Skip to main content

Digital Image Correlation for Shape and Deformation Measurements

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The essential concepts underlying the use of two-dimensional (2-D) digital image correlation for deformation measurements and three-dimensional (3-D) digital image correlation for shape and deformation measurements on curved or planar specimens are presented. Two-dimensional digital image correlation measures full-field surface displacements with accuracy on the order of ±0.01 pixels on nominally planar specimens undergoing arbitrary in-plane rotations and/or deformations. Three-dimensional digital image correlation measures the complete 3-D surface displacement field on curved or planar specimens, with accuracy on the order of ±0.01 pixels for the in-plane components and Z/50000 in the out-of-plane component, where Z is the distance from the object to the camera, for typical stereo-camera arrangements. Accurate surface strains can be extracted from the measured displacement data for specimens ranging in size from many meters to microns and under a wide range of mechanical loading and environmental conditions, using a wide range of imaging systems including optical, scanning electron microscopy, and atomic force microscopy.

In Sect. 20.2, the essential concepts underlying both 2-D DIC and 3-D DIC are presented. Section 20.3 introduces the pinhole imaging model and calibration procedures. Sections 20.4 and 20.5 describe the image digitization and image reconstruction procedures, respectively, for accurate, subpixel displacement measurement. Section 20.6 presents the basics for subset-based, image pattern matching. Section 20.7 provides a range of methods for applying random texture to a surface. Sections 20.8 and 20.9 provide the basics for calibration and deformation measurements in 2-D DIC and 3-D DIC applications, respectively. Section 20.10 presents an example using 2-D image correlation to extract the local stress–strain response in a heterogeneous weld zone. Sections 20.11 and 20.12 present applications using 3-D image correlation to quantify material response during quasistatic and dynamic tension–torsion loading, respectively, of an edge-cracked specimen. Section 20.13 presents closing remarks regarding the developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

charge-coupled device

CCS:

camera coordinate system

CMOS:

complementary metal–oxide-semiconductor

DIC:

digital image correlation

FSW:

friction stir welds

HAZ:

heat-affected zone

NA:

numerical aperture

OCS:

object coordinate system

SCS:

sensor coordinate system

WCS:

world coordinate system

References

  1. W.H. Peters, W.F. Ranson: Digital imaging techniques in experimental stress analysis, Opt. Eng. 21(3), 427–432 (1981)

    Google Scholar 

  2. M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeill: Determination of displacements using an improved digital correlation method, Image Vis. Comput. 1(3), 133–139 (1983)

    Article  Google Scholar 

  3. W.H. Peters, He Zheng-Hui, M.A. Sutton, W.F. Ranson: Two-dimensional fluid velocity measurements by use of digital speckle correlation techniques, Exp. Mech. 24(2), 117–121 (1984)

    Article  Google Scholar 

  4. J. Anderson, W.H. Peters, M.A. Sutton, W.F. Ranson, T.C. Chu: Application of digital correlation methods to rigid body mechanics, Opt. Eng. 22(6), 738–742 (1984)

    Google Scholar 

  5. T.C. Chu, W.F. Ranson, M.A. Sutton, W.H. Peters: Applications of digital image correlation techniques to experimental mechanics, Exp. Mech. 25(3), 232–245 (1985)

    Article  Google Scholar 

  6. M.A. Sutton, S.R. McNeill, J. Jang, M. Babai: The effects of subpixel image restoration on digital correlation error estimates, Opt. Eng. 10, 870–877 (1988)

    Google Scholar 

  7. M.A. Sutton, M. Cheng, S.R. McNeill, Y.J. Chao, W.H. Peters: Application of an optimized digital correlation method to planar deformation analysis, Image Vis. Comput. 4(3), 143–150 (1988)

    Article  Google Scholar 

  8. M.A. Sutton, H.A. Bruck, S.R. McNeill: Determination of deformations using digital correlation with the Newton–Raphson method for partial differential corrections, Exp. Mech. 29(3), 261–267 (1989)

    Article  Google Scholar 

  9. M.A. Sutton, H.A. Bruck, T.L. Chae, J.L. Turner: Development of a computer vision methodology for the analysis of surface deformations in magnified images. In: MICON-90: Advances in video technology for micro-structural evaluation of materials, ASTM STP-1094, ed. by G.F. Vander Voort (ASTM Int., West Conshohocken 1990) pp. 109–134

    Google Scholar 

  10. M.A. Sutton, J.L. Turner, T.L. Chae, H.A. Bruck: Full field representation of discretely sampled surface deformation for displacement and strain analysis, Exp. Mech. 31(2), 168–177 (1991)

    Article  Google Scholar 

  11. S.R. McNeill, W.H. Peters, M.A. Sutton, W.F. Ranson: A Least square estimation of stress intensity factor from video-computer displacement data, Proceeding of the 12th Southeastern Conference of Theoretical and Applied Mechanics (1984) pp. 188–192

    Google Scholar 

  12. M.A. Sutton, H.A. Bruck, T.L. Chae, J.L. Turner: Experimental investigations of three-dimensional effects near a crack tip using computer vision, Int. J. Fract. 53, 201–228 (1991)

    Google Scholar 

  13. G. Han, M.A. Sutton, Y.J. Chao: A Study of stable crack growth in thin SEC specimens of 304 stainless steel, Eng. Fract. Mech. 52(3), 525–555 (1995)

    Article  Google Scholar 

  14. G. Han, M.A. Sutton, Y.J. Chao: A Study of stationary crack tip deformation fields in thin sheets by computer vision, Exp. Mech. 34(4), 357–369 (1994)

    Article  Google Scholar 

  15. B.E. Amstutz, M.A. Sutton, D.S. Dawicke: Experimental study of mixed mode I/II stable crack growth in thin 2024-T3 aluminum, ASTM STP 1256 Fatigue Fract. 26, 256–273 (1995)

    Google Scholar 

  16. J. Liu, M.A. Sutton, J.S. Lyons: Experimental characterization of crack tip deformations in alloy 718 at high temperatures, ASME J. Eng. Mater. Technol. 20(1), 71–78 (1998)

    Article  Google Scholar 

  17. M.A. Sutton, Y.J. Chao, J.S. Lyons: Computer vision methods for surface deformation measurements in fracture mechanics, ASME-AMD Novel Exp. Method. Fract. 176, 123–133 (1993)

    Google Scholar 

  18. M.A. Sutton, Y.J. Chao: Experimental techniques in fracture. In: Computer Vision in Fracture Mechanics, ed. by J.S. Epstein (VCH, New York 1993) pp. 59–94

    Google Scholar 

  19. J.S. Lyons, J. Liu, M.A. Sutton: Deformation measurements at 650 °C with computer vision, Exp. Mech. 36(1), 64–71 (1996)

    Article  Google Scholar 

  20. M.A. Sutton, Y.J. Chao: Measurement of strains in a paper tensile specimen using computer vision and digital image correlation – Part 1: Data acquisition and image analysis system, Tappi J. 70(3), 153–155 (1988)

    Google Scholar 

  21. M.A. Sutton, Y.J. Chao: Measurement of strains in a paper tensile specimen using computer vision and digital image correlation – Part 2: Tensile specimen test system, Tappi J. 71(3), 173–175 (1988)

    Google Scholar 

  22. M.A. Sutton, S.R. McNeill, J.D. Helm, H.W. Schreier: Computer vision applied to shape and deformation measurement,. In: Trends in Optical Non-Destructive Testing and Inspection, ed. by P.K. Rastogi, D. Inaudi (Elsevier, Oxford 2000) pp. 571–591

    Chapter  Google Scholar 

  23. M.A. Sutton, S.R. McNeill, J.D. Helm, Y.J. Chao: Advances in 2-D and 3-D computer vision for shape and deformation measurements. In: Photomechanics, Topics in Applied Physics, Vol. 77, ed. by P.K. Rastogi (Springer, Berlin 2000), 323–372

    Chapter  Google Scholar 

  24. M. A. Sutton, Y. J. Yan, H. W. Schreier, J. J. Orteu: The effect of out of plane motion on 2D and 3D digital image correlation measurements, Opt. Eng, (in press)

    Google Scholar 

  25. P.F. Luo, Y.J. Chao, M.A. Sutton: Application of stereo vision to 3-D deformation analysis in fracture mechanics, Opt. Eng. 33(3), 981–990 (1994)

    Article  Google Scholar 

  26. P.F. Luo, Y.J. Chao, M.A. Sutton: Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision, Exp. Mech. 33(3), 123–133 (1993)

    Article  Google Scholar 

  27. P.F. Luo, Y.J. Chao, M.A. Sutton: Computer vision methods for surface deformation measurements in fracture mechanics, ASME-AMD Novel Exp. Method. Fract. 176, 123–133 (1993)

    Google Scholar 

  28. J.D. Helm, S.R. McNeill, M.A. Sutton: Improved 3-D image correlation for surface displacement measurement, Opt. Eng. 35(7), 1911–1920 (1996)

    Article  Google Scholar 

  29. J.D. Helm, M.A. Sutton, D.S. Dawicke, G. Hanna: Three-dimensional computer vision applications for aircraft fuselage materials and structures, 1st Joint DoD/FAA/NASA Conference on Aging Aircraft in (Ogden, 1997) pp. 1327–1341

    Google Scholar 

  30. J.D. Helm, M.A. Sutton, S.R. McNeill: Deformations in wide, center-notched, thin panels: Part I: Three dimensional shape and deformation measurements by computer vision, Opt. Eng. 42(5), 1293–1305 (2003)

    Article  Google Scholar 

  31. J.D. Helm, M.A. Sutton, S.R. McNeill: Deformations in wide, center-notched, thin panels: Part II: Finite element analysis and comparison to experimental measurements, Opt. Eng. 42(5), 1306–1320 (2003)

    Article  Google Scholar 

  32. O. Faugeras, F. Devernay: Computing differential properties of 3-D shapes from stereoscopic images without 3-D models, INRIA Report 2304 (1994)

    Google Scholar 

  33. M. Devy, V. Garric, J.J. Orteu: Camera calibration from multiple views of a 2-D object using a global non-linear minimization method, Int. Conference on Intelligent Robots and Systems (Grenoble, 1997)

    Google Scholar 

  34. D. Garcia, J.J. Orteu, M. Devy: Accurate calibration of a stereovision sensor; Comparison of different approaches, 5-th Workshop on Vision, Modeling and Visualization (Saarbrucken, 2000) pp. 25–32

    Google Scholar 

  35. J.M. Lavest, M. Viala, M. Dhome: Do we really need an accurate calibration pattern to achieve a reliable camera calibration?, European Conference on Computer Vision (Frieburg, 1998) pp. 158–174

    Google Scholar 

  36. H.W. Schreier, D. Garcia, M.A. Sutton: Advances in stereo light microscopy, Exp. Mech. 44(3), 278–289 (2004)

    Article  Google Scholar 

  37. G. Vendroux, W.G. Knauss: Submicron deformation field measurements, Part II, Improved digital image correlation, Exp. Mech. 38(2), 86–92 (1998)

    Article  Google Scholar 

  38. G. Vendroux, N. Schmidt, W.G. Knauss: Submicron deformation field measurements, Part III, Demonstration of deformation determination, Exp. Mech. 38(3), 154–160 (1998)

    Article  Google Scholar 

  39. H.W. Schreier, J. Braasch, M.A. Sutton: On systematic errors in digital image correlation, Opt. Eng. 39(11), 2915–2921 (2000)

    Article  Google Scholar 

  40. H.W. Schreier, M.A. Sutton: Effect of higher order displacement fields on digital image correlation displacement component estimates, Int. J. Exp. Mech. 42(3), 303–311 (2002)

    Article  Google Scholar 

  41. C.R. Dohrman, H.R. Busby: Spline function smoothing and differentiation of noisy data on a rectangular grid, Proceedings of SEM Spring Conference (Albuquerque, 1990) pp. 76–83

    Google Scholar 

  42. Z. Feng, R.E. Rowlands: Continuous full-field representation and differentiation of three-dimensional experimental vector data, Comput. Struct. 26(6), 979–990 (1987)

    Article  Google Scholar 

  43. VIC2-D Software, Correlated Solutions, Incorporated, 120 Kaminer Way, Parkway Suite A Columbia, SC 29210 www.correlatedsolutions.com

  44. VIC3-D Software, Correlated Solutions, Incorporated, 120 Kaminer Way, Parkway Suite A Columbia, SC 29210 www.correlatedsolutions.com

  45. G. Vendroux, W.G. Knauss: Submicron deformation field measurements, Part I, Developing a digital scanning tunneling microscope, Exp. Mech. 38(1), 18–23 (1998)

    Article  Google Scholar 

  46. S.W. Cho, I. Chasiotis, T.A. Friedmann, J.P. Sullivan: Youngʼs modulus, Poissonsʼ ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices, J. Micromech. Microeng. 15(4), 728–735 (2005)

    Article  Google Scholar 

  47. M.A. Sutton, D. Garcia, N. Cornille, S.R. McNeill, J.J. Orteu: Initial experimental results using an ESEM for metrology, Proc. SEM X Int. Congr. Expo. on Exp. Appl. Mech. (Costa Mesa, 2004)

    Google Scholar 

  48. M.A. Sutton, N. Li, D. Garcia, N. Cornille, J.J. Orteu, S.R. McNeill, H.W. Schreier, X. Li: Metrology in an SEM: Theoretical developments and experimental validation, Meas. Sci. Technol. 17(10), 2613–2622 (2006)

    Article  Google Scholar 

  49. B.K. Bay, T.S. Smith, D.P. Fyhrie, S. Malik: Digital volume correlation, three dimensional strain mapping using X-ray tomography, Exp. Mech. 39(3), 218–226 (1999)

    Article  Google Scholar 

  50. T.S. Smith, B.K. Bay, M.M. Rashid: Digital volume correlation including rotational degres of freedom during minimization, Exp. Mech. 42(3), 272–278 (2002)

    Article  Google Scholar 

  51. C.P. Neu, M.L. Hull: Toward and MRI-based method to measure non-uniform cartilage deformation; An MRI cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading, Trans. ASME 125, 180–187 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Sutton Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Sutton, M.A. (2008). Digital Image Correlation for Shape and Deformation Measurements. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_20

Download citation

Publish with us

Policies and ethics