Pawar PJ (2010) Optimization of abrasive flow machining process parameters using artificial bee colony algorithm. In: Proceedings of International Conference on Advances in Mechanical Engineering. Surat, pp. 768–773

    Google Scholar 

  58. Rao RV, Pawar PJ, Davim JP (2009) Optimization of abrasive flow machining process parameters using particle swarm optimization and simulated annealing algorithms. In: Davim JP (ed) Artificial intelligence in manufacturing research. Nova Science Publications, New York

    Google Scholar 

  59. Rhoades LJ (1987) Abrasive flow machining with not-so-silly putty. Met Finish, 27–29 July

    Google Scholar 

  60. Rhoades LJ (1991) Abrasive flow machining: a case study. J Mater Process Technol 28:107–116

    Article  Google Scholar 

  61. Sankar MR, Mondal S, Ramkumar J, Jain VK (2009) Experimental investigations and modeling of drill bit-guided abrasive flow finishing (DBG-AFF) process. Int J Adv Manuf Technol 42(7–8):678–688

    Article  Google Scholar 

  62. Sankar MR, Ramkumar J, Jain VK (2009) Experimental investigation and mechanism of material removal in nano finishing of MMCs using abrasive flow finishing (AFF) process. Wear 266(7–8):688–698

    Article  Google Scholar 

  63. Shinmura T, Takazawa K, Hatano E, Matsunaga T (1990) Study in magnetic abrasive finishing. CIRP Ann Manuf Technol 39(1):325–328

    Article  Google Scholar 

  64. Singh DK, Jain VK, Raghuram V (2004) Parametric study of magnetic abrasive finishing process. J Mater Process Technol 149:22–29

    Article  Google Scholar 

  65. Singh S, Shan HS (2002) Development of magneto abrasive flow machining process. Int J Mach Tools Manuf 42:953–959

    Article  Google Scholar 

  66. Stephenson DJ, Hedge J, Corbett J (2002) Surface finishing of Ni–Cr–B–Si composite coatings by precision grinding. Int J Mach Tools Manuf 42:357–363

    Article  Google Scholar 

  67. Stephenson DJ, Veselovac D, Manley S, Corbett C (2001) Ultra-precision grinding of hard steels. Precis Eng 25:336–345

    Article  Google Scholar 

  68. Tonshoff HK, Peters I, Inasaki PT (1992) Modeling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688

    Article  Google Scholar 

  69. Uhlmann E, Mihotovic V, Coenen A (2009) Modeling the abrasive flow machining process on advanced ceramic materials. J Mater Process Technol 209(20):6062–6066

    Article  Google Scholar 

  70. Venkatesh VC, Inasaki I, Toenshof HK, Nakagawa T, Marinescu ID (1995) Observations on polishing and ultraprecision machining of semiconductor substrate materials. CIRP Ann Manuf Technol 44:611–618

    Article  Google Scholar 

  71. Walia RS, Shan HS, Kumar P (2006) Parametric optimization of centrifugal force- assisted abrasive flow machining (CFAAFM) by the Taguchi method. Mater Manuf Process 21:375–382

    Article  Google Scholar 

  72. Walia RS, Shan HS, Kumar P (2006) Multi-response optimization of CFAAFM process through Taguchi method and utility concept. Mater Manuf Process 21:907–914

    Article  Google Scholar 

  73. Wang P, Shi Z, Xin Q (2000) Optical surface grinding of optical glasses with ELID grinding technique. Proc SPIE Int Soc Opt Eng 4231:509–514

    Google Scholar 

  74. Wani AM, Yadava V, Khatri A (2007) Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF). J Mater Process Technol 190(1–3):282–290

    Article  Google Scholar 

  75. Williams RE (1998) Acoustic emission characteristics of abrasive flow machining. J Manuf Sci Eng 120:264–271

    Article  Google Scholar 

  76. Williams RE, Rajurkar KP (1992) Stochastic modeling and analysis of abrasive flow machining. J Eng Ind 144:74–81

    Google Scholar 

  77. Yamaguchi H, Shinmura T (2004) Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process. Precis Eng 28:135–142

    Article  Google Scholar 

  78. Yang LD, Lin CT, Chow HM (2009) Optimization in MAF operations using Taguchi parameter design for AISI304 stainless steel. Int J Adv Manuf Technol 42(5–6):595–605

    Article  Google Scholar 

  79. Zhang F, Li W, Qiu Z, Ohmori H (2000) Application of ELID grinding technique to precision machining of optics. Proc SPIE Int Soc Opt Eng 4231:218–223

    Google Scholar 

  80. Zhanga C, Ohmori H, Kato T, Morita N (2001) Evaluation of surface characteristics of ground CVDSiC using cast iron bond diamond wheels. Precis Eng 25:56–62

    Article  Google Scholar 

  81. Zhang B, Yang F, Wang J, Zhu Z, Monahan R (2000) Stock removal rate and workpiece strength in multi-pass grinding of ceramics. J Mater Process Technol 104:178–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkata Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Venkata Rao, R. (2011). Modeling and Optimization of Nano-finishing Processes. In: Advanced Modeling and Optimization of Manufacturing Processes. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-015-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-015-1_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-014-4

  • Online ISBN: 978-0-85729-015-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics