MEMS Wet-Etch Processes and Procedures

Chapter
Part of the MEMS Reference Shelf book series (MEMSRS, volume 1)

Abstract

Wet chemical etching through openings in photoresist or hard masks underlies many process sequences for MEMS device fabrication. This chapter presents more than 800 wet-etch recipes for over 400 varieties and combinations of substrates and deposited thin films, with emphasis on processes that use laboratory chemicals often found in university and industrial cleanrooms. Over 600 citations serve as additional resources for selecting or developing etchants suitable for processing MEMS devices. Nearly 40 tables, organized internally by material then by etch components, allow quick location and comparisons among recipes. Abbreviations for target materials and etch components are standardized to aid in comparisons. Etch rates and etch selectivities over other materials are given where available. While emphasizing silicon and other popular materials in the MEMS field, III-V compounds and more exotic materials are also presented.

Topics addressed include wet-etch principles and procedures; process architectures that incorporate wet-etch sequences; evaluation and development of wet-etch procedures and equipment with emphasis on safety and an anticipation of foundry transfer; oxide, nitride, silicon, polysilicon, and germanium isotropic etching; standard metal etching; nonstandard dielectric, semiconductor and metal etching; photoresist removal and wafer cleaning sequences; silicide etching; plastic and polymer etching; anisotropic silicon etching; bulk silicon and silicon–germanium etch stops; electrochemical etching and etch stops; photoassisted etching and etch stops; thin-film etch stops; sacrificial layer removal; porous silicon formation; layer delineation for failure analysis; and defect determination. Practical examples offer some of the finer nuances in the processes and procedures related to wet chemical etching. This chapter provides a practical and valuable guide for device designers and process developers to select or develop an etch for many types of MEMS and integrated MEMS devices.

References

  1. 1.
    S.A. Campbell, H.J. Lewerenz (Eds.): Semiconductor Micromachining, Vol. 1, Fundamental Electrochemistry and Physics (Wiley, Chichester, 1998)Google Scholar
  2. 2.
    S.A. Campbell, H.J. Lewerenz (Eds.): Semiconductor Micromachining, Vol. 2, Techniques and Industrial Applications (Wiley, Chichester, 1998)Google Scholar
  3. 3.
    A.R. Clawson: Guide to references on III–V semiconductor etching, Mater. Sci. Eng. 31, 1–438 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Elwenspoek, H.V. Jansen: Silicon Micromachining, Chapters 2, 7 (Cambridge University Press, Cambridge, 1998)Google Scholar
  5. 5.
    M. Gad-el-Hak (Ed.): MEMS: Design and Fabrication, Chapter 3 (CRC Press, Boca Raton, FL, 2006)Google Scholar
  6. 6.
    W.F. Gale, T.C. Totemeier (Eds.): Smithells Metals Reference Book, 8th edn (Elsevier, Amsterdam, 2004)Google Scholar
  7. 7.
    H. Geng (Ed.): Semiconductor Manufacturing Handbook, Chapter 11 (McGraw-Hill, New York, NY, 2005)Google Scholar
  8. 8.
    S.K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide, 2nd edn (Wiley, New York, NY, 1994)Google Scholar
  9. 9.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn (Krieger, Huntington, NY, 1971)Google Scholar
  10. 10.
    C.A. Harper (Ed.): Handbook of Materials and Processes for Electronics, Chapter 14 (McGraw-Hill, New York, NY, 1970)Google Scholar
  11. 11.
    K.R. Williams (Ed.): Etching, In R. Hull (Ed.): Properties of Crystalline Silicon, Chapter 16 (INSPEC, London, 1999)Google Scholar
  12. 12.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices (American Institute of Physics, New York, NY, 1995, originally published 1967)Google Scholar
  13. 13.
    M. Kohler: Etching in Microsystem Technology (Wiley-VCH, Weinheim, 1999)CrossRefGoogle Scholar
  14. 14.
    G.T.A. Kovacs: Micromachined Transducers Sourcebook, Chapter 2 (McGraw-Hill, Boston, MA, 1998)Google Scholar
  15. 15.
    M.J. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn (CRC Press, Boca Raton, FL, 2002)Google Scholar
  16. 16.
    L.I. Maissel, R. Glang (Eds.): Handbook of Thin Film Technology, Chapter 7 (McGraw-Hill, New York, NY, 1970)Google Scholar
  17. 17.
    Y. Nishi, R. Doering: Handbook of Semiconductor Manufacturing Technology, Chapter 8 (Marcel Dekker, New York, NY, 2000)Google Scholar
  18. 18.
    T. Ohmi (Ed.): Scientific Wet Process Technology for Innovative LSI/FPD Manufacturing (CRC Press, Boca Raton, FL, 2006)Google Scholar
  19. 19.
    P. Rai-Choudhury (Ed.): Handbook of Microlithography, Micromachining and Microfabrication, Vol. 2: Micromachining and Microfabrication, Chapter 2 (SPIE Press, Bellingham, WA, 1997)Google Scholar
  20. 20.
    K.A. Reinhardt, W. Kern (Eds.): Handbook of Silicon Wafer Cleaning Technology, 2nd edn (William Andrew, Norwich, NY, 2008)Google Scholar
  21. 21.
    G.V. Samsonov, I. M. Vinitskii: Handbook of Refractory Compounds, Chapter 6 (Plenum, New York, NY, 1980)CrossRefGoogle Scholar
  22. 22.
    S.M. Sze: Semiconductor Devices, Physics and Technology, Chapter 11 (Wiley, New York, NY, 1985)Google Scholar
  23. 23.
    S.M. Sze: Semiconductor Devices, Physics and Technology, 2nd edn, Chapter 12 (Wiley, New York, NY, 2002)Google Scholar
  24. 24.
    G.F. Vander Voort (Ed.): Metallography, Principles and Practice, Appendix G and others (McGraw-Hill, New York, NY, 1984)Google Scholar
  25. 25.
    J.L. Vossen, W. Kern (Eds.): Thin Film Processes, Chapter V-1 (Academic, New York, NY, 1978)Google Scholar
  26. 26.
    P. Walker, W. H. Tarn (Eds.): CRC Handbook of Metal Etchants (CRC Press, Boca Raton, FL, 1991)Google Scholar
  27. 27.
    K.R. Williams, R.S. Muller: Etch rates for micromachining processing, J. Micromech. Syst. 5(4), 256–269 (1996)CrossRefGoogle Scholar
  28. 28.
    K.R. Williams, K. Gupta, M. Wasilik: Etch rates for micromachining processing – Part II, J. Micromech. Syst. 12(6), 761–778 (2003)CrossRefGoogle Scholar
  29. 29.
    R. Williams: Modern GaAs Processing Methods, Chapter 5 (Artech House, Boston, MA, 1990)Google Scholar
  30. 30.
    S. Wolf, R.N. Tauber: Silicon Processing for the VLSI Era, Volume 1: Process Technology, Chapter 15 (Lattice Press, Sunset Beach, CA, 1986)Google Scholar
  31. 31.
    Facilities that may offer suitable foundry services for MEMS devices include: Colibrys (http://www.colibrys.com/, accessed December 24, 2010); Dalsa (http://www.dalsa.com/semi/technology/mems.aspx, accessed December 24, 2010); ELMOS SMI (http://www.si-micro.com/, accessed December 24, 2010); IMT (http://www.imtmems.com/, accessed December 24, 2010); MEMS and Nanotechnology Exchange (http://www.mems-exchange.org, accessed December 24, 2010); MemsTech (http://www.memstech.com/, accessed December 24, 2010); Micralyne (http://www.micralyne.com/, accessed December 24, 2010); Sandia National Laboratories (http://mems.sandia.gov/about/fabrication.html, accessed December 24, 2010); Silex (http://www.silexmicrosystems.com/, accessed December 24, 2010); MEMSCap (http://www.semiconductor-technology.com/projects/memscap/, accessed December 24, 2010); Sony Semiconductor Kyushu (http://www.sony.net/Products/SC-HP/memswld/index.html, accessed December 24, 2010); SVTC (http://www.svtc.com/, accessed December 24, 2010); Tanner (http://www.tanner.com/Labs/mems/, accessed December 24, 2010); Tronics (http://www.tronicsmems.com/, accessed December 24, 2010); and others.
  32. 32.
    E.J.J. Kruglick, A.L. Cohen, C.A. Bang: EFAB™ Technology and Applications, In M. Gad-el-Hak (Ed.), MEMS: Design and Fabrication, Chapter 6 (CRC Press, Boca Raton, FL, 2006)Google Scholar
  33. 33.
    K.A. Reinhardt, W. Kern (Eds.): Handbook of Silicon Wafer Cleaning Technology, 2nd edn., Chapter 2 (William Andrew, Norwich, NY, 2008)Google Scholar
  34. 34.
    Nanometrics, Inc.: http://www.nanometrics.com, accessed December 24, 2010
  35. 35.
    KLA-Tencor: http://www.kla-tencor.com, accessed December 24, 2010
  36. 36.
    Veeco Instruments: http://www.veeco.com, accessed December 24, 2010
  37. 37.
    Mitutoyo, Inc.: http://www.mitutoyo.com, accessed December 24, 2010
  38. 38.
    National Nanotechnology Infrastructure Network: http://www.nnin.org/nnin_overview.html, accessed December 24, 2010
  39. 39.
    See for example, MEMS and Nanotechnology Exchange, http://www.mems-exchange.org, accessed December 24, 2010
  40. 40.
    Transene Company, Inc., Danvers, MA 01923: Electronic Grade Chemicals, http://www.transene.com/elec_grade.html, accessed December 24, 2010
  41. 41.
    W.R. Runyan, K.E. Bean: Semiconductor Integrated Circuit Processing Technology, Chapter 6 (Addison-Wesley, Reading, MA, 1990)Google Scholar
  42. 42.
    H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, T. Ohmi: Principles of wet chemical processing in ULSI microfabrication, IEEE Trans. Semicond. Manuf. 4(1), 26–35 (1991)CrossRefGoogle Scholar
  43. 43.
    J. Buhler, F.-P. Steiner, H. Baltes: Silicon dioxide sacrificial layer etching in surface micromachining, J. Micromech. Microeng. 7, R1–R13 (1997)CrossRefGoogle Scholar
  44. 44.
    See, for example, Cyantek Corp. (http://www.cyantek.com, accessed December 24, 2010); J.T. Baker (http://www.mallbaker.com, accessed December 24, 2010); Sigma-Aldrich, Inc. (http://www.sigmaaldrich.com, accessed December 24, 2010); and Transene Company, Inc. (http://www.transene.com, accessed December 24, 2010)
  45. 45.
    F. Beck: Integrated Circuit Failure Analysis, A Guide to Preparation Techniques (Wiley, Chichester, 1998)Google Scholar
  46. 46.
    M. Wong, M.M. Moslehi, R.A. Bowling: Wafer Temperature dependence of the vapor-phase HF oxide etch, J. Electrochem. Soc. 140(1), 205–208 (1993)CrossRefGoogle Scholar
  47. 47.
    D.J. Monk, D.S. Soane, R.T. Howe: Determination of the etching kinetics for the hydrofluoric acid/silicon dioxide system, J. Electrochem. Soc. 140(8), 2339–2346 (1993)CrossRefGoogle Scholar
  48. 48.
    W.P. Eaton, R.L. Jarecki, J.H. Smith: Prediction of Release-Etch Times for Surface-Micromachined Structures, 1997 Interational Conference on Solid-State Sensors and Actuators, Transducers ’97, pp. 249–252 (Chicago, IL, June 16–19, 1997)Google Scholar
  49. 49.
    R.A. Haken, I.M. Baker, J.D.E. Beynon: An Investigation into the dependence of the chemically-etched edge profiles of silicon dioxide films on etchant concentration and temperature, Thin Solid Films 18(1), S3–S6 (1973)CrossRefGoogle Scholar
  50. 50.
    K.S. Lebouitz, R.T. Howe, A.P. Pisano: Permeable Polysilicon Etch-Access Windows for Microshell Fabrication, 1995 International Conference on Solid-State Sensors and Actuators, Transducers ’95, pp. 224–227 (Stockholm, Sweden, June 25–29, 1995)Google Scholar
  51. 51.
    Stanford Nanofabrication Facility: Wet Etch Rates for Various Non-Metal Films, http://snf.stanford.edu/Process/WetProcessing/WetER1.html, accessed December 24, 2010
  52. 52.
    J.T. Moore, D.L. Chapek: Trench Isolation for Semiconductor Devices, U.S. Patent No. 7.245,856, 2007Google Scholar
  53. 53.
    G.F. Vander Voort: Metallography, Principles and Practice (McGraw-Hill, New York, NY, 1984, reprinted 1999, Appendix G)Google Scholar
  54. 54.
    F.S. Becker, S. Rohl: Low pressure deposition of doped SiO2 by pyrolysis of tetraethylorthosilicate (TEOS), J. Electrochem. Soc. 134(11) 2923–2931 (1987)CrossRefGoogle Scholar
  55. 55.
    Transene Company, Inc., Danvers, MA 01923: Silicon Dioxide (SiO2) Etchants, http://www.transene.com/sio2.html, accessed December 24, 2010
  56. 56.
    T.J. Cotler, J. Chapple-Sokol: High quality plasma-enhanced chemical vapor deposited silicon nitride films, J. Electrochem. Soc. 140(7), 2071–2075 (1993)CrossRefGoogle Scholar
  57. 57.
    L.I. Maissel, R. Glang (Eds.): Handbook of Thin Film Technology (McGraw-Hill, New York, NY, 1970)Google Scholar
  58. 58.
    Transene Company, Inc., Danvers, MA 01923: http://www.transene.com/al2o3.html, accessed December 24, 2010
  59. 59.
    M. Reiche, G. Wagner: Wafer Thinning: Techniques for Ultra-Thin Wafers, Advanced Packaging, March 2003, http://ap.pennnet.com/Articles/Article_Display.cfm?Section=Articles&Subsection=Display&ARTICLE_ID=169369, accessed December 24, 2010
  60. 60.
    H. Robbins, B. Schwartz: Chemical etching of silicon I. The system HF, HNO3, H2O, and HC2C3O2, J. Electrochem. Soc. 106(6), 505–508 (1959)CrossRefGoogle Scholar
  61. 61.
    H. Robbins, B. Schwartz: Chemical etching of silicon II. The system HF, HNO3, H2O, and HC2C3O2, J. Electrochem. Soc. 107(2), 108–111 (1960)CrossRefGoogle Scholar
  62. 62.
    B. Schwartz, H. Robbins: Chemical etching of silicon IV. Etching technology, J. Electrochem. Soc. 123(12), 1903–1909 (1976)CrossRefGoogle Scholar
  63. 63.
    T.-J. King, R.T. Howe, S. Sedky, G. Liu, B.C.-Y. Lin, M. Wasilik, C. Duenn: Recent Progress in Modularly Integrated MEMS Technologies, International Electron Devices Meeting, pp. 199–202 (San Francisco, CA, December 8–11, 2002)Google Scholar
  64. 64.
    P.R. Camp: A study of the etching rate of single-crystal germanium, J. Electrochem. Soc. 102(10), 586–593 (1955)CrossRefGoogle Scholar
  65. 65.
    S. Kagawa, T. Mikawa, T. Kaneda: Chemical etching of germanium with H3PO4-H2O2-H2O solution, Jpn. J. Appl. Phys. 21(11), 1616–1618 (1982)CrossRefGoogle Scholar
  66. 66.
    J.L. Vossen, W. Kern, Eds.: Thin Film Processes, Chapter V-1, Table IV (Academic, New York, NY, 1978)Google Scholar
  67. 67.
    J. Bloem, J.C. van Vessem: Etching Ge with mixtures of HF-H2O2-H2O, J. Electrochem. Soc. 109(1), 33–36 (1962)CrossRefGoogle Scholar
  68. 68.
    B. Schwartz, H. Robbins: Chemical etching of germanium in solutions of HF, HNO3, H2O, and HC2H3O2, J. Electrochem. Soc. 111(2), 196–201 (1960)CrossRefGoogle Scholar
  69. 69.
    G.R. Booker, R. Stickler: Method of preparing Si and Ge specimens for examination by transmission electron microscopy, Brit. J. Appl. Phys. 13, 446–448 (1962)CrossRefGoogle Scholar
  70. 70.
    B. Tuck: The chemical polishing of semiconductors, J. Mater. Sci. 10, 321–339 (1975)CrossRefGoogle Scholar
  71. 71.
    S.K. Ghandhi, J.E. Ayers: Chemical etching of germanium, J. Electrochem. Soc. 135(8), 2053–2054 (1988)CrossRefGoogle Scholar
  72. 72.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 11 (Krieger, Huntington, NY, 1971)Google Scholar
  73. 73.
    D.P. Brunco et al.: Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance, J. Electrochem. Soc. 155(7), H552–H561 (2008)CrossRefGoogle Scholar
  74. 74.
    Transene Company, Inc., Danvers, MA 01923: Reagent Semiconductor Etchants, http://www.transene.com/si.html, accessed December 24, 2010; see also http://www.transene.com/etchants.html, accessed December 24, 2010
  75. 75.
    X.-Q. Wang, X. Yang, K. Walsh, Y.-C. Tai: Gas-Phase Silicon Etching with Bromine Trifluoride, 1997 International Conference on Solid-State Sensors and Actuators, Transducers ’97, pp. 1505–1508 (Chicago, IL, June 16–19, 1997)Google Scholar
  76. 76.
    T. Mills: Precision VLSI Cross Sectioning and Staining, Proceedings of 21st Annual Reliability Physics Symposium, pp. 324–331 (Phoenix, AZ, April 5–7, 1983)Google Scholar
  77. 77.
    J. Vossen, W. Kern (Eds.): Thin Film Processes, Chapter V-1, Table III (Academic, New York, NY, 1978)Google Scholar
  78. 78.
    G. Jia, M.J. Madou: MEMS Fabrication, in The MEMS Handbook, MEMS Design and Fabrication, 2nd edn., vol. 2, Chapter 3 (M. Gad-el-Hak (Ed.), CRC/Taylor and Francis, Boca Raton, FL, 2006)Google Scholar
  79. 79.
    M.M. Hussain, N. Moumen, Z. Zhang, B.F. Womack: Metal wet etch issues and effects in dual metal gate stack integration, J. Electrochem. Soc. 153(5), G389–G393 (2006)CrossRefGoogle Scholar
  80. 80.
    L.J. Stinson: Sulfur hexafluoride etching effects in silicon, J. Electrochem. Soc. 123(4), 551–555 (1976)CrossRefGoogle Scholar
  81. 81.
    XACTIX, Inc., Pittsburgh, PA: Unique Capabilities of Xenon Difluoride for Releasing MEMS, http://www.xactix.com/XeF2_Unique.pdf, accessed December 24, 2010
  82. 82.
    R.J. Bicchieri: Standard Operating Procedure for XeF2 Etcher, Aug. 2007, http://www-mtl.mit.edu/services/fabrication/sops/xef2.pdf, accessed December 24, 2010
  83. 83.
    Transene Company, Inc., Danvers, MA 01923: Reagent Semiconductor Etchants, http://www.transene.com/si.html, accessed December 24, 2010
  84. 84.
    K.D. Hobart, F.J. Kub, G.G. Jernigan, M.E. Twigg, P.E. Thompson: Fabrication of SOI substrates with ultra-thin si layers, Electron. Lett. 34(12), 1265–1267 (1998)CrossRefGoogle Scholar
  85. 85.
    T.K. Carns, M.O. Tanner, K.L. Wang: Chemical etching of Si1-xGex in HF:H2O2:CH3COOH, J. Electrochem. Soc. 142(4), 1260–1266 (1995)CrossRefGoogle Scholar
  86. 86.
    A.H. Krist, D.J. Godbey, Green: Selective removal of a Si0.7Ge0.3 layer from Si(100), Appl. Phys. Lett. 58(17), 1899–1901 (1991)CrossRefGoogle Scholar
  87. 87.
    D.J. Godbey, A.H. Krist, K.D. Hobart, M.E. Twigg: Selective removal of Si1-xGex from (100) Si using HNO3 and HF, J. Electrochem. Soc. 139(10), 2943–2947 (1992)CrossRefGoogle Scholar
  88. 88.
    F.S. Johnson, D.S. Miles, D.T. Grider, J.J. Wortman: Selective chemical etching of polycrystalline SiGe alloys with respect to Si and SiO2, J. Electron. Mater. 21(8), 805–810 (1992)CrossRefGoogle Scholar
  89. 89.
    D. Westberg, O. Paul, G.I. Andersson, H. Baltes: Surface micromachining by sacrificial aluminum etching, J. Micromech. Microeng. 6, 376–384 (1996)CrossRefGoogle Scholar
  90. 90.
    B.A. Ganji, B.Y. Majilis: Deposition and Etching of Diaphragm and Sacrificial Layer in Novel MEMS Capacitive Microphone Structure, IEEE International Conference on Semiconductor Electronics, ICSE 2008, pp. 232–238 (Johor Bahru, Malaysia, November 25–27, 2008)Google Scholar
  91. 91.
    J.J. Kelly, C.H. de Minjer: An electrochemical study of undercutting during etching of duplex metal films, J. Electrochem. Soc. 122(7), 931–936 (1975)CrossRefGoogle Scholar
  92. 92.
    C.A. Harper (Ed.): Handbook of Materials and Processes for Electronics, Chapter 14, Table 31, pp. 14–55 (McGraw-Hill, New York, NY, 1970)Google Scholar
  93. 93.
    P.T.J. Gennissen, P.J. French: Sacrificial Oxide Etching Compatible with Aluminum Metallization, 1997 International Conference on Solid-State Sensors and Actuators, Transducers ’97, pp. 225–228 (Chicago, IL, June 16–19, 1997)Google Scholar
  94. 94.
    Transene Company, Inc., Danvers, MA 01923: Aluminum Etchants, http://www.transene.com/aluminum.html, accessed December 24, 2010; see also Etchant/Metal Compatibility Chart, http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  95. 95.
    Stanford Nanofabrication Facility: Metal Wet Bench Operating Instructions, http://snf.stanford.edu/Equipment/wbmetal/Operation.html, accessed December 24, 2010
  96. 96.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 12 (American Institute of Physics, New York, NY, 1995, originally published 1967)Google Scholar
  97. 97.
    R.A. Levy (Ed.): Microelectronic Materials and Processes, Chapter 7 (Springer, New York, NY, 1989)Google Scholar
  98. 98.
    W.E. Beadle, J.C.C. Tsai, R.D. Plummer (Eds.): Quick Reference Manual for Silicon Integrated Circuit Technology, Chapter 5 (Wiley, New York, NY, 1985)Google Scholar
  99. 99.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 29 (Krieger, Huntington, NY, 1971)Google Scholar
  100. 100.
    J.L. Vossen, W. Kern (Eds.): Thin Film Processes, Chapter V-1, Table XIV (Academic, New York, NY, 1978)Google Scholar
  101. 101.
    A.E. Morgan, E.K. Broadbent, M. Delfino, B. Coulman, D.K. Sadana: Characterization of a self-aligned cobalt silicide process, J. Electrochem. Soc. 134(4), 925–935 (1987)CrossRefGoogle Scholar
  102. 102.
    Transene Company, Inc., Danvers, MA 01923: Titanium Etchants, http://www.transene.com/ti.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  103. 103.
    Transene Company, Inc., Danvers, MA 01923: Ti-Tungsten TiW-30, http://www.transene.com/tiw.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  104. 104.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 9 (American Institute of Physics, New York, NY, 1995, originally published 1967)Google Scholar
  105. 105.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 30 (Krieger, Huntington, NY, 1971)Google Scholar
  106. 106.
    Transene Company, Inc., Danvers, MA 01923: Tungsten Etchant – TWF, http://www.transene.com/mo.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  107. 107.
    Stanford Nanofabrication Facility: Tweezer Cleaning Procedures, http://snf.stanford.edu/Process/WetProcessing/TweezerCln.html, accessed December 24, 2010
  108. 108.
    UCSB Nanofabrication Facility: Organic Removal, http://www.nanotech.ucsb.edu/index.php?option=com_content&view=article&id=163, accessed December 24, 2010
  109. 109.
    K.A. Reinhardt, W. Kern (Eds.): Handbook of Silicon Wafer Cleaning Technology, 2nd edn., Chapter 4 (William Andrew, Norwich, NY, 2008)Google Scholar
  110. 110.
    MEMS and Nanotechnology Exchange: Photoresist Strip (O2 plasma), http://www.mems-exchange.org/catalog/P3704, accessed December 24, 2010
  111. 111.
    Washington Technology Center: Chemical Use Standard Operating Procedure Revision E, http://www.watechcenter.org/downloads/Chemical_Use.pdf, accessed December 24, 2010; see also Eric Miller, Solvent Strip Operating Procedure, Rev. 1.2, http://www.watechcenter.org/downloads/Solvent_Strip_Operation_Procedure_1_1.pdf, accessed December 24, 2010
  112. 112.
    UCSB Nanofabrication Facility: Standard Pre-Lithography Cleaning Process, http://www.nanotech.ucsb.edu/index.php?option=com_content&view=article&id=160, accessed December 24, 2010
  113. 113.
    Personal communication: David W. Burns (January, 2009)Google Scholar
  114. 114.
    Microelectronics Research Center, Georgia Institute of Technology: Wet Resist Stripping, http://grover.mirc.gatech.edu/processing/processmenu.php?m=p&l=4&s=4, accessed December 24, 2010
  115. 115.
    Microelectronics Research Center, Georgia Institute of Technology: Simple Clean, http://grover.mirc.gatech.edu/processing/processmenu.php?m=p&l=3&s=2, accessed December 24, 2010
  116. 116.
    UCSB Nanofabrication Facility, UC Santa Barbara: Particulate Removal, http://www.nanotech.ucsb.edu/index.php?option=com_content&view=article&id=162, accessed December 24, 2010
  117. 117.
    W. Kern, D.A. Puotinen: Cleaning solutions based on hydrogen peroxide for use in semiconductor technology, RCA Rev. 31(2), 187–206 (1970)Google Scholar
  118. 118.
    C.Y. Chang, S.M. Sze (Eds.): ULSI Technology, Chapter 2 (McGraw-Hill, New York, NY, 1996)Google Scholar
  119. 119.
    W. Kern (Ed.): Handbook of Semiconductor Wafer Cleaning Technology (Noyes, Park Ridge, NJ, 1993)Google Scholar
  120. 120.
    G. Ouimet, D.L. Rath, S.L. Cohen, E.E. Fisch, G.W. Gale: Defect reduction and cost savings through re-inventing RCA cleans, Advanced Semiconductor Manufacturing Conference and Workshop, 12–14, pp. 308–313 (Cambridge, MA, Nov. 12–14, 1996)Google Scholar
  121. 121.
    Virginia Semiconductor, Inc.: Wet-Chemical Etching and Cleaning of Silicon, http://www.virginiasemi.com/pdf/siliconetchingandcleaning.pdf, accessed December 24, 2010
  122. 122.
    Stanford Nanofabrication Facility: Wet Bench Diffusion, wbdiff, http://https://snf.stanford.edu/SNF/equipment/wet-benches/wet-bench-diffusion/Wet%20Bench%20Diffusion, accessed December 24, 2010
  123. 123.
    M. Bartur, M.-A. Nicolet: Thermal oxidation of transition metal silicides on Si: Summary, J. Electrochem. Soc. 131(2), 371–375 (1984)CrossRefGoogle Scholar
  124. 124.
    H. Jiang, C.S. Petersson, M.-A. Nicolet: Thermal oxidation of transition metal silicides, Thin Solid Films 140, 115–129 (1986)CrossRefGoogle Scholar
  125. 125.
    S.P. Murarka: Refractory silicides for integrated circuits, J. Vac. Sci. Technol. 17(4), 775–792 (1980)CrossRefGoogle Scholar
  126. 126.
    T.P. Chow, A.J. Steckl: Refractory metal silicides: Thin-film properties and processing technology, IEEE Trans. Electron Dev. ED-30(11), 1480–1497 (1983)CrossRefGoogle Scholar
  127. 127.
    S.P. Murarka: Silicides for VLSI Applications (Academic, New York, NY, 1983)Google Scholar
  128. 128.
    P. Rosser, G. Tomkins: Silicides for VLSI interconnects, Vacuum 35(10–11), 419–434 (1985)CrossRefGoogle Scholar
  129. 129.
    H.C. Gatos, M.C. Lavine: Characteristics of the {111} surfaces of the III-V intermetallic compounds, J. Electrochem. Soc. 107(5), 427–433 (1960)CrossRefGoogle Scholar
  130. 130.
    J. Fastenau, E. Ozbay, G. Tuttle, F. Laabs: Epitaxial lift-off of thin InAs layers, J. Electron. Mater. 24(6), 757–760 (1995)CrossRefGoogle Scholar
  131. 131.
    A.F. Morpurgo, B.J. van Wees, T.M. Klapwijk, G. Borghs: Submicron processing of InAs based quantum wells: A new, highly selective wet etchant for AlSb, Appl. Phys. Lett. 70(11), 1435–1437 (1997)CrossRefGoogle Scholar
  132. 132.
    A. Herczog, R.R. Haberecht, A.E. Middleton: Preparation and properties of aluminum antimonide, J. Electrochem. Soc. 105(9), 533–540 (1958)CrossRefGoogle Scholar
  133. 133.
    C. Gatzke, S.J. Webb, K. Fobelets, R. . Stradling: In situ Raman spectroscopy of the selective etching of antimonides in GaSb/AlSb/InAs heterostructures, Semicond. Sci. Technol. 13, 399–403 (1998)CrossRefGoogle Scholar
  134. 134.
    E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat: Extreme selectivity in the lift-off of epitaxial GaAs films, Appl. Phys. Lett. 51(26), 2222–2224 (1987)CrossRefGoogle Scholar
  135. 135.
    J.-H. Kim, D.H. Lim, G.M. Yang: Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch, J. Vac. Sci. Technol. B 16(2), 558–560 (1998)CrossRefGoogle Scholar
  136. 136.
    L.H. Guan, M.S. Jusoh, A. Dolah, A. Yusof, M.R. Yahya, B.Y. Majlis: The Study of Etching Selectivity between InGaAs and AlGaAs in Acid Based Etching Solution, ICSE 2004 Proceedings, pp. 423–426 (Kuala Lumpur, December 7–9, 2004)Google Scholar
  137. 137.
    T. Wipiejewski, K.J. Ebeling: In situ controlled wet chemical etching of layered AlGaAs structures with interferometric accuracy, J. Electrochem. Soc. 140(7), 2028–2033 (1993)CrossRefGoogle Scholar
  138. 138.
    A.G. Baca, C.I.H. Ashby (Eds.): Fabrication of GaAs Devices, Chapter 4 (Institution of Electrical Engineers, London, 2005)Google Scholar
  139. 139.
    T.R. Stewart, D.P. Bour: Chemical etching of (AlxGa1-x)0.5In0.5P using sulfuric and hydrochloric acids, J. Electrochem. Soc. 139(4), 1217–1219 (1992)CrossRefGoogle Scholar
  140. 140.
    J.W. Lee, C.J. Santana, C.R. Abernathy, S.J. Pearton, F. Ren: Wet chemical etch solutions for AlxGa1-xP, J. Electrochem. Soc. 143(1), L1–L3 (1996)CrossRefGoogle Scholar
  141. 141.
    J.W. Lee, C.J. Santana, C.R. Abernathy, S.J. Pearton: Investigation of Wet Chemical Etching of InGaAlP Alloys, Proceedings of the Symposium on Wide Bandgap Semiconductors and Devices, pp. 316–326 (Chicago, IL, October 8–13, 1995)Google Scholar
  142. 142.
    C. Yi, T.-H. Kim, A.S. Brown: InP-based AlInAs/GaAs0.51Sb0.49/GaInAs single heterojunction bipolar transistor for high-speed and RF wireless applications, J. Electron. Mater. 31(2), 95–98 (2002)CrossRefGoogle Scholar
  143. 143.
    C.B. Vartuli, S.J. Pearton, J.W. Lee, C.R. Abernathy, J.D. Mackenzie, J.C. Zolper, R.J. Shul: Wet chemical etching of AlN and InAlN in KOH solutions, J. Electrochem. Soc. 143(11), 3681–3684 (1996)CrossRefGoogle Scholar
  144. 144.
    J.R. Lothian, J.M. Kuo, W.S. Hobson: Wet and dry etching characteristics of Al0.5In0.5P, J. Vac. Sci. Technol. B 10(3), 1061–1065 (1992)CrossRefGoogle Scholar
  145. 145.
    D. Zhuang, J.H. Edgar: Wet etching of GaN, AlN, and SiC – A review, Mater. Sci. Eng. Rep. 48(1), 1–46 (2005)CrossRefGoogle Scholar
  146. 146.
    J.R. Mileham, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, R.J. Shul, S.P. Kilcoyne: Wet chemical etching of AlN, Appl. Phys. Lett. 67(8), 1119–1121 (1995)CrossRefGoogle Scholar
  147. 147.
    N. Setter (Ed.): Electroceramic-Based MEMS: Fabrication-Technology and Applications, Chapter 13 (Springer, New York, NY, 2005)Google Scholar
  148. 148.
    K.M. Taylor, C. Lenie: Some properties of aluminum nitride, J. Electrochem. Soc. 107(4), 308–314 (1960)CrossRefGoogle Scholar
  149. 149.
    T.L. Chu, R.W. Kelm, Jr.: The preparation and properties of aluminum nitride films, J. Electrochem. Soc. 122(7), 995–1000 (1975)CrossRefGoogle Scholar
  150. 150.
    A. Reisman, M. Berkenblit, S. Zirinsky, S.A. Chan: The etching of crystallographically determined orifices in sapphire, J. Electrochem. Soc. 126(6), 1004–1008 (1979)CrossRefGoogle Scholar
  151. 151.
    A. Reisman, M. Berkenblit, J. Cuomo, S.A. Chan: The chemical polishing of sapphire and MgAl spinel, J. Electrochem. Soc. 118(10), 1653–1657 (1971)CrossRefGoogle Scholar
  152. 152.
    B. Zhou, W.F. Ramirez: Kinetics and modeling of wet etching of aluminum oxide by warm phosphoric acid, J. Electrochem. Soc. 143(2), 619–623 (1996)CrossRefGoogle Scholar
  153. 153.
    P.J. Tsang, R.M. Anderson, S. Cvikevich: Amorphous CVD Al2O3 films by Ta-doping and their physicochemical properties, J. Electrochem. Soc. 123(1), 57–63 (1976)CrossRefGoogle Scholar
  154. 154.
    L.I. Berger: Semiconductor Materials, Chapter 4 (CRC Press, Boca Raton, FL, 1997)Google Scholar
  155. 155.
    G.F. Vander Voort (Ed.): Metallography, Principles and Practice, Appendix I (McGraw-Hill, New York, NY, 1984)Google Scholar
  156. 156.
    H. Cordes, K. Kim: Self-diffusion in antimony, J. Appl. Phys. 37(4), 2181 (1966)CrossRefGoogle Scholar
  157. 157.
    H.B. Huntington, P.G. Ghate, J.H. Rosolowski: Self-diffusion in antimony, J. Appl. Phys. 35(10), 3027–3032 (1964)CrossRefGoogle Scholar
  158. 158.
    J.H. Wernick, J.N. Hobstetter, L.C. Lovell, D. Dorsi: Dislocation etch pits in antimony, J. Appl. Phys. 29(7), 1013–1018 (1958)CrossRefGoogle Scholar
  159. 159.
    M.N. Shetty, J.B. Taylor: Dislocation etch pits in arsenic, J. Appl. Phys. 39(8), 3717–3722 (1968)CrossRefGoogle Scholar
  160. 160.
    M.F. Ehman, S.B. Austerman: Dislocation etchant for beryllium oxide, J. Am. Ceram. Soc. 56(7), 382–384 (1973)CrossRefGoogle Scholar
  161. 161.
    S.B. Austerman, J.B. Newkirk, D.K. Smith, H.W. Newkirk: Etching studies of beryllium oxide crystals, J. Mater. Sci. 2(4), 378–387 (1967)CrossRefGoogle Scholar
  162. 162.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 5 (Krieger, Huntington, NY, 1971)Google Scholar
  163. 163.
    M.J. Rand, J.F. Roberts: Preparation and properties of thin film boron nitride, J. Electrochem. Soc. 115(4), 423–429 (1968)CrossRefGoogle Scholar
  164. 164.
    R. Korn, G. Seyd, U. Paulsen: Cleaning Contaminated Surfaces of Nuclear Power Plants and Recovery of Removed Surface Particles, U.S. Patent. No. 3,895,465Google Scholar
  165. 165.
    L.M. Su, N. Grote, F. Schmitt: Diffused planar InP bipolar transistor with a cadmium oxide film emitter, Electron. Lett. 20(18), 716–717 (1984)CrossRefGoogle Scholar
  166. 166.
    P.K. Nair, O.G. Daza, A.A.-C. Readigos, J. Campos, M.T.S. Nair: Formation of conductive CdO layer on CdS thin films during air heating, Semicond. Sci. Technol. 16(8), 651–656 (2001)CrossRefGoogle Scholar
  167. 167.
    W. Wohlmuth, I. Adesida: Properties of R. F. magnetron sputtered cadmium-tin-oxide and indium-tin-oxide thin films, Thin Solid Films 479, 223–231 (2005)CrossRefGoogle Scholar
  168. 168.
    E.P. Warekois, M.C. Lavine, A.N. Mariano, H.C. Gatos: Crystallographic polarity in the II-VI compounds, J. Appl. Phys. 33(2), 690–696 (1962)CrossRefGoogle Scholar
  169. 169.
    M.V. Sullivan, W.R. Bracht: Chemical polishing of cadmium sulfide, J. Electrochem. Soc. 114(3), 295–297 (1967)CrossRefGoogle Scholar
  170. 170.
    J. Sarlund, M. Ritala, M. Leskela, E. Siponmaa, R. Zilliacus: Characterization of etching procedure in preparation of CdTe solar cells, Sol. Energy Mater. Sol. Cells 44, 177–190 (1996)CrossRefGoogle Scholar
  171. 171.
    M. Inoue, I. Teramoto, S. Takayanagi: Etch pits and polarity in CdTe crystals, J. Appl. Phys. 33(8), 2578–2582 (1962)CrossRefGoogle Scholar
  172. 172.
    P. Gaugash, A.G. Milnes: Etching of cadmium telluride, J. Electrochem. Soc. 128(4), 924–926 (1981)CrossRefGoogle Scholar
  173. 173.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 4 (American Institute of Physics, New York, NY, 1995, originally published 1967)Google Scholar
  174. 174.
    J. Enlund, J. Isberg, M. Karlsson, F. Nikolajeff, J. Olsson, D.J. Twitchen: Anisotropic dry etching of boron doped single crystal CVD diamond, Carbon 43, 1839–1842 (2005)CrossRefGoogle Scholar
  175. 175.
    Transene Company, Inc., Danvers, MA 01923: http://www.transene.com/fto.htm, accessed January 3, 2009
  176. 176.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 10 (Krieger, Huntington, NY, 1971)Google Scholar
  177. 177.
    P.H. Holloway, G.E. McGuire: Handbook of Compound Semiconductors: Growth, Processing, Characterization, and Devices, Chapter 8 (Noyes, Park Ridge, NJ, 1995)Google Scholar
  178. 178.
    C.A. Harper (Ed.): Handbook of Materials and Processes for Electronics, Chapter 7, Table 27 (McGraw-Hill, New York, NY, 1970)Google Scholar
  179. 179.
    J.W. Faust Jr, A. Sagar: Effect of the polarity of the III-V intermetallic compounds on etching, J. Appl. Phys. 31(2), 331–333 (1960)CrossRefGoogle Scholar
  180. 180.
    S.J. Silverman: Junction delineation in GaSb by differential chemical etch rate, J. Electrochem. Soc. 109(2), 166–168 (1962)CrossRefGoogle Scholar
  181. 181.
    D.N. MacFadyen: On the preferential etching of GaAs by H2SO4-H2O2-H2O, J. Electrochem. Soc. 130(9), 1934–1941 (1983)CrossRefGoogle Scholar
  182. 182.
    D.W. Shaw: Localized GaAs etching with acidic hydrogen peroxide solutions, J. Electrochem. Soc. 128(4), 874–880 (1981)CrossRefGoogle Scholar
  183. 183.
    S. Iida, K. Ito: Selective etching of gallium arsenide crystals in H2SO4-H2O2-H2O system, J. Electrochem. Soc. 118(5), 768–771 (1971)CrossRefGoogle Scholar
  184. 184.
    C.R. Tellier, G. Huve, T.G. Leblois: Micromachining of GaAs structures with an acidic hydrogen peroxide solution: Experimental and theoretical 3D etching shapes, Sens. Actuators A 127, 179–193 (2006)CrossRefGoogle Scholar
  185. 185.
    Y. Mori, N. Watanabe: A new etching system, H3PO4-H2O2-H2O for GaAs and its kinetics, J. Electrochem. Soc. 125(9), 1510–1514 (1978)CrossRefGoogle Scholar
  186. 186.
    J.L. Merz, R.A. Logan: GaAs double heterostructure lasers fabricated by wet chemical etching, J. Appl. Phys. 47(8), 3503–3509 (1976)CrossRefGoogle Scholar
  187. 187.
    J.R. Flemish, K.A. Jones: Selective wet etching of GaInP, GaAs, and InP in solutions of HCl, CH3COOH, and H2O2, J. Electrochem. Soc. 140(3), 844–847 (1993)CrossRefGoogle Scholar
  188. 188.
    E. Biedermann, K. Brack: Preparation of GaAs specimens for transmission electron microscopy, J. Electrochem. Soc. 113(10), 1088 (1966)Google Scholar
  189. 189.
    T. Takebe, T. Yamamoto, M. Fujii, K Kobayashi: Fundamental selective etching characteristics of HF + H2O2 + H2O mixtures for GaAs, J. Electrochem. Soc. 140(4), 1169–1180 (1993)CrossRefGoogle Scholar
  190. 190.
    J.L. Richards, A.J. Crocker: Etch pits in gallium arsenide, J. Appl. Phys. 31, 611–612 (1960)CrossRefGoogle Scholar
  191. 191.
    S. Adache, K. Oe: Chemical etching characteristics of (001) GaAs, J. Electrochem. Soc. 130(12), 2427–2435 (1983)CrossRefGoogle Scholar
  192. 192.
    J.M. O’Connor, E.F. Dvorsky, H.S. Hier, W.P. Reif: Rapid controlled thinning of gallium arsenide, J. Electrochem. Soc. 135(1), 190–193 (1988)CrossRefGoogle Scholar
  193. 193.
    T.H. Yeh, A.E. Blakeslee: Junction delineation in gallium arsenide, J. Electrochem. Soc. 110(9), 1018–1019 (1963)CrossRefGoogle Scholar
  194. 194.
    K. Kenefick: Selective etching characteristics of peroxide/ammonium hydroxide solutions for GaAs/Al0.16Ga0.84As, J. Electrochem. Soc. 129(10), 2380–2382 (1982)CrossRefGoogle Scholar
  195. 195.
    J.C. Dyment, G.A. Rozgonyi: Evaluation of a new polish for gallium arsenide using a peroxide-alkaline solution, J. Electrochem. Soc. 118(8), 1346–1350 (1971)CrossRefGoogle Scholar
  196. 196.
    Y. Uenishi, H. Tanaka, H. Ukita: Characterization of AlGaAs microstructure fabricated by AlGaAs/GaAs micromachining, IEEE Trans. Electron Dev. 41(10), 1778–1783 (1994)CrossRefGoogle Scholar
  197. 197.
    J.J. Gannon, C.J. Nuese: A chemical etchant for the selective removal of GaAs through SiO2 masks, J. Electrochem. Soc. 121(9), 1215–1219 (1974)CrossRefGoogle Scholar
  198. 198.
    S.H. Jones, D.K. Walker: Highly anisotropic wet chemical etching of GaAs using NH4OH:H2O2:H2O, J. Electrochem. Soc. 137(5), 1653–1654 (1990)CrossRefGoogle Scholar
  199. 199.
    Transene Company, Inc., Danvers, MA 01923: Gallium Arsenide Etchants, http://www.transene.com/gall.html, accessed December 24, 2010
  200. 200.
    L.M. Fraas: Three-Terminal Ternary III-V Multicolor Solar Cells and Process of Fabrication, U.S. Patent No. 4,451,691, 1984Google Scholar
  201. 201.
    A. Shintani, S. Minagawa: Etching of GaN using phosphoric acid, J. Electrochem. Soc. 123(5), 706–713 (1976)CrossRefGoogle Scholar
  202. 202.
    W.H. Hackett Jr, T.E. McGahan, R.W. Dixon, G.W. Kammlott: A scanning electron microscope investigation of etching phenomena in GaP electroluminescent diodes, J. Electrochem. Soc. 119(7), 973–976 (1972)CrossRefGoogle Scholar
  203. 203.
    T. Uragaki, H. Yamanaka, M. Inoue: Selective etching of GaP crystals with hot phosphoric acid, J. Electrochem. Soc. 123(4), 580–582 (1976)CrossRefGoogle Scholar
  204. 204.
    R.H. Saul: The defect structure of GaP crystals grown from gallium solutions, vapor phase and liquid phase epitaxial deposition, J. Electrochem. Soc. 115(11), 1184–1190 (1968)CrossRefGoogle Scholar
  205. 205.
    Transene Company, Inc., Danvers, MA 01923: Gallium Phosphide Etchant, http://www.transene.com/gap.html, accessed December 24, 2010
  206. 206.
    S. Rivillon, Yves J. Chabel, F. Amy, A. Kahn: Hydrogen passivation of germanium (100) surfaces using wet chemical preparation, Appl. Phys. Lett. 87(253101), 1–3 (2005)Google Scholar
  207. 207.
    M. Balog, M. Schieber: Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds, Thin Solid Films 41, 247–259 (1977)CrossRefGoogle Scholar
  208. 208.
    N.J. Sauer, K.B. Chough: A selective etch for InAlAs over InGaAs and for different InGaAlAs quaternaries, J. Electrochem. Soc. 139(1), L10–L11 (1992)CrossRefGoogle Scholar
  209. 209.
    M.C. Lavine, H.C. Gatos, M.C. Finn: Characteristics of the {111} surfaces of the III-V intermetallic compounds – Part III, J. Electrochem. Soc. 108(10), 974–980 (1961)CrossRefGoogle Scholar
  210. 210.
    H.C. Gatos, M.C. Lavine: Etching and inhibition of the {111} surfaces of the III-V intermetallic compounds: InSb, J. Phys. Chem. Solids 14, 169–174 (1960)CrossRefGoogle Scholar
  211. 211.
    J.F. Dewald: The kinetics and mechanism of formation of anode films on single-crystal InSb, J. Electrochem. Soc. 104(4), 244–251 (1957)CrossRefGoogle Scholar
  212. 212.
    D.-S. Kim, S.R. Forrest, M.J. Lange, G.H. Olsen, M.J. Cohen: A three wavelength infrared focal plane array detector element, IEEE Photon. Technol. Lett. 6(2), 235–238 (1994)CrossRefGoogle Scholar
  213. 213.
    A.H. Eltoukhy, J.E. Greene: Compositionally modulated sputtered InSb/GaSb superlattices: Crystal growth and interlayer diffusion, J. Appl. Phys. 50(1), 505–517 (1979)CrossRefGoogle Scholar
  214. 214.
    F. Fiedler, A Schlachetzki, G. Klein: Material-selective etching of InP and an InGaAsP alloy, J. Mater. Sci. 17, 2911–2918 (1982)CrossRefGoogle Scholar
  215. 215.
    S. Adachi, Y. Noguchi, H. Kawaguchi: Chemical etching of InGaAsP/InP DH wafer, J. Electrochem. Soc. 129(5), 1053–1062 (1982)CrossRefGoogle Scholar
  216. 216.
    H. Ito, T. Ishibashi: Selective and nonselective chemical etching of InGa(As)P/GaAs heterostructures, J. Electrochem. Soc. 142(10), 3383–3386 (1995)CrossRefGoogle Scholar
  217. 217.
    J.R. Lothian, J.M. Kuo, F. Ren, S.J. Pearton: Plasma and wet chemical etching of In0.5Ga0.5P, J. Electron. Mater. 21(4), 441–445 (1992)CrossRefGoogle Scholar
  218. 218.
    J.W. Lee, S.J. Pearton, C.R. Abernathy, W.S. Hobson, F. Ren, C.S. Wu: Investigation of wet etching solutions for In0.5Ga0.5P, Solid-State Electron. 38(11), 1871–1874 (1995)CrossRefGoogle Scholar
  219. 219.
    D. Gregusova, P. Elias, L. Malacky, R. Kudela, J. Skriniarova: Wet chemical MESA etching of InGaP and GaAs with solutions based on HCl, CH3COOH, and H2O2, Phys. Stat. Sol. A 151, 113–118 (1995)CrossRefGoogle Scholar
  220. 220.
    J.C.C. Fan, F.J. Bachner: Properties of Sn-doped In2O3 films prepared by RF sputtering, J. Electrochem. Soc. 122(12), 1719–1725 (1975)CrossRefGoogle Scholar
  221. 221.
    J. Kane, H.P. Schweizer, W. Kern: Chemical vapor deposition of transparent electrically conducting layers of indium oxide dope with tin, Thin Solid Films 29, 155–163 (1975)CrossRefGoogle Scholar
  222. 222.
    B. Tuck, A.J. Baker: Chemical etching of {111} and {100} surfaces of InP, J. Mater. Sci. 8(11), 1559–1566 (1973)CrossRefGoogle Scholar
  223. 223.
    S. Adachi, H. Kawaguchi: Chemical etching characteristics of (001) InP, J. Electrochem. Soc. 128(6), 1342–1349 (1976)CrossRefGoogle Scholar
  224. 224.
    C. Seassal, J.L. Leclercq, P. Viktorovitch: Fabrication of InP-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996)CrossRefGoogle Scholar
  225. 225.
    S.B. Phatak, G. Kelner: Material-selective chemical etching in the system inGaAsP/InP, J. Electrochem. Soc. 126(2), 287–292 (1979)CrossRefGoogle Scholar
  226. 226.
    S. Singh, R.S. Williams, L.G. Van Uitert, A. Schlierr, I. Camlibel, W.A. Bonner: Analysis of InP surface prepared by various cleaning methods, J. Electrochem. Soc. 129(2), 447–448 (1982)CrossRefGoogle Scholar
  227. 227.
    C.W. Wilmsen (Ed.): Physics and Chemistry of III-V Compound Semiconductor Interfaces, p. 416 (Plenum, New York, NY, 1985)Google Scholar
  228. 228.
    J.E.A.M. van den Meerakker, P.C. Baarslag, M. Scholten: On the mechanism of ITO etching in halogen acids: The influence of oxidizing agents, J. Electrochem. Soc. 142(7), 2321–2325 (1995)CrossRefGoogle Scholar
  229. 229.
    M. Scholten, J.E.A.M. van den Meerakker: On the mechanism of ITO etching: The specificity of halogen acids, J. Electrochem. Soc. 140(2), 471–475 (1993)CrossRefGoogle Scholar
  230. 230.
    C.J. Huang, Y.K. Su, S.L. Wu: The Effect Of Solvent On The Etching of ITO electrode, Mater. Chem. Phys. 84, 146–150 (2004)CrossRefGoogle Scholar
  231. 231.
    M. Venkatesan, S. McGee, U. Mitra: Indium tin oxide thin films for metallization in microelectronic devices, Thin Solid Films 170, 151–162 (1989)CrossRefGoogle Scholar
  232. 232.
    G. Bradshaw, A.J. Hughes: Etching methods for indium oxide/tin oxide films, Thin Solid Films 33, L5–L7 (1976)CrossRefGoogle Scholar
  233. 233.
    Transene Company, Inc., Danvers, MA 01923: Indium Tin Oxide Etchant TE-100, http://www.transene.com/tino.html, accessed December 24, 2010
  234. 234.
    J.B. MacChesney, P.B. O’Connor, M.V. Sullivan: Chemical vapor deposition of iron oxide films for use as semitransparent masks, J. Electrochem. Soc. 118(5), 776–781 (1971)CrossRefGoogle Scholar
  235. 235.
    Transene Company, Inc., Danvers, MA 01923: http://www.transene.com/fe2o3.html, accessed December 24, 2010
  236. 236.
    D.G. Coates, W.D. Lawson, A.C. Prior: Single crystal photoconductive detectors in lead selenide, J. Electrochem. Soc. 108(11), 1038–1042 (1961)CrossRefGoogle Scholar
  237. 237.
    R.F. Brebrick, W.W. Scanlon: Chemical etches and etch pit patterns on PbS crystals, Chem. Phys. 27(3), 607–608 (1957)Google Scholar
  238. 238.
    J. Baborowski: Microfabrication of piezoelectric MEMS, J. Electroceram. 12(1), 33–51 (2004)CrossRefGoogle Scholar
  239. 239.
    S. Trolier, C. Geist, A. Safari, R.E. Newnham, Q.C. Xu: Etched Piezoelectric Structures, Sixth IEEE International Symposium on Applications of Ferroelectrics, pp. 707–710 (Bethlehem, PA, June 8–11, 1986)Google Scholar
  240. 240.
    K.K. Wong (Ed.): Properties of Lithium Niobate, Chapter 11.3 (INSPEC, London, 2002)Google Scholar
  241. 241.
    H.J. Lee, S.-Y. Shin: Lithium niobate ridge waveguides fabricated by wet etching, Electron. Lett. 31(4), 268–269 (1995)CrossRefGoogle Scholar
  242. 242.
    K. Nassau, H.J. Levinstein, G.M. Loiacono: Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching, J. Phys. Chem. Solids 27, 983–988 (1966)CrossRefGoogle Scholar
  243. 243.
    J.E. Gray, Z. Celik-Butler, D.P. Butler: MgO sacrificial layer for micromachining uncooled Y-Ba-Cu-O IR microbolometers on Si3N4 bridges, IEEE J. Microelectromech. Syst. 8(2), 192–199 (1999)CrossRefGoogle Scholar
  244. 244.
    K. Sangwal, S.K. Arora: Etching of MgO crystals in acids: Kinetics and mechanism of dissolution, J. Mater. Sci. 13, 1977–1985 (1978)CrossRefGoogle Scholar
  245. 245.
    B.N. Pramila Bai, N.H. MacMillan: Chemical polishes for {100}, {110} and {111} MgO surfaces, J. Mater. Sci. 14(2), 494–495 (1979)CrossRefGoogle Scholar
  246. 246.
    D.J. Sharp: Thin Film Capacitors Employing Semiconductive Oxide Electrolytics, U.S. Patent No. 3,397,446, 1968Google Scholar
  247. 247.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 23 (Krieger, Huntington, NY, 1971)Google Scholar
  248. 248.
    C.-M. Zetterling (Ed.): Process Technology for Silicon Carbide Devices, Chapter 4 (INSPEC, London, 2002)Google Scholar
  249. 249.
    R. Cheung (Ed.): Silicon Carbide Microelectromechanical Systems for Harsh Environments, Chapter 4 (Imperial College Press, London, UK, 2006)Google Scholar
  250. 250.
    G.L. Harris, K. Fekade, K. Wongchotigul: Anodic etching of p-type cubic silicon carbide, J. Mater. Sci.: Mater. Electron. 3, 162–163 (1992)CrossRefGoogle Scholar
  251. 251.
    J.S. Shor, A.D. Kurtz: Photoelectrochemical etching of 6H-SiC, J. Electrochem. Soc. 141(3), 778–781 (1994)CrossRefGoogle Scholar
  252. 252.
    Transene Company, Inc., Danvers, MA 01923: Gallium Phosphide Etchant, http://www.transene.com/gap.html, accessed December 24, 2010; see also http://www.transene.com/etchants.html, accessed December 24, 2010
  253. 253.
    C. Li, P. Losee, J. Seiler, I. Bhat, T.P. Chow: Fabrication and characterization of 4H-SiC P-N junction diodes by selective-epitaxial growth using TaC as the mask, J. Electron. Mater. 34(4), 450–456 (2005)CrossRefGoogle Scholar
  254. 254.
    Transene Company, Inc., Danvers, MA 01923: Tantalum Etchants SIE-8607 and 111, http://www.transene.com/tant_etch.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  255. 255.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 26 (Krieger, Huntington, NY, 1971)Google Scholar
  256. 256.
    P. Skadron, V.A. Johnson: Anistropy and annealing behavior in extrinsic single-crystal tellurium, J. Appl. Phys. 37(4), 1912–1917 (1966)CrossRefGoogle Scholar
  257. 257.
    B.J. Baliga, S.K. Ghandhi: Electrochemical patterning of tin oxide films, J. Electrochem. Soc. 124(7), 1059–1060 (1977)CrossRefGoogle Scholar
  258. 258.
    M. Wittmer, H. Melchior: Applications of TiN thin films in silicon device technology, Thin Solid Films 93, 397–405 (1982)CrossRefGoogle Scholar
  259. 259.
    A.R. Londergan, G. Nuesca, C. Goldberg, G. Peterson, A.E. Kaloyeros, B. Arkles, J.J. Sullivan: Interlayer mediated epitaxy of cobalt silicide on silicon (100) from low temperature chemical vapor deposition of cobalt, J. Electrochem. Soc. 148(1), C21–C27 (2001)CrossRefGoogle Scholar
  260. 260.
    M.M. Hussain, M.A. Quevedo-Lopez, H.N. Alshareef, D. Larison, K. Mathur, B.E. Gnade: Deposition method-induced stress effect on ultrathin titanium nitride etch characteristics, Electrochem. Solid-State Lett. 9(12), G361–G363 (2006)CrossRefGoogle Scholar
  261. 261.
    Y. Hu, S.P. Tay: Spectroscopic ellipsometry investigation of silicide formation by rapid thermal process, J. Vac. Sci. Technol. B 17(5), 2284–2289 (1999)CrossRefGoogle Scholar
  262. 262.
    L. Kritikos, L. Zambelis, G. Papadimitropoulos, D. Davazoglou: Structure and electrical properties of selectively chemically vapor deposited vanadium oxide films from vanadium tri-i-propoxy oxide vapors, Surf. Coat. Technol. 201, 9334–9339 (2007)CrossRefGoogle Scholar
  263. 263.
    I. Galesic, B.O. Kolbesen: Characterization of transition metal nitride formation in rapid thermal processing (RTP), Fresenius J. Anal. Chem. 365, 199–202 (1999)CrossRefGoogle Scholar
  264. 264.
    M.J. Vellekoop, C.C.G. Visser, P.M. Sarro, A. Venema: Compatibility of zinc oxide with silicon IC processing, Sens. Actuators A21–A23, 1027–1030 (1990)CrossRefGoogle Scholar
  265. 265.
    T. Xu, G. Wu, G. Zhang, Y. Hao: The compatibility of ZnO piezoelectric film with micromachining process, Sens. Actuators A Phys. 104(1), 61–67 (2003)CrossRefGoogle Scholar
  266. 266.
    V. Bhatt, P. Pal, S. Chandra: Feasibility study of RF sputtered ZnO film for surface micromachining, Surf. Coat. Technol. 198(1–3), 304–308 (2005)CrossRefGoogle Scholar
  267. 267.
    J.H. Lan, J. Kanick, A. Catalano, J. Keane: An Alternative Transparent Conducting Oxide to ITO for the a-Si:H TFT-LCD Applications, Second International Workshop on Active Matrix Liquid Crystal Displays, AMLCD ’95, pp. 54–57 (September 25–26, Bethlehem, PA, USA, 1995)Google Scholar
  268. 268.
    Y.C. Lin, Y.C. Jian, J.H. Jiang: A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film, Appl. Surf. Sci. 254, 2671–2677 (2008)CrossRefGoogle Scholar
  269. 269.
    A. Sagar, W. Lehmann, J.W. Faust Jr: Etchants for ZnSe, J. Appl. Phys. 39, 5336–5338 (1968)CrossRefGoogle Scholar
  270. 270.
    K. Winchester, S.M.R. Spaargaren, J.M. Dell: The Use of ZnS as a Sacrificial Layer in the Construction of PECVD SiNx Self-Supporting Structures, 1998 Conference on Optoelectronic and Microelectronic Materials and Devices, pp. 493–496 (1998)Google Scholar
  271. 271.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 3 (Krieger, Huntington, NY, 1971)Google Scholar
  272. 272.
    J.B. Mooney, J.O. McCaldin: Physical contact properties of beryllium metallization on silicon devices, J. Electrochem. Soc. 124(4), 625–627 (1977)CrossRefGoogle Scholar
  273. 273.
    M.E. Straumanis, D.L. Mathis: The dissolution reaction and attack of beryllium by HF, HCl, and H2SO4, J. Electrochem. Soc. 109(5), 434–436 (1962)CrossRefGoogle Scholar
  274. 274.
    D.L. Partin, J. Heremans, D.T. Morelli, C.M. Thrush, C.H. Olk, T.A. Perry: Growth and characterization of epitaxial bismuth films, Phys. Rev. B 38(6), 3818–3825 (1988)CrossRefGoogle Scholar
  275. 275.
    L.C. Lovell, J.H. Wernick: Dislocation etch pits in bismuth, J. Appl. Phys. 30(2), 234–235 (1959)CrossRefGoogle Scholar
  276. 276.
    A. Rogel: Durable chromium masks for photoresist applications, Rev. Sci. Instrum. 37, 1416 (1966)CrossRefGoogle Scholar
  277. 277.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 7 (Krieger, Huntington, NY, 1971)Google Scholar
  278. 278.
    Transene Company, Inc., Danvers, MA 01923: http://www.transene.com/cr.html, accessed December 24, 2010
  279. 279.
    S. Kamiya, H. Takahashi, R. Polini, E. Traversa: Quantitative determination of the adhesive fracture toughness of CVD diamond to WC-Co cemented carbide, Diam. Relat. Mater. 9(2), 191–194 (2000)CrossRefGoogle Scholar
  280. 280.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 8 (Krieger, Huntington, NY, 1971)Google Scholar
  281. 281.
    S.P. Murarka, D.B. Fraser, A.K. Sinha, H.J. Levinstein, E.J. Lloyd, R. Liu, D.S. Williams, S.J. Hillenius: Self-aligned cobalt disilicide for gate and interconnection and contacts to shallow junctions, IEEE Trans. Electron Dev. ED-34(10), 2108–2115(1987)CrossRefGoogle Scholar
  282. 282.
    W. Lee, Y.J. Hu: U.S. Patent Publication 2002/0055262Google Scholar
  283. 283.
    F.-M. Yang, M.-C. Chen: Formation of self-aligned cobalt silicide in normal flow nitrogen furnace, Thin Solid Films 207, 75–81 (1992)CrossRefGoogle Scholar
  284. 284.
    A.H.M. Kamal, M.J. Rack, M.N. Kozicki, D.K. Ferry, J. Lutzen, J.A. Hallmark: Ultrathin cobalt silicide layers formed by rapid thermal processing of metal on amorphous silicon, J. Vac. Sci. Technol. B 15(4), 899–902 (1997)CrossRefGoogle Scholar
  285. 285.
    T.L. Alford, M. Mitan, J.W. Mayer: Nanometer-Scale Silicide Structures Formed by Focused Ion-Beam Implantation, Proceedings of the 14th International Conference on Ion Implantation Technology, pp. 677–681 (Taos, NM, USA, September 22–27, 2002)Google Scholar
  286. 286.
    A. Matsushita, T. Sadoh, T. Tsurushima: Narrow CoSi2 Line Formation on SiO2 by Focused Ion Beam, International Conference on Ion Implantation Technology, vol. 2, pp. 861–864 (Kyoto, Japan, June 22–26, 1998)Google Scholar
  287. 287.
    G.-C. Jo, K.-S. Chae: Etchant and Array Substrate having Copper Lines Etch by the Etchant, U.S. Patent No. 6,780,784, 2004Google Scholar
  288. 288.
    H.K. Johnston, T.L. Larson: Etching Compositions and Method for Etching Cu and Ni Based Metals at a Uniform Rate, U.S. Patent No. 3,702,273Google Scholar
  289. 289.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 6 (American Institute of Physics, New York, NY, 1995, originally published 1967)Google Scholar
  290. 290.
    Electronic Device Failure Analysis Society: Microelectronics Failure Analysis, 5th ed. (ASM International, 2004)Google Scholar
  291. 291.
    Transene Company, Inc., Danvers, MA 01923: http://www.transene.com/cu_etchant.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  292. 292.
    D.R. Behrendt, S. Legvold, F.H. Spedding: Magnetic properties of dysprosium single crystals, Phys. Rev. 109(5), 1544–1547 (1958)CrossRefGoogle Scholar
  293. 293.
    M. Jang, J. Oh, S. Maeng, W. Cho, S. Lee, K. Kang, K. Park: Characteristics of erbium-silicided n-type Schottky barrier tunnel transistors, Appl. Phys. Lett. 83(13), 2611–2613 (2003)CrossRefGoogle Scholar
  294. 294.
    S. Hashimoto, S. Miura, T. Kubo: Dislocation etch pits in gold, J. Mater. Sci. 11(8), 1501–1508 (1976)CrossRefGoogle Scholar
  295. 295.
    Transene Company, Inc., Danvers, MA 01923: Gold Etchants, http://www.transene.com/au_etchant.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  296. 296.
    F.B. Litton: Preparation and some properties of hafnium metal, J. Electrochem. Soc. 98(12), 488–494 (1951)CrossRefGoogle Scholar
  297. 297.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 12 (Krieger, Huntington, NY, 1971)Google Scholar
  298. 298.
    P.T. Dawson, S.A.J. Stazyk: Auger and x-ray characterization of surface nitride films on Ti, Zr, and Hf, J. Vac. Sci. Technol. 21(1), 36–41 (1982)CrossRefGoogle Scholar
  299. 299.
    A.C. English: Detection of growth striations in germanium crystals, J. Appl. Phys. 31(8), 1498–1500 (1960)CrossRefGoogle Scholar
  300. 300.
    G.F. Vander Voort: Metallography, Principles and Practice, Chapter 3 (McGraw-Hill, New York, NY, 1984, reprinted 1999)Google Scholar
  301. 301.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 13 (Krieger, Huntington, NY, 1971)Google Scholar
  302. 302.
    J.K. Rhee, P.K. Bhattacharya: A study of impurites and traps in liquid phase epitaxial InP in relation to melt prebaking, J. Electrochem. Soc. 130(3), 700–703 (1983)CrossRefGoogle Scholar
  303. 303.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 5 (American Institute of Physics, New York, NY, 1995, originally published 1967)Google Scholar
  304. 304.
    R.N. Castellano, P.H. Schmidt: Chemical polish and etch for lithium, sodium and potassium, J. Electrochem. Soc. 118(4), 653–654 (1971)CrossRefGoogle Scholar
  305. 305.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 15 (Krieger, Huntington, NY, 1971)Google Scholar
  306. 306.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 16 (Krieger, Huntington, NY, 1971)Google Scholar
  307. 307.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 10 (American Institute of Physics, New York, NY 1995, originally published 1967)Google Scholar
  308. 308.
    Transene Company, Inc., Danvers, MA 01923: http://www.transene.com/mo.html, accessed December 24, 2010
  309. 309.
    M. Tanielian, S. Blackstone, R. Lajos: A new technique of forming thin free standing single-crystal films, J. Electrochem. Soc. 132(2), 507–509 (1985)CrossRefGoogle Scholar
  310. 310.
    Transene Company, Inc., Danvers, MA 01923: Nichrome Etchants TFC and TFN, http://www.transene.com/ni-cr.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  311. 311.
    J.T. Sheu, S.P. Yeh, S.T. Tsai, C.H. Lien: Fabrication and Electrical Transport Properties of Nickel Monosilicide Nanowires, Proceedings of the 5th IEEE Conference on Nanotechnology, vol. 2, pp. 780–783 (Nagoya, Japan, July 11–15, 2005)Google Scholar
  312. 312.
    Y.-L. Jiang, G.-P. Ru, X.-P. Qu, B.-Z. Li, C. Detavernier, R. L. Van Meirhaeghe: Linear growth of Ni2Si thin film on N+/P junction at low temperature, J. Mater. Res. 21(12), 3017–3021 (2006)CrossRefGoogle Scholar
  313. 313.
    L.P. Fox: Method of Chemically Polishing Nickel, U.S. Patent No. 2,680,678, 1954Google Scholar
  314. 314.
    Y. Huang, B. Hekmatshoar, S. Wagner, J.C. Sturm: Top-gate amorphous silicon TFT with self-aligned silicide source/drain and high mobility, IEEE Electron Device Lett. 29(7), 737–739 (2008)CrossRefGoogle Scholar
  315. 315.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 7 (American Institute of Physics, New York, NY 1995, originally published 1967)Google Scholar
  316. 316.
    J.D. Morse, A.F. Jankowski, R.T. Graff, J.P. Hayes: Novel proton exchange membrane thin-film fuel cell for microscale energy conversion, J. Vac. Sci. Technol. A 18(4), 2003–2005 (2000)CrossRefGoogle Scholar
  317. 317.
    M.J. Graham, M. Cohen: On the mechanism of low-temperature oxidation (23°–450°C) of polycrystalline nickel, J. Electrochem. Soc. 119(7), 879–882 (1972)CrossRefGoogle Scholar
  318. 318.
    Transene Company, Inc., Danvers, MA 01923: Nickel Etchants, http://www.transene.com/ni_etchant.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  319. 319.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 9 (Krieger, Huntington, NY, 1971)Google Scholar
  320. 320.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 8 (American Institute of Physics, New York, NY 1995, originally published 1967)Google Scholar
  321. 321.
    M.S. Shivaraman, C.M. Svensson: Control of palladium adherence to silicon dioxide for photolithographic etching, J. Electrochem. Soc. 123(8), 1258 (1976)CrossRefGoogle Scholar
  322. 322.
    R.N. Singh, D.W. Skelly, D.M. Brown: Palladium silicide ohmic contacts to shallow junctions in silicon, J. Electrochem. Soc. 133(11), 2390–2393 (1986)CrossRefGoogle Scholar
  323. 323.
    Washington Technology Center: Chemical Use Standard Operating Procedure Revision E, http://www.watechcenter.org/downloads/Chemical_Use.pdf, accessed December 24, 2010
  324. 324.
    Transene Company, Inc., Danvers, MA 01923: http://www.transene.com/pd.html, accessed December 24, 2010
  325. 325.
    J.J. Kelly, G.J. Koel: Electrochemical aspects of the beveling of sputtered permalloy films, J. Electrochem. Soc. 125(6), 860–865 (1978)CrossRefGoogle Scholar
  326. 326.
    B. Ilic, D. Czaplewski, P. Neuzil, T. Stanczyk, J. Blough, G.J. Maclay: Preparation and characterization of platinum black electrodes, J. Mater. Sci. 35, 3447–3457 (2000)CrossRefGoogle Scholar
  327. 327.
    E. Alptekin, M.C. Ozturk, V. Misra: Tuning of the platinum silicide Schottky barrier height on n-type silicon by sulfur segregation, IEEE Electron Dev. Lett. 30(4), 331–333 (2009)CrossRefGoogle Scholar
  328. 328.
    M.J. Rand, J.F. Roberts: Observations on the formation and etching of platinum silicide, Appl. Phys. Lett. 24(2), 49–51 (1974)CrossRefGoogle Scholar
  329. 329.
    M.J. Rand: I-V characteristics of PtSi-Si contacts made from CVD platinum, J. Electrochem. Soc. 122(6), 811–815 (1975)CrossRefGoogle Scholar
  330. 330.
    A.K. Pant, S.P. Murarka, C. Shepard, W. Lanford: Kinetics of platinum silicide formation during rapid thermal processing, J. Appl. Phys. 72(5), 1833–1836 (1992)CrossRefGoogle Scholar
  331. 331.
    Transene Company, Inc., Danvers, MA 01923: Ruthernium Etchant RU-44, http://www.transene.com/ru_etchant.html, accessed December 24, 2010
  332. 332.
    C.C. Chen, A.A. Hendrickson: Dislocation etch pits in silver, J. Appl. Phys. 42(6), 2208–2215 (1971)CrossRefGoogle Scholar
  333. 333.
    Transene Company, Inc., Danvers, MA 01923: Silver Etchant, http://www.transene.com/ag_etchant.html, accessed December 24, 2010; see also http://www.transene.com/etch_compatibility.html, accessed December 24, 2010
  334. 334.
    Y.H. Choo, O.F. Devereux: Mechanical failure of anodic films on aluminum and tantalum, J. Electrochem. Soc. 123(12), 1868–1876 (1976)CrossRefGoogle Scholar
  335. 335.
    D.A. Vermilyea: Flaws in anodic Ta2O5 films, J. Electrochem. Soc. 110(4), 250–262 (1963)CrossRefGoogle Scholar
  336. 336.
    W.H. Kohl: Handbook of Materials and Techniques for Vacuum Devices, Chapter 11 (American Institute of Physics, New York, NY 1995, originally published 1967)Google Scholar
  337. 337.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 25 (Krieger, Huntington, NY, 1971)Google Scholar
  338. 338.
    M.M. Hussain, N. Moumen, J. Barnett, J. Saulters, D. Baker, Z. Zhang: Metal wet etch process development for dual metal gate CMOS, Electrochem. Solid-State Lett. 8(12), G333–G336 (2005)CrossRefGoogle Scholar
  339. 339.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 28 (Krieger, Huntington, NY, 1971)Google Scholar
  340. 340.
    B.H. Chin, R.E. Frahm, T.T. Sheng, W.A. Bonner: Carrier saturation in tin-doped InP films grown by liquid phase epitaxy, J. Electrochem. Soc. 131(6), 1373–1374 (1984)CrossRefGoogle Scholar
  341. 341.
    J.H. Thomas III: Etch rates of an electroplated alloy (Sn-Ni) using a quartz crystal microbalance, J. Electrochem. Soc. 124(5), 677–680 (1977)CrossRefGoogle Scholar
  342. 342.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 32 (Krieger, Huntington, NY, 1971)Google Scholar
  343. 343.
    K.J. Miller, M.J. Grieco, S.M. Sze: Growth of vanadium on silicon substrates, J. Electrochem. Soc. 113(9), 902–904 (1966)CrossRefGoogle Scholar
  344. 344.
    V.F. Drobny: Nearly ideal unguarded vanadium-silicide Schottky-barrier diodes, IEEE Trans. Electron Devices ED-33(9), 1294–1298 (1986)CrossRefGoogle Scholar
  345. 345.
    O.N. Carlson, J.A. Haefling, F.A. Schmidt, F.H. Spedding: Preparation and refining of yttrium metal by H-Mg alloy process, J. Electrochem. Soc. 107(6), 540–545 (1960)CrossRefGoogle Scholar
  346. 346.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 33 (Krieger, Huntington, NY, 1971)Google Scholar
  347. 347.
    C.A. Hampel (Ed.): Rare Metals Handbook, 2nd edn., Chapter 34 (Krieger, Huntington, NY, 1971)Google Scholar
  348. 348.
    W. Tegart: The Electrolytic and Chemical Polishing of Metals, 2nd edn. (Pergamon, Oxford, 1959)Google Scholar
  349. 349.
    Transene Company, Inc., Danvers, MA 01923: Chromium Cerment Etchant TFE, http://www.transene.com/cr.html, accessed December 24, 2010
  350. 350.
    C. Detavernier, R.L. Van Meirhaeghe, W. Vandervorst, K. Maex: Influence of processing conditions on CoSi2 formation in the presence of a Ti capping layer, Microelectron. Eng. 71, 252–261 (2004)CrossRefGoogle Scholar
  351. 351.
    M.R. Baklanov, I.A. Badmaeva, R.A. Donaton, L.L. Sveshnikova, W. Storm, K. Maex: Kinetics and mechanism of the etching of CoSi2 in HF-based solutions, J. Electrochem. Soc. 143(10), 3245–3251 (1996)CrossRefGoogle Scholar
  352. 352.
    A.T. Kuhn, D. Wakeman, E.Y. El Roubi, G.C.S. Collins: Anodic dissolution and oxygen evolution on binary and ternary iron-silicon alloys, Electrochem. Acta 28(4), 515–527 (1983)CrossRefGoogle Scholar
  353. 353.
    T.J. Kang, H.-Y. Lee, Y.H. Kim: Reduction of sheet resistance and low-thermal-budget relaxation of stress gradients in polysilicon microcantilever beams using nickel-silicides, J. Microelectromech. Syst. 16(2), 279–288 (2007)CrossRefGoogle Scholar
  354. 354.
    I.P. Nikitina, K.V. Vassilevski, N.G. Wright, A.B. Horsfall, A.G. O’Neill, C.M. Johnson: Formation and role of graphite and nickel silicide in nickel based ohmic contacts to n-type silicon carbide, J. Appl. Phys. 97, 083709 (2005)CrossRefGoogle Scholar
  355. 355.
    M. Qin, M.C. Poon, C.Y. Yuen: A study of nickel silicide film as a mechanical material, Sens. Actuators 87, 90–95 (2000)CrossRefGoogle Scholar
  356. 356.
    K.-H. Son, J.-K. Yoon, J.-H. Han, G.-H. Kim, J.-M. Doh, S.-R. Lee: Microstructure of NbSi2/SiC nanocomposite coating formed on Nb substrate, J. Alloys Compounds 395, 185–191 (2005)CrossRefGoogle Scholar
  357. 357.
    T.J. Kingzett, C.A. Ladas: Effect of oxidizing ambients on platinum silicide formation, J. Electrochem. Soc. 122(12), 1729–1732 (1975)CrossRefGoogle Scholar
  358. 358.
    R.V. Skolozdra, T.F. Fedorov, N.M. Popova, E.I. Gladyshevskii: Tungsten-Rhenium-silicon system, Powder Metal. Metal Ceram. 8(9), 743–745 (1969)CrossRefGoogle Scholar
  359. 359.
    U. Erlesand, M. Ostling, B.G. Svensson: Point defect generation during silicide formation, Appl. Surf. Sci. 53, 224–229 (1991)CrossRefGoogle Scholar
  360. 360.
    B.D. Kraus, M.T. Andreas: U.S. Patent Publication No. US 2003/0205689 (2003)Google Scholar
  361. 361.
    A.E. Widmer, R. Fehlmann: The growth and physical properties of low pressure chemically vapour-deposited films of tantalum silicide on n+-type polycrystalline silicon, Thin Solid Films 138, 131–140 (1986)CrossRefGoogle Scholar
  362. 362.
    G.J. Reynolds: Low pressure chemical vapor deposition of tantalum silicide, J. Electrochem. Soc. 135(6), 1483–1490 (1988)CrossRefGoogle Scholar
  363. 363.
    S.P. Murarka, D.B. Fraser, A.K. Sinha, H.J. Levinstein: Refractory silicides of titanium and tantalum for low-resistivity gates and interconnects, IEEE Trans. Electron Devices ED-27(8), 1409–1417 (1980)CrossRefGoogle Scholar
  364. 364.
    Transene Company, Inc., Danvers, MA 01923: Semiconductor and Thin Film Etchants for Microelectronic Circuits, http://www.transene.com/etchants.html, accessed December 24, 2010
  365. 365.
    H. Geng (Ed.): Semiconductor Manufacturing Handbook, Chapter 5 (McGraw-Hill, New York, NY, 2005)Google Scholar
  366. 366.
    M. Bhaskaran, S. Sriram, L.W. Sim: Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching, J. Micromech. Microeng. 18, 1–3 (2008)CrossRefGoogle Scholar
  367. 367.
    J. M. Harris, S.S. Lau, M.-A. Nicoet, R.S. Nowicki: Studies of the Ti-W metallization system on Si, J. Electrochem. Soc. 123(1), 120–124 (1976)CrossRefGoogle Scholar
  368. 368.
    J.-K. Yoon, K.-W. Lee, S.-J. Chung, I.-J. Shon, J.-M. Doh, G.-H. Kim: Growth kinetics and oxidation behavior of WSi2 coating formed by chemical vapor deposition of Si on W substrate, J. Alloys Compounds 420(1–2), 199–206 (2006)CrossRefGoogle Scholar
  369. 369.
    F. Mohammadi, K. . Saraswat: Properties of sputtered tungsten silicide for MOS integrated circuit applications, J. Electrochem. Soc. 127(2), 450–454 (1980)CrossRefGoogle Scholar
  370. 370.
    M.F. Bain, B.M. Armstrong, H.S. Gamble: The deposition and characterisation of CVD tungsten silicide for applications in microelectronics, Vacuum 64, 227–232 (2002)CrossRefGoogle Scholar
  371. 371.
    E.R. Vance, T.R. Finlayson: The lattice softening in V3Si, J. Appl. Phys. 39(4), 1980–1982 (1968)CrossRefGoogle Scholar
  372. 372.
    H.J. Levinstein, E.S. Greiner, H. Mason Jr: Observation of dislocations in V3Si single crystals, J. Appl. Phys. 37(1), 164–166 (1966)CrossRefGoogle Scholar
  373. 373.
    R.D. Frampton, E.A. Irene, F.M. d’Heurle: A study of the oxidation of selected metal silicides, J. Appl. Phys. 62(7), 2972–2980 (1987)CrossRefGoogle Scholar
  374. 374.
    Plastics Design Library: Chemical Resistance, 1. Thermoplastics and 2. Thermoplastic Elastomers, Thermosets and Rubbers, 2nd edn. (Plastics Design Library, Morris, NY, 1994)Google Scholar
  375. 375.
    R.W. Johnson, T.L. Phillips, W.K. Weidner, S.F. Hahn, D.C. Burdeaux, P.H. Townsend: Benzocyclobutene interlayer dielectrics for thin film multichip modules, IEEE Trans. Compon. Hybrids Manuf. Technol. 13(2), 347–352 (1990)CrossRefGoogle Scholar
  376. 376.
    Dow Chemical: Rework Procedures for Cyclotene 3000 Series and 4000 Series Resins, http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0055/0901b803800550f8.pdf?filepath=cyclotene/pdfs/noreg/618-00204.pdf&fromPage=GetDoc, accessed December 24, 2010
  377. 377.
    D. Burdeaux, P. Townsend, J. Carr: Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules, J. Electron. Mater. 19(12), 1357–1366 (1990)CrossRefGoogle Scholar
  378. 378.
    D. Paul, A. Pallandre, S. Miserere, J. Weber, J.-L. Viovy: Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates, Electrophoresis 28, 1115–1122 (2007)CrossRefGoogle Scholar
  379. 379.
    R.C. Bening, T.J. McCarthy: Surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene), Macromolecules 23(10), 2648–2655 (1990)CrossRefGoogle Scholar
  380. 380.
    X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: Processes and applications, J. Micromech. Microeng. 13, 628–633 (2003)CrossRefGoogle Scholar
  381. 381.
    T. Kamal, D.W. Hess: Photoresist removal using low molecular weight alcohols, J. Electrochem. Soc. 147(7), 2749–2753 (2000)CrossRefGoogle Scholar
  382. 382.
    K.S. Lee, G.B. Blanchet, F. Gao, Y.-L. Loo: Direct patterning of conductive water-soluble polyanaline for thin-film organic electronics, Appl. Phys. Lett. 86, 074102 (2005)CrossRefGoogle Scholar
  383. 383.
    D.A. Peters, C.A. Deckert: Removal of photoresist film residues from wafer surfaces, J. Electrochem. Soc. 126(5), 883–886 (1979)CrossRefGoogle Scholar
  384. 384.
    H. Takahashi: Plasma-less photoresist stripping, ECS Trans. 11(2), 189–195 (2007)CrossRefGoogle Scholar
  385. 385.
    J.E. Spencer, R.A. Borel, A. Hoff: High rate photoresist stripping in an oxygen afterglow, J. Electrochem. Soc. 133(9), 1922–1925 (1986)CrossRefGoogle Scholar
  386. 386.
    S.Y.M. Chooi, P.-Y. Ee, V.K.T. Sih, M.-S. Zhou: Application of Ozonated Aqueous Solutions to Photoresist Strip and Ash Residue Removal Following Plasma Polysilicon Etching, Proceedings of the 6th International Symposium on Cleaning Technology in Semiconductor Device Manufacturing, vol. 99–36, pp. 212–218 (Honolulu, HI, October 17–22, 1999)Google Scholar
  387. 387.
    S. Verhaverbeke, J. Zhao: Novel wet photoresist strip for wafer level packaging, ECS Trans. 11(2), 235–238 (2007)CrossRefGoogle Scholar
  388. 388.
    A. Andreatta, Y. Cao, J.C. Chiang, A.J. Heeger: Electrically-conductive fibers of polyaniline spun from solutions in concentrated sulfuric acid, Synth. Metals 26, 383–389 (1988)CrossRefGoogle Scholar
  389. 389.
    R.K. Paul, C.K.S. Pillai: Melt/solution processable conducting polyaniline with novel sulfonic acid dopants and its thermoplastic blends, Synth. Metals 114, 27–35 (2000)CrossRefGoogle Scholar
  390. 390.
    W.S. Beh, I.T. Kim, D. Qin, Y. Xia, G.M. Whitesides: Formation of patterned microstructures of conducting polymers by soft lithography, and applications in microelectronic device fabrication, Adv. Mater. 11(12), 1038–1041 (1999)CrossRefGoogle Scholar
  391. 391.
    Y. Cao, P. Smith, A.J. Heeger: Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers, Synth. Metals 48, 91–97 (1992)CrossRefGoogle Scholar
  392. 392.
    J.W.L. Zhou, H.-Y. Chan, T.K.H. To, K.W.C. Lai, W.J. Li: Polymer MEMS actuators for underwater micromanipulation, IEEE/ASME Trans. Mechatron. 9(2), 334–342 (2004)CrossRefGoogle Scholar
  393. 393.
    D.K. Armani, C. Liu: Microfabrication Technology for Polycaprolactone, a Biodegradable Polymer, 2000 IEEE Micro Electro Mechanical Systems, MEMS, pp. 294–299 (Miyazaki, Japan, January 23–27, 2000)Google Scholar
  394. 394.
    C. Chu, M. Bachman, Y.-M. Chiang, F. Gonzales, G.P. Li: Characterizations of metallized plastic MEMS, Mat. Res. Soc. Symp. Proc. 605, 97–102 (2000)CrossRefGoogle Scholar
  395. 395.
    D.G. LeGrand, J.T. Bendler: Handbook of Polycarbonate Science and Technology, Chapter 15 (Marcel Decker, New York, NY, 2000)Google Scholar
  396. 396.
    J.N. Lee, C. Park, G.M. Whitesides: Solvent compatibility of poly(dimethlysiloxane)-based microfluidic devices, Anal. Chem. 75, 6544–6554 (2003)CrossRefGoogle Scholar
  397. 397.
    J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape: Dry etching of polydimethylsiloxane for microfluidic systems, J. Vac. Sci. Technol. A 20(3), 975–982 (2002)CrossRefGoogle Scholar
  398. 398.
    B.-H. Jo, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe: Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer, J. Microelectromech. Syst. 9(1), 76–81 (2000)CrossRefGoogle Scholar
  399. 399.
    A. Plecis, Y. Chen: Fabrication of microfluidic devices based on glass-PDMS-glass technology, Microelectron. Eng. 84, 1265–1269 (2007)CrossRefGoogle Scholar
  400. 400.
    B. Xu, F. Aria, G.M. Whitesides: Making honeycomb microcomposites by soft lithography, Adv. Mater. 11(6), 492–495 (1999)CrossRefGoogle Scholar
  401. 401.
    T.P. Chou, G. Cao: Adhesion of sol-gel-derived organic-inorganic hybrid coatings on polyester, J. Sol-Gel Sci. Technol. 27, 31–41 (2003)CrossRefGoogle Scholar
  402. 402.
    D. Briggs, D.M. Brewis, M.B. Konieczo: X-ray photoelectron spectroscopy studies of polymer surfaces, J. Mater. Sci. 11, 1270–1277 (1976)CrossRefGoogle Scholar
  403. 403.
    J.R. Rasmussen, E.R. Stedronsky, G.M. Whitesides: Introduction, modification, and characterization of functional groups on the surface of low-density polyethylene film, J. Am. Chem. Soc. 99(14), 4736–4745 (1977)CrossRefGoogle Scholar
  404. 404.
    J. Chen, S.K. Spear, J.G. Huddleston, R.D. Rogers: Polyethylene glycol and solutions of polyethylene glycol as green reaction media, Green Chem. 7, 64–82 (2005)CrossRefGoogle Scholar
  405. 405.
    J.J. Frantzen: Etching Polyester Film, U.S. Patent. No. 3,186,883 (1965)Google Scholar
  406. 406.
    Microsystems Technology Laboratories, MIT: Standard Operating Procedures Kapton Tape, http://www.mtl.mit.edu/services/fabrication/sops/kapton_tape.html, accessed December 24, 2010
  407. 407.
    R.N. Leyden, W.E. Elias: Method for Selectively Forming Small Diameter Holes in Polyimide/Kevlar Substrates, U.S. Patent No. 4,889,858Google Scholar
  408. 408.
    A. Bagolini, L. Pakula, T.L.M. Scholtes, H.T.M. Pham, P.J. French, P.M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)CrossRefGoogle Scholar
  409. 409.
    Transene Company, Inc., Danvers, MA 01923: Kapton Polyimide Film Etchant, http://www.transene.com/kapton.html, accessed December 24, 2010
  410. 410.
    T. Hattori (Ed.): Ultraclean Surface Processing of Silicon Wafers, Chapter 44 (Springer, Berlin, 1998)Google Scholar
  411. 411.
    S.Y.M. Chooi, V.K.T. Sih, P.-Y. Ee, H.-S. Park: Post Nitride-STI Trench Etching (Incorporating DUV Resist and BARC) Polymer Cleaning, Proceedings of the 6th International Symposium on Cleaning Technology in Semiconductor Device Manufacturing, vol. 99–36, pp. 219–226 (Honolulu, HI, October 17–22, 1999)Google Scholar
  412. 412.
    S.B. Fuller, E.J. Wilhelm, J.M. Jacobson: Ink-jet printed nanoparticle microelectromechanical systems, J. Microelectromech. Syst. 11(1), 54–60 (2002)CrossRefGoogle Scholar
  413. 413.
    M.T. Koesdjojo, C.R. Koch, V.T. Remcho: Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding, Anal. Chem. 81, 1652–1659 (2009)CrossRefGoogle Scholar
  414. 414.
    T.R. Christenson: X-Ray – Based Fabrication, In M. Gad-El-Hak (Ed.): The MEMS Handbook: MEMS Design and Fabrication, vol. 2, Chapter 5 (CRC/Taylor and Francis, Boca Raton, FL, 2006)Google Scholar
  415. 415.
    J.-M. Cheng, D.-M. Wang, F.-C. Lin, J.-Y. Lai: Formation and gas flux of asymmetric PMMA membranes, J. Membr. Sci. 109, 93–107 (1996)CrossRefGoogle Scholar
  416. 416.
    E. Meng, P.-Y. Li, Y.-C. Tai: Plasma removal of parylene C, J. Micromech. Microeng. 18, 1–13 (2008)CrossRefGoogle Scholar
  417. 417.
    J.T.C. Yeh, K.R. Grebe: Patterning of poly-Para-Xylylenes by Reactive Ion Etching, J. Vac. Sci. Technol. A, 1(2, 1983, 604-608CrossRefGoogle Scholar
  418. 418.
    V.J. Armond, J.R. Atkinson: Chromic acid as an etchant for bulk polypropylene and its use to study (i) nitric acid attack on polypropylene (ii) crackes in polypropylene induced by tensile stress, J. Mater. Sci. 4, 509–517 (1969)CrossRefGoogle Scholar
  419. 419.
    K.-W. Lee, T.J. McCarthy: Surface-selective hydroxylation of polypropylene, Macromolecules 21(2), 309–313 (1988)CrossRefGoogle Scholar
  420. 420.
    K. Sakaoku, A. Peterlin: Electron microscopy of drawn polypropylene, J. Polym. Sci. 9, 895–915 (1971)CrossRefGoogle Scholar
  421. 421.
    C. Luo, A. Govindaraju, J. Garra, T. Schneider, R. White, J. Currie, M. Paranjape: Releasing SU-8 structures using polystyrene as a sacrificial material, Sens. Actuators A 114, 123–128 (2004)CrossRefGoogle Scholar
  422. 422.
    R.-C. Ruaan, T. Chang, D.-M. Wang: Selection criteria for solvent and coagulation medium in view of macrovoid formation in the wet phase inversion process, J. Polym. Sci. B 37, 1495–1502 (1999)CrossRefGoogle Scholar
  423. 423.
    L.P. Lee, S.A. Berger, D. Liepmann, L. Pruitt: High aspect ratio polymer microstructures and cantilevers for BioMEMS using low energy ion beam and photolithography, Sens. Actuators A 71, 144–149 (1998)CrossRefGoogle Scholar
  424. 424.
    C.A. Costello, T.J. McCarthy: Surface-selective introduction of specific functionalities onto poly(tetrafluoroethylene), Macromolecules 20(11), 2819–2828 (1987)CrossRefGoogle Scholar
  425. 425.
    C.A. Costello, T.J. McCarthy: Surface Modification of Poly(tetrafluoroethylene) with Benzoin Dianion, Macromolecules, 17(12), 2940–2942 (1984)CrossRefGoogle Scholar
  426. 426.
    S.R. Kim: Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments, J. Appl. Polym. Sci. 77, 1913–1920 (2000)CrossRefGoogle Scholar
  427. 427.
    E.M. Petrie (Ed.): Handbook of Adhesives and Sealants, 2nd edn., Chapter 28.5.6 (McGraw-Hill, New York, NY, 2007)Google Scholar
  428. 428.
    J.M. Engel, J. Chen, D. Bullen, C. Liu: Polyurethane Rubber as a MEMS Material: Characterization and Demonstration of an All-Polymer Two-Axis Artificial Hair Cell Flow Sensor, 2005 IEEE Micro Electro Mechanical Systems, MEMS 279–282 (Miami, FL, January 30 – February 3, 2005)Google Scholar
  429. 429.
    U.S. Aithal, T.M. Aminabhavi, R.H. Balundgi, S.S. Shukla: Interactions of Organic Solvents with Polyurethane, Polymer Reviews, 30(1), 43–105 (1990)Google Scholar
  430. 430.
    C.E. Wilkes, J.W. Summers, C.A. Daniels (Eds.): PVC Handbook, Chapter 15 (Hanser, Munich, 2005)Google Scholar
  431. 431.
    K.H. Lee, H.Y. Kim, Y.M. La, D.R. Lee, N.H. Sung: Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats, J. Polym. Sci. B 40, 2259–2268 (2002)CrossRefGoogle Scholar
  432. 432.
    Arkema, Inc., Philadelphia, PA: Kynar PVDF Chemical Resistance Chart, http://www.arkema-inc.com/index.cfm?pag=719, accessed December 24, 2010
  433. 433.
    J.H. Heiss Jr, J.R. Wylie: Removal of RTV Silicon Rubber Encapsulants, U.S. Patent No. 4,089,704 (1978)Google Scholar
  434. 434.
    M. Agarwal, R.A. Gunasekaran, P. Coane, K. Varahramyan: Scum-free patterning of SU-8 resist for electroforming applications, J. Micromech. Microeng. 15, 130–135 (2005)CrossRefGoogle Scholar
  435. 435.
    A. Pavolotsky, D. Meledin, C. Risacher, M. Pantaleev, V. Belitsky: Micromachining approach in fabricating of THz waveguide components, Microelectron. J. 36, 683–686 (2005)CrossRefGoogle Scholar
  436. 436.
    P.M. Dentinger, W.M. Clift, S.H. Goods: Removal of SU-8 photoresist for thick film applications, Microelectron. Eng. 61–62, 993–1000 (2002)CrossRefGoogle Scholar
  437. 437.
    A. Jourdain, P. De Moor, S. Pamidighantam, H.A.C. Tilmans: Investigation of the Hermeticity of BCB-Sealed Cavities for Housing (RF-)MEMS Devices, 2002 IEEE Micro Electro Mechanical Systems, MEMS, pp. 677–680 (Las Vegas, NV, January 20–24, 2002)Google Scholar
  438. 438.
    Dow Chemical: Processing Procedures for Cyclotene 4000 Series Photo BCB Resins, DS2100 Puddle Develop Process, http://www.dow.com/PublishedLiterature/dh_0055/0901b80380055101.pdf?filepath=cyclotene/pdfs/noreg/618-00259.pdf&fromPage=GetDoc, accessed December 24, 2010
  439. 439.
    R. Kondo, K. Suzuki, S. Sugiyama: Study on Fabrication of High Aspect Ratio Electrostatic Micro Actuators Using LIGA Process, 1998 International Symposium on Micromechatronics and Human Science, pp. 155–160 (Nagoya, Japan, November 25–28, 1998)Google Scholar
  440. 440.
    E. Bassous: Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon, IEEE Trans. Electron Devices ED-25(10), 1178–1185 (1978)CrossRefGoogle Scholar
  441. 441.
    K.E. Bean: Anisotropic etching of silicon, IEEE Trans. Electron Dev. ED-25(10), 1185–1193 (1978)CrossRefGoogle Scholar
  442. 442.
    R.M. Finne, D.L. Klein: A water-amine-complexing agent system for etching silicon, J. Electrochem. Soc. 114(9), 965–970 (1967)CrossRefGoogle Scholar
  443. 443.
    D.L. Kendall: Vertical etching of silicon at very high aspect ratios, Ann. Rev. Mater. Sci. 9, 373–403 (1979)CrossRefGoogle Scholar
  444. 444.
    G.T.A. Kovacs, N.I. Maluf, K.E. Petersen: Bulk micromachining of silicon, Proc. IEEE 86(8), 1536–1551 (1998)CrossRefGoogle Scholar
  445. 445.
    D.B. Lee: Anisotropic etching of silicon, J. Appl. Phys. 40(11), 4569–4574 (1969)CrossRefGoogle Scholar
  446. 446.
    K.E. Petersen: Silicon as a mechanical material, Proc. IEEE 70(5), 420–457 (1982)CrossRefGoogle Scholar
  447. 447.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers, J. Electrochem. Soc. 137(11), 3612–3626 (1990)CrossRefGoogle Scholar
  448. 448.
    H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants, J. Electrochem. Soc. 137(11), 3626–3632 (1990)CrossRefGoogle Scholar
  449. 449.
    S.A. Campbell, H. J. Lewerenz (Eds.): Semiconductor Micromachining, vol. 2, Chapters 1–2 (Wiley, Chichester, 1998)Google Scholar
  450. 450.
    M. Elwenspoek, H.V. Jansen: Silicon micromachining, Chapters 2, 3, 6 and 7 (Cambridge University Press, Cambridge, 1998)Google Scholar
  451. 451.
    J.W. Gardner, V.K. Varadan, O. O. Awadelkarim: Microsensors, MEMS, and Smart Devices, Chapters 5, 6 (Wiley, Chichester, 2001)Google Scholar
  452. 452.
    K.R. Williams: Silicon Wet Orientation-Dependent (Anisotropic) Etch Rates, In R. Hull (Ed.): Properties of Crystalline Silicon, Chapter 16.2 (INSPEC, London, 1999)Google Scholar
  453. 453.
    M. Madou: Fundamentals of Microfabrication, Chapter 4 (CRC, Boca Raton, FL, 1998)Google Scholar
  454. 454.
    M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn, Chapter 4 (CRC, Boca Raton, FL, 2002)Google Scholar
  455. 455.
    W. Menz, J. Mohr, O. Paul: Microsystem Technology, Chapter 6 (Wiley, Weinheim, 2001)Google Scholar
  456. 456.
    A. Reisman, M. Berkenblit, S.A. Chan, F.B. Kaufman, D.C. Green: The controlled etching of silicon in catalyzed ethylenediamine-pyrocatechol-water solutions, J. Electrochem. Soc. 126(8), 1406–1415 (1979)CrossRefGoogle Scholar
  457. 457.
    I. Zubel, M. Kramkowska: The effect of alcohol additives on etching characteristics in KOH solutions, Sens. Actuators A, 101, 255–261 (2002)CrossRefGoogle Scholar
  458. 458.
    M. Mehregany, S. D. Senturia: Anisotropic etching of silicon in hydrazine, Sens. Actuators 13, 375–390 (1988)CrossRefGoogle Scholar
  459. 459.
    M.J. Declercq, L. Gerzberg, J.D. Meindl: Optimization of the hydrazine-water solution for anisotropic etching of silicon in integrated circuit technology, J. Electrochem. Soc. 122(4), 545–552 (1975)CrossRefGoogle Scholar
  460. 460.
    U. Schnakenberg, W. Benecke, B. Lochel: NH4OH-based etchants for silicon micromachining, Sens. Actuators A21–A23, 1031–1035 (1990)CrossRefGoogle Scholar
  461. 461.
    U. Schnakenberg, W. Benecke, B. Lochel, P. Lange: NH4OH-based etchants for silicon micromachining: Influence of additives and stability of passivation layers, Sens. Actuators A25–A27, 1–7 (1991)Google Scholar
  462. 462.
    U. Schnakenberg, W. Benecke, P. Lange: TMAHW Etchants for Silicon Micromachining, 1991 International Conference on Solid-State Sensors and Actuators, Transducers ’91, pp. 815–818 (San Francisco, CA, June 24–27, 1991)Google Scholar
  463. 463.
    J.T.L. Thong, W.K. Choi, C.W. Chong: TMAH etching of silicon and the interation of etching parameters, Sens. Actuators A 63, 243–249 (1997)CrossRefGoogle Scholar
  464. 464.
    M. Shikida, K. Sato, K. Tokoro, D. Uchikawa: Differences in anisotropic etching properties of KOH and TMAH solutions, Sens. Actuators 80, 179–188 (2000)CrossRefGoogle Scholar
  465. 465.
    O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, S. Sugiyama: Anisotropic etching of silicon in TMAH solutions, Sens. Actuators A 34, 51–57 (1992)CrossRefGoogle Scholar
  466. 466.
    I. Zubel, M. Kramkowska: The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions, Sens. Actuators A 93, 138–147 (2001)CrossRefGoogle Scholar
  467. 467.
    E. Steinsland, T. Finstad, A. Hanneborg: Etch rates of (100), (111) and (110) single-crystal silicon in TMAH measured in situ by laser reflectance interferometry, Sens. Actuators 86, 73–80 (2000)CrossRefGoogle Scholar
  468. 468.
    A. Merlos, M. Acero, M.H. Bao, J. Bausells, J. Esteve: TMAH/IPA anisotropic etching characteristics, Sens. Actuators A 37–38, 737–743 (1993)Google Scholar
  469. 469.
    P.M. Sarro, S. Brida, W.v.d. Vlist: Aluminum Passivation in Saturated TMAHW Solutions for IC-Compatible Microstructures and Device Isolation, SPIE Proceedings, vol. 2879, pp. 242–250 (Austin, TX, September 23, 1996)Google Scholar
  470. 470.
    M. Sekimura: Anisotropic Etching of Surfactant-Added TMAH Solution, 1999 IEEE Micro Electro Mechanical Systems, MEMS ’99, pp. 650–655 (Orlando, FL, January 17–21, 1999)Google Scholar
  471. 471.
    P.M. Sarro, D. Brida, W.v.d. Vlist, S. Brida: Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions, Sens. Actuators 85, 340–345 (2000)CrossRefGoogle Scholar
  472. 472.
    Transene Company, Inc., Danvers, MA 01923: Preferential Silicon Etchants, http://www.transene.com/si.html, accessed December 24, 2010
  473. 473.
    C.A. Desmond, C.E. Hunt, S.N. Farrens: The effects of process-induced defects on the chemical selectivity of highly doped boron etch stops in silicon, J. Electrochem. Soc. 141(1), 178–184 (1994)CrossRefGoogle Scholar
  474. 474.
    N.F. Raley, Y. Sugiyama, T. Van Duzer: (100) silicon etch-rate dependence on boron concentration in ethylenediamine-pyrocatachol-water solutions, J. Electrochem. Soc. 131(1), 161–171 (1984)CrossRefGoogle Scholar
  475. 475.
    E. Steinsland, M. Nese, A. Hanneborg, R.W. Bernstein, H. Sandmo, G. Kittilsland: Boron etch-stop in TMAH solutions, Sens. Actuators A 54, 728–732 (1996)CrossRefGoogle Scholar
  476. 476.
    J.T. Borenstein, N.D. Gerrish, M.T. Currie, E.A. Fitzgerald: A New Ultra-Hard Etch-Stop Layer for High Precision Micromachining, 1999 IEEE Micro Electro Mechanical Systems, MEMS ’99, pp. 205–210 (Orlando, FL, January 17–21, 1999)Google Scholar
  477. 477.
    W.P. Maszara: Silicon-on-insulator by wafer bonding: A review, J. Electrochem. Soc. 138(1), 341–347 (1991)CrossRefGoogle Scholar
  478. 478.
    I.G. Stoev, R.A. Yankov, C. Jeynes: Formation of etch-stop structures utilizing ion-beam synthesized buried oxide and nitride layers in silicon, Sens. Actuators 19, 183–197 (1989)CrossRefGoogle Scholar
  479. 479.
    A. Soderbarg: Fabrication of BESOI-Materials Using Implanted Nitrogen as an Effective Etch Stop Barrier, 1989 IEEE SOS/SOI Technology Conference, pp. 64–65 (Stateline, NV, USA, October 3–5, 1989)Google Scholar
  480. 480.
    V. Lehmann, K. Mitani, D. Feijoo, U. Gosele: Implanted carbon: An effective etch-stop in silicon, J. Electrochem. Soc. 138(5), L3–L4 (1991)CrossRefGoogle Scholar
  481. 481.
    S.S. Wang, V.M. McNeil, M.A. Schmidt: An etch-stop utilizing selective etching of N-Type silicon by pulsed potential anodization, J. Microelectromech. Syst. 1(4), 187–192 (1992)CrossRefGoogle Scholar
  482. 482.
    J.W. Faust Jr, E.D. Palik: Study of the orientation dependent etching and initial anodization of si in aqueous KOH, J. Electrochem. Soc. 130(6), 1413–1420 (1983)CrossRefGoogle Scholar
  483. 483.
    T.N. Jackson, M.A. Tischler, K.D. Wise: An electrochemical p-n junction etch-stop for the formation of silicon microstructures, IEEE Electron Device Lett. EDL-2(2), 44–45 (1981)CrossRefGoogle Scholar
  484. 484.
    R.L. Meek: Electrochemically thinned N/N+ epitaxial silicon – Method and applications, J. Electrochem. Soc. 118(7), 1240–1246 (1971)CrossRefGoogle Scholar
  485. 485.
    H.J.A. van Dijk, J. de Jonge: Preparation of thin silicon crystals by electrochemical thinning of epitaxially grown structures, J. Electrochem. Soc. 117(4), 554–554 (1970)CrossRefGoogle Scholar
  486. 486.
    M.J.J. Theunissen, J.A. Appels, W.H.C.G. Verkuylen: Application of preferential electrochemical etching of silicon to semiconductor device technology, J. Electrochem. Soc. 117(7), 959–965 (1970)CrossRefGoogle Scholar
  487. 487.
    C.J.M. Eijkel, J. Branebjerg, M. Elwenspoek, F.C.M. van de Pol: A new technology for micromachining of silicon: Dopant selective HF anodic etching for the realization of low-doped monocrystalline silicon structures, IEEE Electron Device Lett. 11(12), 588–589 (1990)CrossRefGoogle Scholar
  488. 488.
    C.P. Wen, K.P. Weller: Preferential electrochemical etching of P+ silicon in an aqueous HF-H2SO4 electrolyte, J. Electrochem. Soc. 119(4), 547–548 (1972)CrossRefGoogle Scholar
  489. 489.
    Y. Linden, L. Tenerz, J. Tiren, B. Hok: Fabrication of three-dimensional silicon structures by means of doping-selective etching (DSE), Sens. Actuators 16, 67–82 (1989)CrossRefGoogle Scholar
  490. 490.
    B. Kloeck, S.D. Collins, N.F. De Rooij, R.L. Smith: Study of electrochemical etch-stop for high-precision thickness control of silicon membranes, IEEE Trans. Electron Dev. 36(4), 663–669 (1989)CrossRefGoogle Scholar
  491. 491.
    R.L. Smith, B. Kloeck, N. De Rooij, S.D. Collins: The potential dependence of silicon anisotropic etching in KOH at 60C, J. Electroanal. Chem. 238, 103–113 (1987)CrossRefGoogle Scholar
  492. 492.
    K.J. Ma, K. Najafi: A New Capacitive Electro-Chemical Etch-Stop Technique, 1994 IEEE Micro Electro Mechanical Systems, MEMS ’94, pp. 158–163 (Oiso, Japan, January 25–28, 1994)Google Scholar
  493. 493.
    L. Smith, A. Soderbarg: Electrochemical etch stop obtained by accumulation of free carriers without p-n junction, J. Electrochem. Soc. 140(1), 271–275 (1993)CrossRefGoogle Scholar
  494. 494.
    M.K. Andrews, G.C. Turner: bipolar effects in the fabrication of silicon membranes by the anodic etch stop, Sens. Actuators A 29, 49–57 (1991)CrossRefGoogle Scholar
  495. 495.
    M. Hirata, K. Suzuki, H. Tanigawa: Silicon diaphragm pressure sensors fabricated by anodic oxidation etch-stop, Sens. Actuators 13, 63–70 (1988)CrossRefGoogle Scholar
  496. 496.
    M. Hirata, S. Suwazono, H. Tanigawa: Diaphragm thickness control in silicon pressure sensors using an anodic oxidation etch-stop, J. Electrochem. Soc. 134(8), 2037–2041 (1987)CrossRefGoogle Scholar
  497. 497.
    C.M.A. Ashruf, P.J. French, P.M.M.C. Bressers, P.M. Sarro, J.J. Kelly: A new contactless electrochemical etch-stop based on a gold/silicon/TMAH galvanic cell, Sens. Actuators A 66, 284–291 (1998)CrossRefGoogle Scholar
  498. 498.
    P.J. French, M. Nagao, M. Esashi: Electrochemical etch-stop in TMAH without externally applied bias, Sens. Actuators A 56, 279–280 (1996)CrossRefGoogle Scholar
  499. 499.
    C.M.A. Ashruf, P.J. French, P.M. Sarro, R. Kazinczi, X.H. Xia, J.J. Kelly: Galvanic etching for sensor fabrication, J. Micromech. Microeng. 10, 505–515 (2000)CrossRefGoogle Scholar
  500. 500.
    M.C. Acero, J. Esteve, C. Burrer, A. Gotz: Electrochemical etch-stop characteristics of TMAH:IPA solutions, Sens. Actuators A 46–47, 22–26 (1995)Google Scholar
  501. 501.
    S.A. Campbell, H.J. Lewerenz (Eds.): Semiconductor Micromachining, vol. 2, Chapter 2 (Wiley, Chichester, 1998)Google Scholar
  502. 502.
    H. Nielsen, D. Hackleman: Some illumination on the mechanism of SiO2 etching in HF solutions, J. Electrochem. Soc. 130(3), 708–712 (1983)CrossRefGoogle Scholar
  503. 503.
    T. Yoshida, T. Kudo, K. Ikeda: Photo-Induced Preferential Anodization for Fabrication of Monocrystalline Micromechanical Structures, Proceedings of MEMS ’92, pp. 56–61 (Travemunde, Germany, February 4–7, 1992)Google Scholar
  504. 504.
    E. Peeters, D. Lapadatu, R. Puers, W. Sansen: PHET, an electrodeless photovoltaic electrochemical etchstop technique, J. Microelectromech. Syst. 3(3), 113–123 (1994)CrossRefGoogle Scholar
  505. 505.
    R.W. Ade, E.E. Harstead, A.H. Amirfazli, T. Cacouris, E.R. Fossum, P.R. Prucnal, R.M. Osgood Jr: Silicon photodetector structure for direct coupling of optical fibers to integrated circuits, IEEE Trans. Electron Devices, ED-34(6), 1283–1289 (1987)CrossRefGoogle Scholar
  506. 506.
    L. Tenerz, B. Hok: Micromachining of three-dimensional silicon structures using photoelectrochemical etching, Electron. Lett. 21(25–26), 1207–1209 (1985)CrossRefGoogle Scholar
  507. 507.
    M. Garin, T. Trifonov, A. Rodriguez, L.F. Marsal, R. Alcubilla: Optical PRoperties of 3D macroporous silicon structures, Mater. Sci. Eng. B 149, 275–280 (2008)CrossRefGoogle Scholar
  508. 508.
    J. Schilling, F. Muller, S. Matthias, R.B. Wehrspohn, U. Gosele: Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter, Appl. Phys. Lett. 78(9), 1180–1182 (2001)CrossRefGoogle Scholar
  509. 509.
    R. Mlcak, H.L. Tuller, P. Greiff, J. Sohn: Photo-Assisted Electrochemical Machining of Micromechanical Structures, Proceedings of MEMS ’93, pp. 225–229 (Fort Lauderdale, FL, February 7–10, 1993)Google Scholar
  510. 510.
    R. Mlcak, H.L. Tuller, P. Greiff, J. Sohn, L. Niles: Photoassisted electrochemical micromachining of silicon in hf electrolytes, Sens. Actuators A 40, 49–55 (1994)CrossRefGoogle Scholar
  511. 511.
    E.H. Klaassen, R.J. Reay, C. Storment, G.T. A. Kovacs: Micromachined thermally isolated circuits, Sens. Actuators A 58, 43–50 (1997)CrossRefGoogle Scholar
  512. 512.
    K. Biswas, S. Kal: Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon, Microelectron. J. 37, 519–525 (2006)CrossRefGoogle Scholar
  513. 513.
    A.E.T. Kuiper, E.G.C. Lathouwers: room-temperature HF vapor-phase cleaning for low-pressure chemical vapor deposition of epitaxial Si and SiGe layers, J. Electrochem. Soc. 139(9), 2594–2599 (1992)CrossRefGoogle Scholar
  514. 514.
    E. Hoffman, B. Warneke, E. Kruglick, J. Weigold, K.S.J. Pister: 3D Structures with Piezoresistive Sensors in Standard CMOS, 1995 IEEE Micro Electro Mechanical Systems, MEMS ’95, pp. 288–293 (Amsterdam, January 29 – February 2, 1995)Google Scholar
  515. 515.
    P.B. Chu, J.T. Chen, R. Yeh, G. Lin, J.C.P. Huang, B.A. Warneke, S.J. Pister: Controlled pulse-etching with xenon difluoride, 1997 International Conference on Solid-State Sensors and Actuators, Transducers ’97, pp. 665–668 (Chicago, IL, June 16–19, 1997)Google Scholar
  516. 516.
    K. Hamaguchi, T. Tsuchiya, K. Shimaoka, H. Funabashi: 3-nm gap fabrication using gas phase sacrificial etching for quantum devices, 2004 IEEE Micro Electro Mechanical Systems, MEMS 2004, pp. 418–421 (Maastricht, The Netherlands, Jan 25–29, 2004)Google Scholar
  517. 517.
    J.D. Brazzle, M.R. Dokmeci, C.H. Mastrangelo: Modeling and characterization of sacrificial polysilicon etching using vapor-phase xenon difluoride, 2004 IEEE Micro Electro Mechanical Systems, MEMS 2004, pp. 737–740 (Maastricht, The Netherlands, Jan 25–29, 2004)Google Scholar
  518. 518.
    G. Xuan, T.N. Adam, J. Suehle, E. Fitzgerald, P.Lv,N. Sustersic, M.J. Coppinger, J. Kolodzey: Xenon difluoride dry etching of Si, SiGe alloy and Ge, 2006 International SiGe Technology and Device Meeting, pp. 142–143 (Princeton, NJ, October 30, 2006)Google Scholar
  519. 519.
    T. Zhu, P. Argyrakis, E. Mastropaolo, K.K. Lee, R. Cheung: Dry etch release processes for micromachining applications, J. Vac. Sci. Technol. B 25(6), 2553–2557 (2007)CrossRefGoogle Scholar
  520. 520.
    F. Ayazi, K. Najafi: High-Aspect-Ratio Dry-Release Poly-Silicon MEMS Technology for Inertial-Grade Microgyroscopes, IEEE Position Location and Navigation Symposium, pp. 304–308 (San Diego, CA, March 13–16, 2000)Google Scholar
  521. 521.
    P.F. Van Kessel, L. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998)CrossRefGoogle Scholar
  522. 522.
    C.W. Storment, D.A. Borkholder, V. Westerlind, J.W. Suh, N.I. Maluf, G.T.A. Kovacs: Flexible, dry-released process for aluminum electrostatic actuators, J. Microelectromech. Syst. 3(3), 90–96 (1994)CrossRefGoogle Scholar
  523. 523.
    D.W. Burns: unpublished resultGoogle Scholar
  524. 524.
    R.T. Howe, R.S. Muller: Polycrystalline silicon micromechanical beams, J. Electrochem. Soc. 130(6), 1420–1423 (1983)CrossRefGoogle Scholar
  525. 525.
    H. Guckel, D.W. Burns: Planar Processed Polysilicon Sealed Cavities for Pressure Transducer Arrays, 1984 International Electron Devices Meeting, vol. 30, pp. 223–225 (San Francisco, CA, December, 1984)CrossRefGoogle Scholar
  526. 526.
    D.J. Monk, D.S. Soane, R.T. Howe: Hydrofluoric acid etching of silicon dioxide sacrificial layers I. Experimental observations, J. Electrochem. Soc. 141(1), 264–269 (1994)CrossRefGoogle Scholar
  527. 527.
    D.J. Monk, D.S. Soane, R.T. Howe: Hydrofluoric acid etching of silicon dioxide sacrificial layers II. Modeling, J. Electrochem. Soc. 141(1), 270–274 (1994)CrossRefGoogle Scholar
  528. 528.
    S.-J. Lee, S.-Y. Roh, C.-J. Kim: A New sacrificial layer improving the structural characteristics of micro electromechanical systems, J. Korean Phys. Soc. 32(5), 731–734 (1998)Google Scholar
  529. 529.
    J. Anguita, F. Briones: HF/H2O vapor etching of SiO2 sacrificial layer for large-area surface-micromachined membranes, Sens. Actuators A 64, 247–251 (1998)CrossRefGoogle Scholar
  530. 530.
    H. Cao, R.J. Weber: Vapor HF Sacrificial Etching for Phosphorus Doped Polycrystalline Silicon Membrane Structures, IEEE International Conference on Electro/Information Technology, EIT, pp. 289–293 (Ames, IA, USA, May 18–20, 2008)Google Scholar
  531. 531.
    A. Witvrouw, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, C. Baert: A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal, Proc. SPIE, 4174, 130–141 (2000)CrossRefGoogle Scholar
  532. 532.
    K. Hjort: Sacrificial etching of III-V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–375 (1996)CrossRefGoogle Scholar
  533. 533.
    M.Y. Sim, S. Gleixner: Studying the Etch Rates and Selectivity of SiO2 and Al in BHF Solutions, 16th Biennial University/Government/Industry Microelectronics Symposium, pp. 225–228 (San Jose, CA, June 25–28, 2006)Google Scholar
  534. 534.
    R. Lanz, P. Carazzetti, P. Muralt: Surface Micromachined BAW Resonators Based on AlN, IEEE Ultrasonics Symposium, pp. 981–983 (Munich, Germany, October 8–11, 2002)Google Scholar
  535. 535.
    A.E. Franke, D. Bilic, D.T. Chang, P.T. Jones, T.-J. King, R.T. Howe, G.C. Johnson: Post-CMOS Integration of Germanium Microstructures, 12th International Conference on Micro-Electro-Mechanical Systems MEMS ’99, pp. 630–637 (Orlando, FL, January 17–21, 1999)Google Scholar
  536. 536.
    A. Maciossek, B. Lochel, H.-J. Quenzer, B. Wagner, S. Schulze, J. Noetzel: Galvanoplating and sacrificial layers for surface micromachining, Microelectron. Eng. 27, 503–508 (1995)CrossRefGoogle Scholar
  537. 537.
    D.P. Kelly, M.W. Pruessner, K. Amarnath, M. Datta, S. Kanakaraju, L.C. Calhoun, R. Ghodssi: Monolithic suspended optical waveguides for InP MEMS, IEEE Photon. Technol. Lett. 16(5), 1298–1300 (2004)CrossRefGoogle Scholar
  538. 538.
    A.B. Frazier, M.G. Allen: High Aspect Ratio Electroplated Microstructures Using a Photosensitive Polyimide Process, 1992 IEEE Micro Electro Mechanical Systems, MEMS ’92, pp. 87–92 (Travemunde, Germany, February 4–7, 1992)Google Scholar
  539. 539.
    C.G. Keller, R.T. Howe: Nickel-Filled Hexsil Thermally Actuated Tweezers, 1995 International Conference on Solid-State Sensors and Actuators, Transducers ’95, pp. 376–379 (Stockholm, Sweden, June 25–29, 1995)Google Scholar
  540. 540.
    Z. Cui, R.A. Lawes: A new sacrificial layer process for the fabrication of micromechanical systems, J. Micromech. Microeng. 7, 128–130 (1997)CrossRefGoogle Scholar
  541. 541.
    H. Guckel, K.J. Skrobis, T.R. Christenson, J. Klein, S. Han, B. Choi, E.G. Lovell: Fabrication of Assembled Micromechanical Components via Deep X-Ray Lithography, 1991 IEEE Micro Electro Mechanical Systems, MEMS ’91, pp. 74–79 (Nara, Japan, January 30 – February 2, 1991)Google Scholar
  542. 542.
    H. Guckel: High-aspect-ratio micromachining via deep x-ray lithography, Proc. IEEE 86(8), 1586–1593 (1998)CrossRefGoogle Scholar
  543. 543.
    H. Guckel, T.R. Christenson, K.J. Skrobis, D.D. Denton, B. Choi, E.G. Lovell, J.W. Lee, S.S. Bajikar, T.W. Chapman: Deep X-Ray and UV Lithographies for Micromechanics, 4th IEEE Solid-State Sensor and Actuator Workshop, pp. 118–122 (Hilton Head Island, SC, June 4–7, 1990)Google Scholar
  544. 544.
    H. Guckel, K.J. Skrobis, T.R. Christenson, J. Klein: Micromechanics for actuators via deep x-ray lithography, Proc. SPIE 2194, 2–10 (1994)CrossRefGoogle Scholar
  545. 545.
    X. Huang, G. Liu, X. Ying, J. Wang, Y. Guo, C. Kang, Y. Tian: Applications of thick sacrificial-layer of zinc in liga process, Microsyst. Technol. 14, 1257–1261 (2008)CrossRefGoogle Scholar
  546. 546.
    S.D. Leith, D.T. Schwartz: In-situ fabrication of sacrificial layers in electrodeposited NiFe microstructures, J. Micromech. Microeng. 9, 97–104 (1999)CrossRefGoogle Scholar
  547. 547.
    K.E. Petersen: Micromechanical light modulator array fabricated on silicon, Appl. Phys. Lett. 31(8), 521–523 (1977)CrossRefGoogle Scholar
  548. 548.
    K. Walsh, J. Norville, Y.-C. Tai: Photoresist as a Sacrificial Layer by Dissolution in Acetone, 2001 IEEE Micro Electro Mechanical Systems, MEMS, pp. 114–117 (Interlaken, Sweden, January 21–25, 2001)Google Scholar
  549. 549.
    M.A. Schmidt, R.T. Howe, S.D. Senturia, J.H. Haritonidis: Design and calibration of a microfabricated floating-element shear-stress sensor, IEEE Trans. Electron Dev. 35(6), 750–757 (1988)CrossRefGoogle Scholar
  550. 550.
    O. Paul, D. Westberg, M. Hornung, V. Ziebart, H. Baltes: Sacrificial Aluminum Etching for CMOS Microstructures, 1997 IEEE Micro Electro Mechanical Systems, MEMS ’97, pp. 523–528 (Nagoya, Japan, January 26–30, 1997)Google Scholar
  551. 551.
    K. Suzuki, I. Shimoyama, H. Miura: Insect-model based microrobot with elastic hinges, J. Micromech. Syst. 3(1), 4–9 (1994)CrossRefGoogle Scholar
  552. 552.
    C.E. White, T. Anderson, C.L. Henderson, H.D. Rowland, W.P. King: Microsystems manufacturing via embossing of photodefinable thermally sacrificial materials, Proc. SPIE 5374, 361–370 (2004)CrossRefGoogle Scholar
  553. 553.
    S. Chang, W. Eaton, J. Fulmer, C. Gonzalez, B. Underwood, J. Wong, R.L. Smith: Micromechanical Structures in Amorphous Silicon, 1991 International Conference on Solid-State Sensors and Actuators, Transducers ’91, pp. 751–754 (San Francisco, CA, June 24–27, 1991)CrossRefGoogle Scholar
  554. 554.
    L.J. Spangler, K.D. Wise: A New Silicon-on-Glass Process for Integrated Sensors, IEEE Solid-State Sensor and Actuator Workshop, pp. 140–143 (Hilton Head Island, SC, June 6–9, 1988)Google Scholar
  555. 555.
    S.T. Cho: A batch dissolved wafer process for low cost sensor applications, Proc. SPIE 2639(10), 10–17 (1995)CrossRefGoogle Scholar
  556. 556.
    T.E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl: Porous silicon as a sacrificial material, J. Micromech. Microeng. 6, 361–369 (1996)CrossRefGoogle Scholar
  557. 557.
    P. Steiner, A. Richter, W. Lang: Using porous silicon as a sacrificial layer, J. Micromech. Microeng. 3, 32–36 (1993)CrossRefGoogle Scholar
  558. 558.
    W. Lang, P. Steiner, A. Richter, K. Marusczyk, G. Weimann, H. Sandmaier: Application of porous silicon as a sacrificial layer, Sens. Actuators A 43, 239–242 (1994)CrossRefGoogle Scholar
  559. 559.
    T. Bischoff, G. Muller, W. Welser, F. Koch: Frontside micromachining using porous-silicon sacrificial-layer technologies, Sens. Actuators A 60, 228–234 (1997)CrossRefGoogle Scholar
  560. 560.
    B.L. Bircumshaw, M.L. Wasilik, E.B. Kim, Y.R. Su, H. Takeuchi, C.W. Low, G. Liu, A.P. Pisano, T.-J. King, R.T. Howe: Hydrogen Peroxide Etching and Stability of P-Type Poly-SiGe Films, 2004 IEEE Micro Electro Mechanical Systems, MEMS, pp. 514–519 (Maastricht, The Netherlands, January 25–29, 2004)Google Scholar
  561. 561.
    P.R. Scheeper, W. Olthuis, P. Bergveld: Fabrication of a Subminiature Silicon Condenser Microphone Using the Sacrificial Layer Technique, 1991 International Conference on Solid-State Sensors and Actuators, Transducers ’91, pp. 408–411 (San Francisco, CA, June 24–27, 1991)Google Scholar
  562. 562.
    W. Kronast, B. Muller, W. Siedel, A. Stoffel: Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap, Sens. Actuators A 87, 188–193 (2001)CrossRefGoogle Scholar
  563. 563.
    A.H. Ma, S.-Ho Tsang, M. Parameswaran, A.M. Leung: Spin-On Glass as a Sacrificial Layer for Patterned Metallization of Compliant SU-8 Microstructures, Canadian Conference on Electrical and Computer Engineering, CCECE 2007, pp. 288–291 (Vancouver, BC, April 22–26, 2007)Google Scholar
  564. 564.
    V. Conedera, L. Salvagnac, N. Fabre, F. Zamkotsian, H. Camon: Surface micromachining technology with two SU-8 structural layers and sol-gel, SU-8 or SiO2/sol-gel sacrificial layers, J. Micromech. Microeng. 17, N52–N57 (2007)CrossRefGoogle Scholar
  565. 565.
    K. Yamada, T. Kuriyama: A New Modal Mode Controlling Method for a Surface Format Surrounding Mass Accelerometer, 1991 International Conference on Solid-State Sensors and Actuators, Transducers ’91, pp. 655–658 (San Francisco, CA, June 24–27, 1991)Google Scholar
  566. 566.
    N.C. MacDonald, L.Y. Chen, J.J. Yao, Z.L. Zhang, J.A. McMillan, D.C. Thomas: Selective chemical vapor deposition of tungsten for microelectromechanical structures, Sens. Actuators 20, 123–133 (1989)CrossRefGoogle Scholar
  567. 567.
    L.-Y. Chen, N.C. MacDonald: A Selective CVD Tungsten Process for Micromotors, 1991 International Conference on Solid-State Sensors and Actuators, Transducers ’91, pp. 739–742 (San Francisco, CA, June 24–27, 1991)Google Scholar
  568. 568.
    J.C. North, T.E. McGahan, D.W. Rice, A.C. Adams: Tapered windows in phosphorus-doped SiO2 by ion implantation, IEEE Trans. Electron Devices ED-25(7), 809–812 (1978)CrossRefGoogle Scholar
  569. 569.
    J. Gotzlich, H. Ryssel: Tapered windows in SiO2, Si3N4, and polysilicon layers by ion implantation, J. Electrochem. Soc. 128(3), 617–619 (1981)CrossRefGoogle Scholar
  570. 570.
    A.S. Tenney, M. Ghezzo: Etch rates of doped oxides in solutions of buffered HF, J. Electrochem. Soc. 120(8), 1091–1095 (1973)CrossRefGoogle Scholar
  571. 571.
    L.K. White: Bilayer taper etching of field oxides and passivation layers, J. Electrochem. Soc. 127(12), 2687–2693 (1980)CrossRefGoogle Scholar
  572. 572.
    S. Sugiyama, T. Suzuki, K. Kawahata, K. Shimaoka, M. Takigawa, I. Igarashi: Micro-Diaphragm Pressure Sensor, International Electron Devices Meeting, pp. 184–187 (Los Angeles, CA, December 7–10, 1986)Google Scholar
  573. 573.
    C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces-part i: basic theory, J. Microelectromech. Syst. 2(1), 33–43 (1993)CrossRefGoogle Scholar
  574. 574.
    C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces-part ii: experiments, J. Microelectromech. Syst. 2(1), 44–55 (1993)CrossRefGoogle Scholar
  575. 575.
    R.C. Weast (Ed.): CRC Handbook of Chemistry and Physics, 60th edn. (CRC Press, Boca Raton, FL), 1979/1980Google Scholar
  576. 576.
    G.T. Mulhern, D.S. Soane, R.T. Howe: Supercritical Carbon Dioxide Drying of Microstructures, 1993 International Conference on Solid-State Sensors and Actuators, Transducers ’93, pp. 296–299 (Yokohama, Japan, June 7–10, 1993)Google Scholar
  577. 577.
    C.W. Dyck, J.H. Smith, S.L. Miller, E.M. Russick, C.L.J. Adkins: Supercritical Carbon Dioxide Solvent Extraction from Surface-Micromachined Micromechanical Structures, SPIE Micromachining and Microfabrication (Austin, TX, October 14–15, 1996)Google Scholar
  578. 578.
    D.W. Burns: unpublished result (1988)Google Scholar
  579. 579.
    H. Guckel, J.J. Sniegowski, T.R. Christenson: Fabrication of micromechanical devices from polysilicon films with smooth surfaces, Sens.Actuators 20, 117–122 (1989)CrossRefGoogle Scholar
  580. 580.
    N. Takeshima, K.J. Gabriel, M. Ozaki, J. Takahashi, H. Horiguchi, H. Fujita: Electrostatic Parallelgram Actuators, 1991 International Conference on Solid-State Sensors and Actuators, Transducers ’91, pp. 63–66 (San Francisco, CA, June 24–27, 1991)Google Scholar
  581. 581.
    R. Legtenberg, H.A.C. Tilmans: Electrostatically driven vacuum-encapsulated polysilicon resonators: Part I. Design and fabrication, Sens. Actuators A 45, 57–66 (1994)CrossRefGoogle Scholar
  582. 582.
    J.Y. Kim, C.-J. Kim: Comparative Study of Various Release Methods for Polysilicon Surface Micromachining, 1997 IEEE Micro Electro Mechanical Systems, MEMS ’97, pp. 442–447 (Nagoya, Japan, January 26–30, 1997)Google Scholar
  583. 583.
    L. Alley, G.J. Cuan, R.T. Howe, K. Komvopoulos: The Effect of Release-Etch Processing on Surface Microstructure Stiction, Technical Digest of the 5th Solid-State Sensor and Actuator Workshop, pp. 202–207 (Hilton Head Island, SC, USA, June 22–25, 1992)Google Scholar
  584. 584.
    W.R. Ashurst, C. Yau, C. Carraro, C. Lee, G.J. Kluth, R.T. Howe, R. Maboudian: Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS, Sens. Actuators A 91, 239–248 (2001)CrossRefGoogle Scholar
  585. 585.
    U. Srinivasan, M.R. Houston, R.T. Howe, R. Maboudian: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, J. Microelectromech. Syst. 7(2), 252–260 (1998)CrossRefGoogle Scholar
  586. 586.
    B.H. Kim, T.D. Chung, C.H. Oh, K. Chun: A new organic modifier for anti-stiction, J. Microelectromech. Syst. 10(1), 33–40 (2001)CrossRefGoogle Scholar
  587. 587.
    W.R. Ashurst, C. Carraro, R. Maboudian, W. Frey: Wafer level anti-stiction coatings for MEMS, Sens. Actuators A 104, 213–221 (2003)CrossRefGoogle Scholar
  588. 588.
    J.R. Martin: Process for Wafer Level Treatment to Reduce Stiction and Passivate Micromachined Surfaces and Compounds Used Therefor, U.S. Patent No. 7,364,942 (2008)Google Scholar
  589. 589.
    M. Ito, K. Yamagata, H. Miyabayashi, T. Yonehara: Scalability Potential in ELTRAN® SOI-Epi Wafer, IEEE International SOI Conference, pp. 10–11 (Wakefield, MA, USA, October 2–5, 2000)Google Scholar
  590. 590.
    T. Yonehara, K. Sakaguchi, N. Sato: Epitaxial layer transfer by bond and etch back of porous Si, Appl. Phys. Lett. 64(16), 2108–2110 (1994)CrossRefGoogle Scholar
  591. 591.
    G. Barillaro, A. Nannini, M. Piotto: Electrochemical etching in HF solutions for silicon micromachining, Sens. Actuators A 102, 195–201 (2002)CrossRefGoogle Scholar
  592. 592.
    H. Foll, M. Christophersen, J. Carstensen, G. Hasse: Formation and application of porous silicon, Mater. Sci. Eng. R, 39, 93–141 (2002)CrossRefGoogle Scholar
  593. 593.
    V. Lehmann: Porous silicon – A new material for MEMS, 1996 IEEE Micro Electro Mechanical Systems, MEMS '96, pp. 1–6, (San Diego, CA, Feb. 11–15, 1996)Google Scholar
  594. 594.
    V. Lehmann: The physics of macropore formation in low doped n-type silicon, J. Electrochem. Soc. 140(10), 2836–2843 (1993)CrossRefGoogle Scholar
  595. 595.
    P. Steiner, W. Lang: Micromachining applications of porous silicon, Thin Solid Films 225, 52–58 (1995)CrossRefGoogle Scholar
  596. 596.
    P.A. Kohl, F.W. Ostermayer Jr: Photoelectrochemical methods for III-V compound semiconductor device processing, Ann. Rev. Mater. Sci. 19, 379–399 (1989)Google Scholar
  597. 597.
    C. Levy-Clement, A. Lagoubi, M. Tomkiewicz: Morphology of porous n-type silicon obtained by photoelectrochemical etching I. Correleations with material and etching parameters, J. Electrochem. Soc. 141(4), 958–967 (1994)CrossRefGoogle Scholar
  598. 598.
    R.L. Smith, S.D. Collins: Porous silicon formation mechanisms, J. Appl. Phys. 71(8), R1–R22 (1992)CrossRefGoogle Scholar
  599. 599.
    D.R. Turner: Electropolishing silicon in hydrofluoric acid solutions, J. Electrochem. Soc. 105(7), 402–408 (1958)CrossRefGoogle Scholar
  600. 600.
    S.S. Tsao, T.R. Guilinger, M.J. Kelly, P.J. Clews: Multilevel porous silicon formation, J. Electrochem. Soc. 136(2), 586–587 (1989)CrossRefGoogle Scholar
  601. 601.
    H. Takai, T. Itoh: Isolation of silicon film grown on porous silicon layer, J. Electron. Mater. 12(6), 973–982 (1983)CrossRefGoogle Scholar
  602. 602.
    A. Richter, P. Steiner, F. Kozlowski, W. Lang: Current-induced light emission from a porous silicon device, IEEE Electron Device Lett. 12(12), 691–692 (1991)CrossRefGoogle Scholar
  603. 603.
    V. Lehmann: The physics of macroporous silicon formation, Thin Solid Films 255, 1–4 (1995)CrossRefGoogle Scholar
  604. 604.
    R.W. Fathauer, T. George, A. Ksendzov, R.P. Vasquez: Visible luminescence from silicon wafers subjected to stain etches, Appl. Phys. Lett. 60(8), 995–997 (1992)CrossRefGoogle Scholar
  605. 605.
    S. Liu, C. Palsule, S. Yi, S. Gangopadhyay: Characterization of stain-etched porous silicon, Phys. Rev. B 49(15), 10318–10325 (1994)CrossRefGoogle Scholar
  606. 606.
    K. Imai, H. Unno: FIPOS (Full Isolation by Porous Oxidized Silicon) technology and its application to LSI’s, IEEE Trans. Electron Devices ED-31(3), 297–302 (1984)CrossRefGoogle Scholar
  607. 607.
    F. Beck: Integrated Circuit Failure Analysis, A Guide to Preparation Techniques, Chapters 3, 6 (Wiley, Chichester, 1998)Google Scholar
  608. 608.
    C.A. Harper (Ed.): Handbook of Materials and Processes for Electronics, Chapter 7 (McGraw-Hill, New York, NY, 1970)Google Scholar
  609. 609.
    W.R. Runyan, T.J. Shaffner: Semiconductor Measurements and Instrumentation, 2nd edn, Chapters 2, 9 (McGraw-Hill, New York, NY, 1998)Google Scholar
  610. 610.
    K.R. Williams: Silicon Preferential (Defect Delineation) Etch Rates, In R. Hull (Ed.), Properties of Crystalline Silicon, Chapter 16.3 (INSPEC, London, 1999)Google Scholar
  611. 611.
    W.R. Runyan, T.J. Shaffner: Semiconductor Measurements and Instrumentation, 2nd edn., Chapter 2 (McGraw-Hill, New York, NY 1998)Google Scholar
  612. 612.
    S.A. Campbell, H.J. Lewerenz (Eds.): Semiconductor Micromachining, vol. 2, Chapter 10 (Wiley, Chichester, 1998)Google Scholar
  613. 613.
    W.R. Runyan, T.J. Shaffner: Semiconductor Measurements and Instrumentation, 2nd edn., Chapter 9 (McGraw-Hill, New York, NY, 1998)Google Scholar
  614. 614.
    T.L. Chu, J.R. Gavaler: Stacking faults in vapor grown silicon, J. Electrochem. Soc. 110(5), 388–393 (1963)CrossRefGoogle Scholar
  615. 615.
    W.C. Dash: Copper precipitation on dislocations in silicon, J. Appl. Phys. 27(10), 1193–1195 (1956)CrossRefGoogle Scholar
  616. 616.
    H. Robbins: Junction delineation in silicon, J. Electrochem. Soc. 109(1), 63–64 (1962)MathSciNetCrossRefGoogle Scholar
  617. 617.
    C.S. Fuller, J.A. Ditzenberger: Diffusion of donor and acceptor elements in silicon, J. Appl. Phys. 27(5), (1956)544–553CrossRefGoogle Scholar
  618. 618.
    P.J. Whoriskey: Two chemical stains for marking p-n junctions in silicon, J. Appl. Phys. 29(5), 867–868 (1958)CrossRefGoogle Scholar
  619. 619.
    C.P. Wu, E.C. Douglas, C.W. Mueller, R. Williams: Techniques for lapping and staining ion-implanted layers, J. Electrochem. Soc. 126(11), 1982–1988 (1979)CrossRefGoogle Scholar
  620. 620.
    T. Mills, E.W. Sponheimer: Precision VLSI Cross Sectioning and Staining, Proceedings of 20th Annual Reliability Physics Symposium, pp. 214–220 (San Diego, CA, March 30–31, 1982)Google Scholar
  621. 621.
    B.L. Sopori: A new defect etch for polycrystalline silicon, J. Electrochem. Soc. 131(3), 667–672 (1984)CrossRefGoogle Scholar
  622. 622.
    D.G. Schimmel: Defect etch for <100> silicon evaluation, J. Electrochem. Soc. 126(3), 479–483 (1979)CrossRefGoogle Scholar
  623. 623.
    V.D. Archer: Methods for defect evaluation of thin <100> oriented silicon epitaxial layers using a wet chemical etch, J. Electrochem. Soc. 129(9), 2074–2076 (1982)CrossRefGoogle Scholar
  624. 624.
    K.H. Yang: An etch for delineation of defects in silicon, J. Electrochem. Soc. 131(5), 1140–1145 (1984)CrossRefGoogle Scholar
  625. 625.
    M. Wright Jenkins: A new preferential etch for defects in silicon crystals, J. Electrochem. Soc. 124(5), (1977)757–762CrossRefGoogle Scholar
  626. 626.
    Transene Company, Inc., Danvers, MA 01923: Wright Etchant, http://www.transene.com/wright.html, accessed December 24, 2010
  627. 627.
    T.C. Chandler: MEMC Etch – A chromium trioxide-free replacement for delineating dislocations and slip in silicon, J. Electrochem. Soc. 137(3), 944–948 (1990)CrossRefGoogle Scholar
  628. 628.
    F. Secco d’ Aragona: Dislocation etch for (100) planes in silicon, J. Electrochem. Soc. 119(7), 948–951 (1972)CrossRefGoogle Scholar
  629. 629.
    R.T. Howe, R.S. Muller: Polycrystalline and amorphous silicon micromechanical beams – Annealing and mechanical properties, Sens. Actuators 4, 447–454 (1983)CrossRefGoogle Scholar
  630. 630.
    W.A. Pliskin, R.P. Gnall: Evidence for oxidation growth at the oxide-silicon interface from controlled etch studies, J. Electrochem. Soc. 111(7), 872–873 (1964)CrossRefGoogle Scholar
  631. 631.
    H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J. Korvink, O. Tabata (Eds.): Advanced Micro and Nanosystems, vol. 2, CMOS-MEMS (Wiley-VCH, Weinheim, 2005)Google Scholar

Copyright information

© David W. Burns. Published by Springer Science+Business Media, LLC, with permission 2011

Authors and Affiliations

  1. 1.Burns EngineeringSan JoseUSA

Personalised recommendations