Skip to main content
  • 8485 Accesses

Micropositioning is required in many industrial segments as well as in everyday life. It is often utilized, without being recognized, in applications such as cars, cameras, or even when looking at internet pictures from space taken by telescopes. In such applications, small but accurate movements can significantly improve the performance and usability of the device. For scientific and engineering purposes micropositioning is widely used in research and production facilities such as AFM (atomic force microscope), SEM (scanning electron microscope), FIB (focused ion beam), micromanipulators (e.g., cell manipulators), active vibration dampers, and assembling and production devices, for example, in electronics and semiconductor manufacturing (Hubbard et al. 2006). Demand for wider and more efficient utilization of micropositioning is growing due to trends toward miniaturization in electronics as well as its wider exploitation in application fields.

There are several different materials and actuation schemes upon which micropositioning systems can be based. If especially small size, low forces, and high frequency are required for the system, electrostatic actuators are a good option. However, they are able to produce only a limited range of displacement with high voltage unless a comb structure instead of the basic capacitor plate configuration is employed. For low-voltage applications, thermal as well as magnetic actuators are widely used. Thermal actuators are usually comparable in size to electrostatic actuators but suffer also from a limited range of motion that usually has to be amplified mechanically. In contrast, magnetic and magnetostrictive actuators provide relatively large displacement but require the use of coils to generate the magnetic field and therefore can be bulky and expensive. Additionally, these approaches rely on actuation by current and therefore consume power while holding a static position.

In this chapter, the general properties and requirements of piezoelectric micropositioners, their control and sensor techniques, and some commercial applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adda C, Laurent GJ, Le Fort-Piat N (2005) Learning to control a real micropositioning system in the STM-Q framework. In: Proc 2005 IEEE Int Conf Robotics and Automation, IEEE, Piscataway, NJ, 4569-4574.

    Chapter  Google Scholar 

  • Allahverdi M, Danforth SC, Jafari M, Safari A (2001) Processing of advanced electroceramic components by fused deposition technique. J Eur Ceram Soc 21: 1485-1490.

    Article  Google Scholar 

  • Aloisi G, Santucci A, Carla M, Dolci D, Lanzi L (2006) Electronic linearization of piezoelectric actuators and noise budget in scanning probe microscopy. Rev Sci Instrum 77: 073701.

    Article  Google Scholar 

  • Ang WT, Garm ón A, Khosla PK, Riviere CN (2003) Modeling rate-dependent hysteresis in piezo-electric actuators. In: Proc 2003 IEEE/RSJ Int Conf Intelligent Robots and Systems, IEEE, Piscataway, NJ, 1975-1980.

    Google Scholar 

  • Bexell M, Johansson S (1999) Characteristics of a piezoelectric miniature motor. Sens Actuator A Phys 75: 118-130.

    Article  Google Scholar 

  • Canon Inc. (2006) EF lens work III. http://www.canon-europe.com/support/documents/digital slr educational tools/en/ef lens work iii en.asp (accessed 14 March 2007).

  • Choi HD, Kim JH, Kim S, Kwak YK (2005) Development of the piezoelectric motor using mo-mentum generated by bimorphs. Rev Sci Instrum 76: 105-109.

    Google Scholar 

  • Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40(11): 2145-2187.

    Article  Google Scholar 

  • Comstock RH (1981) Charge control of piezoelectric actuators to reduce hysteresis effects. U.S. Patent 4,263,527.

    Google Scholar 

  • Davis M, Damjanovic D, Hayem D, Setter N (2005) Domain engineering of the transverse piezo-electric coefficient in perovskite ferroelectrics. J Appl Phys 98: 014102.

    Article  Google Scholar 

  • Davis M, Damjanovic D, Setter N (2006) Temperature dependence of the direct piezoelectric effect in relaxor-ferroelectric single crystals: Intrinsic and extrinsic contributions. J Appl Phys 100: 084103.

    Article  Google Scholar 

  • Dinulovic D, Gatzen HH (2006) Microfabricated inductive micropositioning sensor for measure-ment of a linear movement. IEEE Sens J 6(6): 1482-1487.

    Article  Google Scholar 

  • Dynamic Structures & Materials LLC, Catalog. http://www.dynamic-structures.com/piezo actua-tors.html (accessed 13 March 2007).

  • Feddema JT, Simon RW (1998) Visual servoing and CAD-driven microassembly. IEEE Robot Autom Mag 5(4): 18-24.

    Article  Google Scholar 

  • Furuta A, Munekata M, Higuchi T (2002) Precise positioning stage driven by multilayer piezo actuator using strain gauge. Jpn J Appl Phys 41: 6283-6286.

    Article  Google Scholar 

  • Germano C (1971) Flexure mode piezoelectric transducers. IEEE Trans Audio Electroacoust 19(1): 6-12.

    Article  Google Scholar 

  • Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75(3): 949-982.

    Article  Google Scholar 

  • Haertling GH (1994) Rainbow ceramics - A new type of ultra-high-displacement actuator. Am Ceram Soc Bull 73(1): 93-96.

    Google Scholar 

  • Haertling GH (1997) Rainbow actuators and sensors: A new smart technology. In: Proc SPIE Int Soc for Optical Eng, SPIE, Bellingham, WA, 3040: 81-92.

    Google Scholar 

  • Haertling GH (1999) Ferroelectric ceramics: History and technology. J Am Ceram Soc 82(4): 797-818.

    Google Scholar 

  • Harb S, Smith ST, Chetwynd DG (1992) Subnanometer behavior of a capacitive feedback, piezoelectric displacement actuator. Rev Sci Instrum 63(2): 1680-1689. http://konicaminolta.com/about/research/core technology/picture/antiblur.html (accessed 8 February 2007). http://www.hexapods.net (accessed 18 April 2007).

  • Hubbard NB, Culpepper ML, Howell LL (2006) Actuators for micropositioners and nanoposition-ers. Appl Mech Rev 59(6): 324-334.

    Article  Google Scholar 

  • Kallio P, Lind M, Kojola H, Zhou Q, Koivo HN (1996) An actuation system for parallel link micromanipulators. In: Proc 1996 IEEE/RJS Int Conf Intelligent Robots and System, IEEE, New York, 2: 856-862.

    Google Scholar 

  • Kallio P, Zhou Q, Koivo HN (1998) Control issues in micromanipulation. In: Proc 1998 Int Symp Micromechatronics and Human Science, IEEE, Piscataway, NJ, 135-141.

    Google Scholar 

  • Kim KY, Park KH, Park HC, Goo NS, Yoon KJ (2005) Performance evaluation of lightweight piezo-composite actuators. Sens Actuator A Phys 120: 123-129.

    Article  Google Scholar 

  • Ko H-P, Kang C-Y, Kim J-S, Borodin SN, Kim S, Yoon S-J (2006) Constructions and charac-teristics of a tiny piezoelectric linear motor using radial mode vibrations. J Electroceram 17: 603-608.

    Article  Google Scholar 

  • Ku S-S, Pinsopon U, Cetinkunt S, Nakajima S-I (2000) Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner. IEEE-ASME Trans Mechatron 5 (3): 273-280.

    Article  Google Scholar 

  • Li G, Furman E, Haertling GH (1997) Stress-enhanced displacements in PLZT Rainbow actuators. J Am Ceram Soc 80(6): 1382-1388.

    Google Scholar 

  • Li X, Shih WY, Aksay IA (1999) Electromechanical behaviour of PZT-brass unimorphs. J Am Ceram Soc 82(7): 1733-1740.

    Article  Google Scholar 

  • Lv Y, Wei Y (2004) Study on open-loop precision positioning control of a micropositioning plat-form using a piezoelectrical actuator. In: Proc Fifth World Congress on Intelligent Control and Automation, IEEE, Piscataway, 1255-1259.

    Google Scholar 

  • MacLachlan BJ, Elvin N, Blaurock C, Keegan NJ (2004) Piezoelectric valve actuator for flexible diesel operation. In: Proc SPIE Int Soc Optical Eng, SPIE, Bellingham WA, 5388: 167-178.

    Google Scholar 

  • May WG (1975) Piezoelectric electromechanical translation apparatus. U.S. Patent 3,902,084.

    Google Scholar 

  • Morozov M, Damjanovic D, Setter N (2005) The nonlinearity and subswitching hysteresis in hard and soft PZT. J Eur Ceram Soc 25: 2483-2486.

    Article  Google Scholar 

  • Nakamura K, Ando H, Shimizu H (1987) Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Appl Phys Lett 50(20): 1413-1414.

    Article  Google Scholar 

  • Niezrecki C, Brei D, Balakrishnan S, Moskalik A (2001) Piezoelectric actuation: State of the art. Shock Vib Dig 33(4): 269-280.

    Article  Google Scholar 

  • Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelec-tric single crystals. J Appl Phys 82: 1804-1811.

    Article  Google Scholar 

  • Park T, Kim B, Kim M-H, Uchino K (2002) Characteristics of the first longitudinal-fourth bending mode linear ultrasonic motors. Jpn J Appl Phys 41: 7139-7143.

    Article  Google Scholar 

  • Pearce DH, Hooley A, Button TW (2002) On piezoelectric super-helix actuators. Sens Actuator A Phys 100: 281-286.

    Article  Google Scholar 

  • PI GmbH & Co (2001) Micropositioning, nanopositioning, nanoautomation solutions for cutting-edge technologies. PI catalog.

    Google Scholar 

  • Piezo Systems Inc. (2006) Catalog no. 7. http://www.piezo.com (accessed 13 March 2007).

  • Piezomechanik GmbH (2006) Catalogs. http://www.piezomechanik.com (accessed 13 March 2007).

  • Piezosystem jena GmbH Datasheets. http://www.piezojena.com (accessed 13 March 2007).

  • Pons JL, Rocon E (2006) Scaling of piezoelectric actuators: A comparision with traditional and other technologies. Bol Soc Esp Ceram Vidr 45(3): 132-138.

    Google Scholar 

  • Randall CA, Kelnberger A, Yang GY, Eitel RE, Shrout TR (2005) High strain piezoelectric multi-layer actuators - A material science and engineering challenge. J Electroceram 14: 177-191.

    Article  Google Scholar 

  • Ronkanen P, Kallio P, Koivo H (2002) Current control of piezoelectric actuators with power loss compensation. In: Proc 2002 IEEE/RSJ Int Conf Intelligent Robots and System, IEEE, Piscataway, NJ, 2: 1948-1953.

    Google Scholar 

  • Ru C-H, Sun L, Kong M-X (2005) Adaptive inverse control for piezoelectric actuator based on hys-teresis model. In: Proc Fourth Int Conf Machine Learning and Cybernetics, IEEE, Piscataway, NJ, 3189-3193.

    Google Scholar 

  • Sacconi A, Picotto GB, Pasin W (1999) The IMGC calibration setup for microdisplacement actu-ators. IEEE Trans Instrum Meas 48(2): 483-487.

    Article  Google Scholar 

  • Sawyer CB (1931) Piezoelectric device. U.S. Patent 1,802,782.

    Google Scholar 

  • Schaller R, Fantozzi G, Gremaud G (2001) Mechanical spectroscopy Q−1 2001: With applications to materials science. In: Materials Science Forum, vol. 366-368, Trans Tech, Switzerland.

    Google Scholar 

  • Schwartz RW, Moon Y-W (2001) Domain configuration and switching contributions to the en-hanced performance of Rainbow actuators. In: Proc Int Soc Optical Eng, SPIE, Bellingham WA, 4333: 408-417.

    Google Scholar 

  • Schwartz RW, Cross LE, Wang QM (2001) Estimation of the effective d31 coefficients of the piezoelectric layer in rainbow actuators. J Am Ceram Soc 84(11): 2563-2569.

    Article  Google Scholar 

  • Shen G, Wei Y (2006) Study on nonlinear model of piezoelectric actuator and accurate positioning control strategy. In: Proc Sixth World Congress on Intelligent Control and Automation, IEEE, Piscataway, NJ, 8356-8360.

    Google Scholar 

  • Spanner K (2006) Survey of the various operating principles of ultrasonic piezomotors. White pa-per available at http://www.piusa.us/technotes/actuator2006 surveyofthevariousoperatingprin-ciplesofultrasonicpiezomotors c.pdf.

  • Sun L, Ru C, Rong W (2004) Hysteresis compensation for piezoelectric actuator based on adaptive inverse control. In: Proc Fifth World Congress on Intelligent Control and Automation, IEEE, Piscataway, NJ, 5036-5039.

    Google Scholar 

  • Tan KK, Ng SC, Huang SN (2004) Assisted reproduction system using piezo actuator. In: Proc Int Conf Communications, Circuits and Systems IEEE, Piscataway, NJ, 2: 1200-1203.

    Google Scholar 

  • Tenzer PE, Mrad RB (2004) On amplification in inchworm precision positioners. Mechatronics 14: 515-531.

    Article  Google Scholar 

  • Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer Academic, Boston.

    Google Scholar 

  • Uchino K (1998) Piezoelectric ultrasonic motors: Overview. Smart Mater Struct 7: 273-285.

    Article  Google Scholar 

  • Uchino K, Yoshizaki M, Kasai K, Yamamura H, Sakai N, Asakura H (1987) “Monomorph actua-tors” using semiconductive ferroelectrics. Jpn J Appl Phys 26(7): 1046-1049.

    Google Scholar 

  • Uchino K, Cagatay S, Koc B, Dong S, Bouchilloux P, Strauss M (2004) Micro piezoelectric ultra-sonic motors. J Electroceram 13: 393-401.

    Article  Google Scholar 

  • Veeco Instruments Inc. (2003) SPM Training Notebook 004-130-00 Revision E.

    Google Scholar 

  • Veeco Instruments Inc. (2004) Dimension 3100 Manual Revision D.

    Google Scholar 

  • Wang Q-M, Cross LE (1998) Determination of Young’s modulus of the reduced layer of a piezo-electric RAINBOW actuator. J Appl Phys 83 (10): 5358-5363.

    Article  Google Scholar 

  • Wang Q-M, Cross LE (1999) Tip deflection and blocking force of soft PZT-based cantilever RAIN-BOW actuators. J Am Ceram Soc 82(1): 103-110.

    Article  Google Scholar 

  • Wolff A, Cramer D, Hellebrand H, Probst I, Lubitz K (1994) Optical two channel elongation mea-surement of PZT piezoelectric multilayer stack actuators. In Proc Ninth IEEE Int Symp Appl Ferroelectrics, IEEE, New York, pp 755-757.

    Google Scholar 

  • Wolny WW (2000) Piezoceramic thick films - Technology and applications state of the art in Europe. In: Proc IEEE 12th Int Symp Appl Ferroelectrics, IEEE, Piscataway, NJ, 1: 257-262.

    Google Scholar 

  • Yanagihara H, Sato Y, Mizuta J (1997) A study of DI diesel combustion under uniform higher-dispersed mixture formation. JSAE Rev 18(3): 247-254.

    Article  Google Scholar 

  • Zhang QM, Zhao J (1999) Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans Ultrason Ferroelectr Freq Control 46(6): 1518-1526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Juuti, J., Leinonen, M., Jantunen, H. (2008). Micropositioning. In: Safari, A., Akdoğan, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76540-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76540-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76538-9

  • Online ISBN: 978-0-387-76540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics