Skip to main content

Active Electrolocation and Its Neural Processing in Mormyrid Electric Fishes

  • Chapter
Sensory Processing in Aquatic Environments

Abstract

Weakly electric fishes use active electrolocation to orient in their environment at night. They emit an electric organ discharge (EOD) with a specialized organ in their tail and sense this signal with epidermal electroreceptors. Objects in the vicinity of the fish locally alter the transepidermal current flow evoked by the EOD and thereby project an “electrical image” on the fish’s skin. By analyzing this image, the fish can detect and three-dimensionally localize objects and also can determine some of their properties, such as the object’s electrical impedance, its shape, and maybe also its size. During electrolocation, peak amplitude and waveform of the local EOD inform the fish about the object’s complex impedance. Object distance is determined by measuring the slope of the electric image, while the determination of object shape and size requires some complex neural calculation of spatial-temporal image parameters.

Mormyrids possess a special type of electroreceptor organs for active electrolocation, called mormyromasts. Each of these organs contains two types of receptor cells, both of which respond to signal amplitude changes, and one also responds to signal waveform. Primary receptor afferents project to the electrosensory lateral line lobe (ELL) forming two somatotopic maps of the body surface. The ELL also receives input originating from the command nucleus in the medulla, which initiates each discharge of the electric organ. The dynamic interaction of this electric organ corollary discharge with the input provided by the primary afferents is essential for the extraction of information about the electric image and thus about the object. During initial processing in ELL, basic features of the electric image are extracted by the projection of a plastic copy of the peripheral electric image onto the ELL maps. The spatial-temporal relationships of the voltage distributions on the fish’s skin are analyzed in relation to the changes that are occurring constantly during active electrolocation. Little is known about the physiology of higher-order electrosensory structures beyond ELL. A major feature of the electrosensory pathway is extensive feedback from higher to lower centers, which might be responsible for many of the dynamic neural response patterns observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assad, C., Rasnow, B., and Stoddard. P.K. (1999). Electric organ discharges and electric images during electrolocation. J. Exp. Biol. 202:1185–1193.

    PubMed  CAS  Google Scholar 

  • Bastian, J. (1996). Plasticity in an electrosensory system. I. General features of a dynamic filter. J. Neurophysiol. 76:2483–2496.

    PubMed  CAS  Google Scholar 

  • Bell, C., Bodznick, D., Montgomery, J., and Bastian, J. (1997a). The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav. Evol. 50:17–31.

    Article  PubMed  Google Scholar 

  • Bell, C.C. (1990a). Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing. J. Neurophysiol. 63:303–318.

    PubMed  CAS  Google Scholar 

  • Bell, C.C. (1990b). Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers. J. Neurophysiol. 63:319–332.

    PubMed  CAS  Google Scholar 

  • Bell, C.C., and Russell, C.J. (1978). Effect of electric organ discharge on ampullary receptors in a mormyrid. Brain Res. 145:85–96.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C.C., and Szabo, T. (1986). Electroreception in Mormyrid fish. Central Anatomy. In: Electroreception (Heiligenberg, W., ed.), pp. 375–421. New York: Wiley.

    Google Scholar 

  • Bell, C.C., and von der Emde, G. (1995). Electric organ corollary discharge pathways in mormyrid fish. II. The medial juxtalobar nucleus. J. Comp. Physiol. A. 177:463–479.

    Article  Google Scholar 

  • Bell, C.C., Bradbury, I, and Russell, C.J. (1976). The electric organ of a mormyrid as a current and voltage source. J. Comp. Physiol. A. 110:65–88.

    Google Scholar 

  • Bell, C.C., Caputi, A., and Grant, K. (1997b). Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe. J. Neurosci. 17:6409–6423.

    PubMed  CAS  Google Scholar 

  • Bell, C.C., Finger, T.E., and Russell, C.J. (1981). Central connections of the posterior lateral line lobe in mormyrid fish. Exp. Brain Res. 42:9–22.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C.C., Grant, K., and Serrier, J. (1992). Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials. J. Neurophysiol. 68:843–858.

    PubMed  CAS  Google Scholar 

  • Bell, C.C., Libouban, S., and Szabo, T. (1983). Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J. Comp. Neurol. 216:327–338.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C.C., Dunn, K., Hall, C., and Caputi, A. (1995). Electric organ corollary discharge pathways in mormyrid fish. I. The mesencephalic command associated nucleus. J. Comp. Physiol. A. 177:449–462.

    Google Scholar 

  • Bell, C.C., Han, V.Z., Sugawara, Y., and Grant, K. (1997c). Synaptic plasticity in a cerebellum-like structure depends on a temporal order. Nature 387:278–281.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.V.L., Aljure, E., Nakajima, Y, and Pappas, G.D. (1963). Electrotonic junctions between teleost spinal neurons: Electrophysiology and ultrastructure. Science 141:262–264.

    Article  PubMed  CAS  Google Scholar 

  • Caputi, A.A., Budelli, R., Grant, K., and Bell, C.C. (1998). The electric image in weakly electric fish: Physical images of resistive objects in Gnathonemus petersii. J. Exp. Biol. 201:2115–2128.

    PubMed  CAS  Google Scholar 

  • Douglas, R.H., Eva, J., and Guttridge, N. (1988). Size constancy in goldfish (Carassius auratus). Behav. Brain Res. 30:37–42.

    Article  PubMed  CAS  Google Scholar 

  • Dusenbery, D.B. (1992). Sensory Ecology: How Organisms Acquire and Respond to Information. New York: W.H. Freeman.

    Google Scholar 

  • Finger, T.E., Bell, C.C., and Russell, C.J. (1981). Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp. Brain Res. 42:22–33.

    Article  Google Scholar 

  • Grant, K., Bell, C.C., Clausse, S., and Ravaille, M. (1986). Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish. J. Comp. Neurol. 245: 514–530.

    Article  PubMed  CAS  Google Scholar 

  • Hall, C., Bell, C., and Zelick, R. (1995). Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish. J. Comp. Physiol. A. 177: 29–39.

    Article  Google Scholar 

  • Han, V.Z., Grant, K., and Bell, C.C. (2000). Rapid activation of GABA ergic interneurons and possible calcium independent GABA release in the mormyrid electrosensory lobe. J. Neurophysiol. 83:1592–1604.

    PubMed  CAS  Google Scholar 

  • Han, V.Z., Bell, C.C., Grant, K., and Sugawara, Y (1999). The mormyrid electrosensory lobe in vitro: Morphology of cells and circuits. J. Comp. Neurol. 404:359–374.

    Article  PubMed  CAS  Google Scholar 

  • Harder, W. (1968). Die Beziehungen zwischen Elektrorezeptoren, elektrischen Organen, Seitenlinienorganen und Nervensystem bei den Mormyridae (Teleostei, Pisces). Zeit. Vergl. Physiol. 59:272–318.

    Google Scholar 

  • Heiligenberg, W. (1973). Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei ). J. Comp. Physiol. 87:137–164.

    Article  Google Scholar 

  • Hopkins, C.D. (1988). Neuroethology of electric communication. Ann. Rev. Neurosci. 11:497–535.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, C.D. (1999). Design features for electric communication. J. Exp. Biol. 202:1217–1228.

    PubMed  CAS  Google Scholar 

  • Huffman, R.F., and Henson, O.W. (1990). The descending auditory pathway and acousticomotor systems: Connections with the inferior colliculus. Brain Res. Rev. 15:295–323.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn, A.J. (1974). The detection of electric fields from inanimate and animate sources other than electric organs. In: Handbook of Sensory Physiology (Fessard, A., ed.), pp. 148–200. Berlin: Springer-Verlag.

    Google Scholar 

  • Kramer, B. (1990). Electrocommunication in Teleost Fishes: Behavior and Experiments. Berlin: Springer-Verlag.

    Google Scholar 

  • Lissmann, H.W., and Machin, K.E. (1958). The mechanism of object location in Gymnarchus niloticus and similar fish. J. Exp. Biol. 35:451–486.

    Google Scholar 

  • Meek, J., Grant, K., Sugawara, Y., Hafmans, T.G.M., Veron, M., and Denizot, J.P. (1996). Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry, and synaptology. J. Comp. Neurol. 375:43–65.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, J.H. (1982). Behavioral responses of weakly electric fish to complex impedances. J. Comp. Physiol. 145:459–470.

    Article  Google Scholar 

  • Meyer, J.H., and Bell, C.C. (1983). Sensory gating by a corollary discharge mechanism. J. Comp. Physiol. A. 151:401–406.

    Article  Google Scholar 

  • Mohr, C., and von der Emde, G. (1998). Mapping of the nucleus lateralis (torus semicircularis) of the electrosensory system of Gnathonemus petersii. In: New Neuroethology on the Move (Wehner, R., ed.), Proc. 26th Göttingen Neurobiology Conference 1998, p. 54. Thieme, Stuttgart, New York.

    Google Scholar 

  • Moller, P. (1995). Electric Fishes: History and Behavior. London: Chapman & Hall.

    Google Scholar 

  • Montgomery, J.C., and Bodznick, D. (1994). An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci. Lett. 174:145–148.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys, R., and Nicholson, C. (1969). A survey of the general morphology, the fiber connections, the possible functional significance of the gigantocerebellum of mormyrid fish. In: Neurobiology of Cerebellar Evolution and Development (Llinas, R., ed.), pp. 107–134. Chicago: American Medical Association.

    Google Scholar 

  • Niso, R., Serrier, J., and Grant, K. (1989). Mesencephalic control of the bulbar electromotor network in the mormyrid Gnathonemus petersii. Europ. J. Neurosci. Suppl. 2:176.

    Google Scholar 

  • Peters, R.C., Loos, W.J.G., Bretschneider, F., and Baretta, A.B. (1999). Electroreception in catfish: Patterns from motion. Belgian J. Zool. 129:263–268.

    Google Scholar 

  • Prechtl, J.C., von der Emde, G., Wolfart, J., Karamürsel, S., Akoev, G.N., Andrianov, Y.N., and Bullock, T.H. (1998). Sensory processing in the pallium of a teleost fish, Gnathonemus petersii. J. Neurosci. 18:7381–7393.

    PubMed  CAS  Google Scholar 

  • Rasnow, B. (1996). The effects of simple objects on the electric field of Apteronotus. J. Comp. Physiol. A. 178:397–411.

    Google Scholar 

  • Roberts, P.D., and Bell, C.C. (1999). Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. J. Comput. Neurosci. 1–15.

    Google Scholar 

  • Roberts, P.D., and Bell, C.C. (2000). Computational consequences of temporally asymetric learning rules: II. Sensory image cancelation. J. Comput. Neurosci. (in press).

    Google Scholar 

  • Russell, C.J., and Bell, C.C. (1978). Neuronal responses to electrosensory input in mormyrid valvula cerebelli. J. Neurophysiol. 41:1495–1510.

    PubMed  CAS  Google Scholar 

  • Schwan, H.P. (1963). Determination of biological impedances. In: Physical Techniques in Biological Research (Nastuk, W.L., ed.), pp. 323–407. New York: Academic Press.

    Google Scholar 

  • Schwarz, S., and von der Emde, G. (1999). Object classification by the weakly electric fish, Gnathonemus petersii. In: (Eysel, U., ed.), Göttingen Neurobiology Report, 1999, 27th Göttingen Neurobiology Conference, p. 332. Thieme, Göttingen.

    Google Scholar 

  • Schwarz, S., and von der Emde, G. (2001). Distance discrimination during active electrolocation in the weakly electric fish Gnathonemus petersii. J. Comp. Physiol. A. 186:1185–1197.

    Article  CAS  Google Scholar 

  • Szabo, T, and Hagiwara, S. (1967). A latency change mechanism involved in sensory coding of electric fish (mormyrids). Physiol. Behav. 2:331–335.

    Article  Google Scholar 

  • Szabo, T., and Wersäll, J. (1970). Ultrastructure of an electroreceptor (Mormyromast) in a mormyrid fish, Gnathonemus petersii. II. J. Ultrastructure Res. 30:473–490.

    Article  CAS  Google Scholar 

  • Van Essen, D.C., and Gallant, J.L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron 13:1–10.

    Article  PubMed  Google Scholar 

  • von der Emde, G. (1990). Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J. Comp. Physiol. A. 167: 413–421.

    Google Scholar 

  • von der Emde, G (1998). Capacitance detection in the wave-type electric fish Eigenmannia during active electrolocation. J. Comp. Physiol. A. 182: 217–224.

    Article  Google Scholar 

  • von der Emde, G., and Bell, C.C. (1994). Responses of cells in the mormyrid electrosensory lobe to EODs with distorted waveforms: implications for capacitance detection. J. Comp. Physiol. A. 175: 83–93.

    Google Scholar 

  • von der Emde, G., and Bell, C.C. (1995). The nucleus prae-eminentialis of mormyrid electric fish: Field potentials, somatotopy and single unit activity. 25th Annual Meeting, Society for Neuroscience, p. 184. San Diego, CA.

    Google Scholar 

  • von der Emde, G., and Bleckmann, H. (1997). Wave-form tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii. J. Comp. Physiol. A. 181:511–524.

    Article  Google Scholar 

  • von der Emde, G, and Bleckmann, H. (1998). Finding food: Senses involved in foraging for insect larvae in the electric fish, Gnathonemus petersii. J. Exp. Biol. 201:969–980.

    PubMed  Google Scholar 

  • von der Emde, G., and Ringer, T. (1992). Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. I. Discrimination performance. Ethology 91:326–338.

    Article  Google Scholar 

  • von der Emde, G., and Ronacher, B. (1994). Perception of electric properties of objects in electrolocating weakly electric fish: Two-dimensional similarity scaling reveals a City-Block metric. J. Comp. Physiol. A. 175:801–812.

    Google Scholar 

  • von der Emde, G., and Zelick, R. (1995). Behavioral detection of electric signal waveform distortion in the weakly electric fish, Gnathonemus petersii. J. Comp. Physiol. A. 177:493–501.

    Article  Google Scholar 

  • von der Emde, G., Gomez Sena, L., Niso, R., and Grant, K. (2000). The midbrain pre-command nucleus of the mormyrid electromotor network. J. Neurosci. 20:5483–5495.

    PubMed  Google Scholar 

  • von der Emde, G., Schwarz, S., Gomez, L., Budelli, R., and Grant, K. (1998). Electric fish measure distance in the dark. Naturwissenschaffen 395: 890–894.

    Google Scholar 

  • von Holst, E., and Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaffen 37:464–476.

    Article  Google Scholar 

  • Zakon, H.H. (1987). The electroreceptors: diversity in structure and function. In: Sensory Biology of Aquatic Animals (Tavolga, W.N., ed.), pp. 813–850. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

von der Emde, G., Bell, C.C. (2003). Active Electrolocation and Its Neural Processing in Mormyrid Electric Fishes. In: Collin, S.P., Marshall, N.J. (eds) Sensory Processing in Aquatic Environments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22628-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22628-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95527-8

  • Online ISBN: 978-0-387-22628-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics