Skip to main content

Therapy of Type 1 Diabetes Mellitus

  • Chapter
  • First Online:
Principles of Diabetes Mellitus
  • 4068 Accesses

Abstract

The treatment of type 1 diabetes is simple in theory: replace the missing endogenous production of insulin with exogenous insulin in a manner that mimics normal physiology. The difficulties in doing this are myriad, however, in part stemming from the fact that endogenous insulin is delivered in intricate pulses to the portal circulation whereas exogenous insulin is provided subcutaneously through the peripheral circulation. Additionally, the beta cells in the pancreas sense minute changes in blood sugar levels and secrete insulin, glucagon, amylin, incretins, and other hormones to balance blood sugar levels. The traditional monitoring of blood sugar levels four times per day with two to three injections of insulin does not come close even approximately to what should be happening with regards to insulin regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heller S, Kozlovski P, Kurtzhals P. Insulin’s 85th anniversary—an enduring medical miracle. Diabetes Res Clin Pract. 2007;78:149–158.

    Article  PubMed  CAS  Google Scholar 

  2. Otieno CF, Kayima JK, Omonge EO, Oyoo GO. Diabetic ketoacidosis: risk factors, mechanisms and management strategies in sub-Saharan Africa: a review. East Afr Med J. 2005;82(12 Suppl):S197–S203.

    PubMed  CAS  Google Scholar 

  3. Hirsch I. Insulin Analogues. N Engl J Med. 2005;352:174–183.

    Article  PubMed  CAS  Google Scholar 

  4. Vazquez-Carrera M, Silvestre JS. Insulin analogues in the management of diabetes. Methods Find Exp Clin Pharm. 2004;26:445–461.

    CAS  Google Scholar 

  5. Kelley DE. Sugars and starch in the nutritional management of diabetes mellitus. Am J Clin Nutr. 2003;78:858S–864S.

    PubMed  CAS  Google Scholar 

  6. ADA Insulin Administration. Diabetes Care. 2004;27:S.

    Google Scholar 

  7. Harmel ALP, Mathur R. Davidson Diabetes Mellitus. 5th ed. Philadelphia, PA: WB Saunders Company; 2004.

    Google Scholar 

  8. Cochran E, Musso C, Gorden P. The use of U500 insulin in patients with extreme insulin resistance. Diabetes Care. 2005;28:1240–1244.

    Article  PubMed  CAS  Google Scholar 

  9. Gough SCL. A review of human and analogue insulin trials. Diab Res Clin Pract. 2007;77:1–15.

    Article  CAS  Google Scholar 

  10. Galloway JA, Spradlin CT, Nelson RL, Wentworth SM, Davidson JA, Swarner JL. Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. Diabetes Care. 1981;4:366–376.

    Article  PubMed  CAS  Google Scholar 

  11. Binder C, Lauritzen T, Faber O, Pramming S. Insulin pharmacokinetics. Diabetes Care. 1984;7:188–199.

    Article  PubMed  Google Scholar 

  12. Sindelka G, Heinemann L, Berger M, et al. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia. 1994;37:377.

    Article  PubMed  CAS  Google Scholar 

  13. Thow J, Home P. Insulin injection technique: depth of injection is important. Brit Med J. 1990;301:3–4.

    Article  PubMed  CAS  Google Scholar 

  14. Bantle JP, Neal L, Frankamp LM. Effects of the anatomical region used for insulin injections in type 1 diabetic subjects. Diabetes Care. 1993;12:1592–1597.

    Article  Google Scholar 

  15. Guerra SM, Kitabchi AE. Comparison of the effectiveness of various routes of insulin injection: insulin levels and glucose response in normal subjects. J Clin Endocrinol Metab. 1976;42:869–874.

    Article  PubMed  CAS  Google Scholar 

  16. Guerci B, Sauvanet JP. Subcutaneous insulin: pharmacokinetic variability and glycemic variability. Diabetes Met. 2005;31(4 Pt 2):4S7–4S24.

    Article  CAS  Google Scholar 

  17. Koivisto VA, Felig P. Alterations in insulin absorption and in blood glucose control associated with varying insulin injection sites in diabetic patients. Ann Intern Med. 1980;92:59.

    PubMed  CAS  Google Scholar 

  18. Blundell TL, Cutfield JF, Cutfield SM, et al. Three-dimensional atomic structure of insulin and its relationship to activity. Diabetes. 1972;21(suppl 2):492–505.

    PubMed  CAS  Google Scholar 

  19. Howey DC, Bowsher RR, Brunelle RL, Woodworth JR. Lys(B28), Pro(B29)-human insulin. A rapidly absorbed analogue of human insulin. Diabetes. 1994;43:396–402.

    Article  PubMed  CAS  Google Scholar 

  20. Jacobs MA, Keulen ET, Kanc K, et al. Metabolic efficacy of preprandial administration of Lys(B28), Pro(B29) human insulin analog in IDDM patients: a comparison with human regular insulin during a three-meal test period. Diabetes Care. 1997;20:1279–1286.

    Article  PubMed  CAS  Google Scholar 

  21. Howey DC, Bowsher RR, Brunell RL, et al. [Lys(B28), Pro(B29)]-human insulin: effect of injection time on postprandial glycemia. Clin Pharm Ther. 1995;58:459–469.

    Article  CAS  Google Scholar 

  22. Raskin P, Guthrie RA, Leiter L, Riis A, Jovanovic L. Use of insulin aspart, a fast-acting insulin analog, as the mealtime insulin in the management of patients with type 1 diabetes. Diabetes Care. 2000;23:583–588.

    Article  PubMed  CAS  Google Scholar 

  23. Home PD, Lindholm A, Riis A. Insulin aspart vs human insulin in the management of long-term blood glucose control in type 1 diabetes mellitus: a randomized controlled trial: European Insulin Aspart Study Group. Diabet Med. 2000;17:762–770.

    Article  PubMed  CAS  Google Scholar 

  24. Becker RH, Frick AD, Nosek L, Heinemann L, Rave K. Dose-response relationship of insulin glulisine in subjects with type 1 diabetes. Diabetes Care. 2007;30:2506–2507.

    Article  PubMed  CAS  Google Scholar 

  25. Becker RH, Frick AD. Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clin Pharmacokinetics. 2008;47:7–20.

    Article  CAS  Google Scholar 

  26. Rave K, Klelin O, Frick AD, Becker RH. Advantage of premeal-injected insulin glulisine compared with regular human insulin in subjects with type 1 diabetes. Diabetes Care. 2006;29:1812–1817.

    Article  PubMed  CAS  Google Scholar 

  27. Garg SK, Rosenstock J, Ways K. Optimized basal-bolus insulin regimens in type 1 diabetes: insulin glulisine versus regular human insulin in combination with basal insulin glargine. Endocr Pract. 2005;11:11–17.

    PubMed  Google Scholar 

  28. Heinemann L, Linkeschova R, Rave K, Hompesch B, Sedlak M, Heise T. Time-action profile of the long-acting insulin analog glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes Care. 2000;23:644–649.

    Article  PubMed  CAS  Google Scholar 

  29. Pieber TR, Eugene-Jolchine I, Derobert E. Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes. The European Study Group of HOE 901 in type 1 diabetes. Diabetes Care. 2000;23:157–162.

    Article  PubMed  CAS  Google Scholar 

  30. Gerich J, Becker RHA, Zhu R, Bolli GA. Fluctuation of serum basal insulin levels following single and multiple dosing of insulin glargine. Diabetes Technol Ther. 2006;8:237–243.

    Article  PubMed  CAS  Google Scholar 

  31. Ratner RE, Hirsch IB, Neifing JL, Garg SK, Mecca TE, Wilson CA. Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. US Study Group of Insulin Glargine in Type 1 Diabetes. Diabetes Care. 2000;23:639–643.

    Article  PubMed  CAS  Google Scholar 

  32. Porcellati F, Rossetti P, Pampanelli S, et al. Better long-term glycaemic control with the basal insulin glargine as compared with NPH in patients with type 1 diabetes mellitus given meal-time lispro insulin. Diabetic Med. 2004;21:1213–1220.

    Article  PubMed  CAS  Google Scholar 

  33. Raskin P. Efficacy and safety of insulin detemir. Endo Met Clin North Am. 2007;36(suppl 1):21–32.

    Article  CAS  Google Scholar 

  34. Brunner GA, Sendlhofer G, Wutte A, et al. Pharmacokinetic and pharmacodynamic properties of long-acting insulin analogue NN304 in comparison to NPH insulin in humans. Exp Clin Endo Diab. 2000;108:100–106.

    Article  CAS  Google Scholar 

  35. Porcellati F, Rossetti P, Busciantella MR, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind randomized, crossover study. Diabetes Care. 2007;30:2447–2452.

    Article  PubMed  CAS  Google Scholar 

  36. Axelson M, Madsbad S, Perrild H, Kristensen A, Axelson M. More predictable fasting blood glucose with the new soluble basal insulin analogue, insulin detemir: a comparison with NPH in type 1 diabetic patients. Diabetes Res Clin Pract. 2000;50(Suppl 1):S79–S82.

    Article  Google Scholar 

  37. Kurtzhals P. Pharmacology of insulin detemir. Endo Met Clin North Am. 2007;36(suppl 1):14–20.

    Article  CAS  Google Scholar 

  38. Hermansen K, Lund P, Clemmensen K, et al. 3-month results from Denmark within the globally prospective and observational study to evaluate insulin detemir treatment in type 1 and type 2 diabetes: The PREDICTIVE Study. Rev Diabet Stud. 2007;4:89–97.

    Article  PubMed  Google Scholar 

  39. Hermansen K, Madsbad S, Perrild H, Kristensen A, Axelsen M. Comparison of the soluble basal insulin analog insulin detemir with NPH randomized open crossover trial in type 1 diabetic subjects on basal-bolus. Diabetes Care. 2001;24:296–301.

    Article  PubMed  CAS  Google Scholar 

  40. Pieber TR, Treichel H-C, Hompesch B, et al. Comparison of insulin detemir and insulin glargine in subjects with type 1 diabetes using intensive therapy. Diabetic Med. 2007;24:635–642.

    Article  PubMed  CAS  Google Scholar 

  41. The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986.

    Article  Google Scholar 

  42. Chase HP, Lockspeiser T, Perry B, et al. The impact of the DCCT and Humalog insulin on glycohemoglobin levels and severe hypoglycemia in type 1 diabetes. Diabetes Care. 2001;24:430–434.

    Article  PubMed  CAS  Google Scholar 

  43. DeWitt DE, Hirsch IB. Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA. 2003;289:2254–2264.

    Article  PubMed  CAS  Google Scholar 

  44. American Diabetes Association. Standards of medical care in diabetes—2008. Diabetes Care. 2008;31(Suppl 1):S12–S54.

    Article  CAS  Google Scholar 

  45. Schutt M, Kern W, Krause U, et al. Is the frequency of self-monitoring of blood glucose related to long-term metabolic control? Multicenter analysis including 24,500 patients from 191 centers in Germany and Austria. Exp Clin Endo Diab. 2006;114:383–388.

    Google Scholar 

  46. Purnell JQ, Hokanson JE, Marcovina SM, Steffes MW, Cleary PA, Brunzell JD. Effect of excessive weight gain with intensive therapy of type 1 diabetes on lipid levels and blood pressure: results from the DCCT. JAMA. 1998;280:140–146.

    Article  PubMed  CAS  Google Scholar 

  47. American Diabetes Association. Continuous subcutaneous insulin infusion (position statement). Diabetes Care. 2004;27:S110.

    Article  Google Scholar 

  48. Bode BW, Steed RD, Davidson PC. Reduction in severe hypoglycemia with long-term continuous subcutaneous insulin infusion in type 1 diabetes. Diabetes Care. 1996;19:324–327.

    Article  PubMed  CAS  Google Scholar 

  49. Hoogma RP, Hammond PJ, Gomis R, et al. Comparison of the effects of continuous subcutaneous insulin infusion (CSII) and NPH-based multiple daily insulin injections (MDI) on glycaemic control and quality of life: results of the 5-nations trial. Diabet Med. 2006;23:141–147.

    Article  PubMed  CAS  Google Scholar 

  50. Lepore G, Dodesini AR, Nosari I, Trevisan R. Both continuous subcutaneous insulin infusion and a multiple daily insulin injection regimen with glargine as basal insulin are equally better than traditional multiple daily insulin injection treatment. Diabetes Care. 2003;26:1321–1322.

    Article  PubMed  Google Scholar 

  51. Thomas RM, Aldibbiat A, Griffin W, Cox MAA, Leech NJ, Shaw JAM. A randomized pilot study in type 1 diabetes complicated by severe hypoglycemia, comparing rigorous hypoglycemia avoidance with insulin analogue therapy, CSII or education alone. Diabetic Med. 2007;24:778–783.

    Article  PubMed  CAS  Google Scholar 

  52. Hirsch IB, Bode BW, Garg S, et al. Continuous subcutaneous insulin infusion (CSII) of insulin aspart versus multiple daily injection of insulin aspart/insulin glargine in type 1 diabetic patients previously treated with CSII. Diabetes Care. 2005;28:533–538.

    Article  PubMed  Google Scholar 

  53. Fahlen M, Eliasson B, Oden A. Optimization of basal insulin delivery in type 1 diabetes: a retrospective study on the use of continuous subcutaneous insulin infusion and insulin glargine. Diabetic Med. 2005;22:382–386.

    Article  PubMed  CAS  Google Scholar 

  54. Gimenez M, Conget I, Jansa M, Vidal M, Chiganer G, Levy I. Efficacy of continuous subcutaneous insulin infusion in type 1 diabetes: a 2-year perspective using the established criteria for funding from a National Health Service. Diabet Med. 2007;24:1419–1423.

    Article  PubMed  CAS  Google Scholar 

  55. Davidson PC, Hebblewhite HR, Bode BW, et al. Statistically based CSII parameters: correction factor, CF (1700 rule), carbohydrate-insulin ratio, CIR (2.8 rule), and basal-to-total ratio. Diabetes Technol Ther. 2003;5:237.

    Google Scholar 

  56. Walsh J, Roberts R. Pumping Insulin. San Diego, CA: Torrey Pines Press; 2006: 139–141.

    Google Scholar 

  57. Gross TM, Kayne D, King A, Rother C, Juth S. A bolus calculator is an effective means of controlling postprandial glycemia in patients on insulin pump therapy. Diabetes Technol Ther. 2003;5:365–369.

    Article  PubMed  Google Scholar 

  58. Bevier WC, Zisser H, Palerm CC, et al. Calculating the insulin to carbohydrate ratio using the hyperinsulinaemic-euglycaemic clamp-a novel use for a proven technique. Diabetes/Metabolism Res Rev. 2007;23:472–478.

    Article  CAS  Google Scholar 

  59. Manuel-y-Keenoy B, Vertommen J, Abrams P, Van Gaal L, De Leeuw I, Messeri D, Poscia A. Postprandial glucose monitoring in type 1 diabetes mellitus: use of a continuous subcutaneous monitoring device. Diabetes Metab Res Rev. 2004 Nov-Dec;20 (2):S24–S31.

    Google Scholar 

  60. Silverstein J, Klingensmith G, Copeland K, et al. Care of children and adolescents with type 1 diabetes. Diabetes Care. 2005;28:186–212.

    Article  PubMed  Google Scholar 

  61. Doyle EA, Weinzimer SA, Steffen AT, et al. A randomized, prospective trial comparing the efficacy of CSII with MDI using glargine. Diabetes Care. 2004;27:1554–1558.

    Article  PubMed  CAS  Google Scholar 

  62. Ramachandani N, Ten S, Anhalt H, et al. Insulin pump therapy from the time of diagnosis of type 1 diabetes. Diabetes Technol Ther. 2006;8:663–669.

    Article  Google Scholar 

  63. Hoogma RP, Spijker AJ, van Doorn-Scheele M, et al. Quality of life and metabolic control in patients with diabetes mellitus type 1 treated by CSII or MDI injections. Neth J Med. 2004;62:383–387.

    PubMed  CAS  Google Scholar 

  64. Alemzadeh R, Parton EA, Holzum MK. Feasibility of continuous subcutaneous insulin infusion and daily supplemental insulin glargine injection in children with type 1 diabetes. Diabetes Technol Ther. 2009 Aug;11(8):481–486.

    Google Scholar 

  65. Shank ML, Del Prato S, DeFronzo RA. Bedtime insulin/daytime glipizide: effective therapy for sulfonylurea failures in NIDDM. Diabetes. 1995;44:165.

    Article  PubMed  CAS  Google Scholar 

  66. Carlson MG, Campbell PJ. Intensive insulin therapy and weight gain in IDDM. Diabetes. 1993;42:1700.

    Article  PubMed  CAS  Google Scholar 

  67. Lee P, Kinsella J, Borkman M, Carter J. Bilateral pleural effusions, ascites, and facial an peripheral oedema in a 19-year-old woman 2 weeks following commencement of insulin lispro and detemir—an unusual presentation of insulin oedema. Diabetic Med. 2007;24:1282–1285.

    Article  PubMed  CAS  Google Scholar 

  68. Radermecker RP, Scheen AJ. Allergy reactions to insulin: effects of continuous subcutaneous insulin infusion and insulin analogues. Diabetes/Met Res Rev. 2007;23:348–355.

    Article  CAS  Google Scholar 

  69. Towse A, O’Brien M, Twaroj FJ, Braimon J, Moses AC. Local secondary reaction to insulin injection. A potential role for latex antigens in insulin vials and syringes. Diabetes Care. 1995;18:1195–1197.

    Article  PubMed  CAS  Google Scholar 

  70. Scheer BG, Sitz KV. Suspected insulin anaphylaxis and literature review. J Ark Med Soc. 2001;97:311–313.

    PubMed  CAS  Google Scholar 

  71. Kaya A, Gungor K, Karakose S. Severe anaphylactic reaction to human insulin in a diabetic patient. J Diabetes Complicat. 2007; Mar-Apr21(2):124–127.

    Article  PubMed  Google Scholar 

  72. Radermecker RP, Pierard GE, Scheen AJ. Lipodystrophy reactions to insulin: effects of continuous insulin infusion and new insulin analogs. Am J Clin Dermatol. 2007;8:21–28.

    Article  PubMed  Google Scholar 

  73. Wilson RM, Douglas CA, Tattersall RB, et al. Immunogenicity of highly purified bovine insulin: a comparison with conventional bovine and highly purified human insulins. Diabetologia. 1985;28:667.

    Article  PubMed  CAS  Google Scholar 

  74. Valenta LJ, Elias AN. Insulin-induced lipodystrophy in diabetic patients resolved by treatment with human insulin. Ann Intern Med. 1985;102:790.

    PubMed  CAS  Google Scholar 

  75. Al-Khenaizan S, Al Thubaiti M, Al Alwan I. Lispro insulin-induced lipoatrophy: a new case. Pediatr Diabetes. 2007;8:393–396.

    Article  PubMed  Google Scholar 

  76. Vardar B, Kizilci S. Incidence of lipohypertrophy in diabetic patients and a study of influencing factors. Diabetes Res Clin Pract. 2007;77:231–236.

    Article  PubMed  Google Scholar 

  77. Young RJ, Steel JM, Frier BM, et al. Insulin injection sites in diabetes—a neglected area?. BMJ. 1981;283:349.

    Article  PubMed  CAS  Google Scholar 

  78. Chowdhury TA, Escudier V. Poor glycaemic control caused by insulin induced lipohypertrophy. BMJ. 2003;327:383–384.

    Article  PubMed  Google Scholar 

  79. Hardy KJ, Gill GV, Bryson JR. Severe insulin-induced lipohypertrophy successfully treated by liposuction. Diabetes Care. 1993;16:929.

    Article  PubMed  CAS  Google Scholar 

  80. Wallymahmed ME, Littler P, Clegg C, Haggani MT, MacFarlane IA. Nodules of fibrocollagenous scar tissue induced by subcutaneous insulin injections: a cause of poor diabetic control. Postgrad Med J. 2004;80:732–733.

    Article  PubMed  CAS  Google Scholar 

  81. Koda JE, Fineman M, Rink TJ, Dailey GE, Muchmore DB, Linarelli LG. Amylin concentrations and glucose control. Lancet. 1992;339:1179–1180.

    Article  PubMed  CAS  Google Scholar 

  82. Singh-Franco D, Robles G, Gazze D. Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clin Therapeutics. 2007;29:535–562.

    Article  CAS  Google Scholar 

  83. Weyer C, Gottlieb A, Kim DD, et al. Pramlintide reduces postprandial glucose excursions when added to regular insulin or insulin lispro in subjects with type 1 diabetes: a dose-timing study. Diabetes Care. 2003;26:3074–3079.

    Article  PubMed  CAS  Google Scholar 

  84. Chapman I, Parker B, Doran S, et al. Low-dose pramlintide reduced food intake and meal duration in healthy, normal-weight subjects. Obesity. 2007;15:1179–1186.

    Article  PubMed  CAS  Google Scholar 

  85. Ratner RE, Dickey R, Fineman M, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabetic Med. 2004;21:1204–1212.

    Article  PubMed  CAS  Google Scholar 

  86. Whitehouse F, Kruger DF, Fineman M, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care. 2002;25:724–730.

    Article  PubMed  CAS  Google Scholar 

  87. Marrero DG, Crean J, Zhang B, et al. Effect of adjunctive pramlintide treatment on treatment satisfaction in patients with type 1 diabetes. Diabetes Care. 2007;30:210–216.

    Article  PubMed  CAS  Google Scholar 

  88. http://www.symlin.com

  89. Da Costa S, Brackenridge B, Hicks D. A comparison of pen use in the United States and the United Kingdom. Diabetes Educ. 2002;28:52–59.

    Article  PubMed  Google Scholar 

  90. Rex J, Jensen KH, Lawton SA. A review of 20 years’ experience with the NovoPen family of insulin injection devices. Clin Drug Invest. 2006;26:367–401.

    Article  CAS  Google Scholar 

  91. Graff MR, McClanahan MA. Assessment by patients with diabete mellitus of two insulin pen delivery systems versus vial and syringe. Clin Ther. 1998;20:486–496.

    Article  PubMed  CAS  Google Scholar 

  92. Ltief AN, Schwenk WF. Accuracy of pen injectors in children with type 1 diabetes. Diabetes Care. 1999;22:137–140.

    Article  Google Scholar 

  93. Ginsberg BH, Parkes JL, Soaracino C. The kinetics of insulin administration by insulin pens. Horm Metab Res. 1994;26:584–587.

    Article  PubMed  CAS  Google Scholar 

  94. Albareda M, Balmes L, Wagner A, Corcoy R. Insulin pens and acute deterioration in blood glucose control. Arch Int Med. 1999;159:100–102.

    Article  CAS  Google Scholar 

  95. Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28:1231–1239.

    Article  PubMed  Google Scholar 

  96. Gross TM, Bode BW, Einhorn D, et al. Performance evaluation of the MiniMed continuous glucose monitoring system during patient home use. Diabetes Technol Ther. 2000;2:49–56.

    Article  PubMed  CAS  Google Scholar 

  97. Dunn TC, Eastman RC, Tamada JA. The GlucoWatch biographer: a frequent automatic and noninvasive glucose monitor. Ann Med. 2000;32:632–641.

    Article  Google Scholar 

  98. The Diabetes Research in Children Network (DirecNet) Study Group. Accuracy of the GlucoWatch G2 Biographer and the continuous glucose monitoring system during hypoglycemia. experience of the diabetes research in children network. Diabetes Care. 2004;27:722–726.

    Article  Google Scholar 

  99. Chase HP, Beck R, Tamborlane W, et al. A randomized multicenter trial comparing the GlucoWatch Biographer with standard glucose monitoring in children with type 1 diabetes. Diabetes Care. 2005;28:1101–1106.

    Article  PubMed  Google Scholar 

  100. Metzger M, Leibowitz G, Wainstein J, Glaser B, Itamar R. Reproducibility of Glucose Measurements Using the Glucose Sensor. Diabetes Care. 2002;25:1185–1191.

    Article  PubMed  CAS  Google Scholar 

  101. Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care. 2004;27:1922–1928.

    Article  PubMed  CAS  Google Scholar 

  102. Weinstein RL, Schwartz SL, Brazg RL, Bugler JR, Peyser TA, McGarraugh GV. Accuracy of the 5-day FreeStyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements. Diabetes Care. 2007;30:1125–1130.

    Article  PubMed  CAS  Google Scholar 

  103. Garg S, Jovanovic L. Relationship of fasting and hourly blood glucose levels to HbA1c values: safety, accuracy, and improvements in glucose profiles obtained using a 7-day continuous glucose sensor. Diabetes Care. 2006;29:2644–2649.

    Article  PubMed  Google Scholar 

  104. Buckingham B, Caswell K, Wilson DM. Real-time continuous glucose monitoring. Curr Opin Endocrinol Diabetes Obes. 2007;14:288–295.

    Article  PubMed  CAS  Google Scholar 

  105. DirecNet Study Group. Evaluation of factors affecting CGMS calibration. Diabetes Technol Ther. 2006;8:318–325.

    Article  Google Scholar 

  106. Garg SK, Kelly WC, Voelmle MK, et al. Continuous home monitoring of glucose. Improved glycemia control with real-life use of continuous glucose sensors in adult subjects with type 1 diabetes. Diabetes Care. 2007;30:3023–3025.

    Article  PubMed  Google Scholar 

  107. Bailey TS, Zisser HC, Garg SK. Reduction in hemoglobin A1C with real-time continuous glucose monitoring: results from a 12-week observational study. Diabetes Technol Ther. 2007;9:203–210.

    Article  PubMed  CAS  Google Scholar 

  108. Garg S, Jovanovic L. Relationship of fasting and hourly blood glucose levels to HbA1c values: safety, accuracy, and improvements in glucose profiles obtained using a 7-day continuous glucose sensor. Diabetes Care. 2006;29:2644–2649.

    Article  PubMed  Google Scholar 

  109. Garg S, Zisser H, Schwartz S, et al. Improvement in glycemic excursions with a transcutaneous, real-time continuous glucose sensor: a randomized controlled trial. Diabetes Care. 2006;29:44–50.

    Article  PubMed  CAS  Google Scholar 

  110. Wilson DM, Beck RW, Tamborlane WV, et al. Efficacy of continuous real-time blood glucose monitoring during and after prolonged high-intensity cycling exercise: spinning with a continuous glucose monitoring system. Diabetes Technol Ther. 2006;8:627–635.

    Article  Google Scholar 

  111. Cauza E, Hanusch-Enserer U, Strasser B, et al. Continuous glucose monitoring in diabetic long distance runners. Int J Sports Med. 2005;26:774–780.

    Article  PubMed  CAS  Google Scholar 

  112. Paty BW, Senior PA, Lakey JR, Shapiro AM, Ryan EA. Assessment of glycemic control after islet transplantation using the continuous glucose monitor in insulin-independent versus insulin-requiring type 1 diabetes subjects. Diabetes Technol Ther. 2006;8:165–173.

    Article  PubMed  CAS  Google Scholar 

  113. Direct Net Diabetes Research in Children Network (DirecNet) Study Group. Buckingham B, Beck RW, Tamborlane WV, et al. Continuous glucose monitoring in children with type 1 diabetes. J Pediatrics. 2007;151:388–393.

    Article  CAS  Google Scholar 

  114. Clarke WL, Kovatchev B. The artificial pancreas: how close are we to closing the loop?. Pediatr Endocrinol Rev. 2007;4:314–316.

    PubMed  Google Scholar 

  115. Steil GM, Rebrin K, Darwin C, Hariri F, Saad M. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes. 2006;55:3344–3350.

    Article  PubMed  CAS  Google Scholar 

  116. Renard E, Costalat G, Chevassus H, Bringer J. Artificial beta-cell: clinical experience toward an implantable closed-loop insulin delivery system. Diabetes Metab. 2006;32:497–502.

    Article  PubMed  CAS  Google Scholar 

  117. Hovorka R, Chassin LJ, Wilinska ME. Closing the loop: the ADICOL experience. Diabetes Technol Ther. 2004;6:307–318.

    Article  PubMed  CAS  Google Scholar 

  118. Grant P. A new approach to diabetic control: fuzzy logic and insulin pump technology. Med Eng Phys. 2007;29:824–827.

    Article  PubMed  Google Scholar 

  119. Burke GW, Ciancio G, Sollinger HW. Advances in pancreas transplantation. Transplantation. 2004;77(Suppl):S62–S67.

    Article  PubMed  CAS  Google Scholar 

  120. Odorico JS, Becker YT, Groshek M, et al. Improved solitary pancreas transplant graft survival in the modern immunosuppressive era. Cell Transplant. 2000;9:919.

    PubMed  CAS  Google Scholar 

  121. Mai M, Ahsan N, Gonwa T. The long-term management of pancreas transplantation. Transplantation. 2006;82:991–1003.

    Article  PubMed  Google Scholar 

  122. Stratta RJ, Lo A, Shokouh-Amiri MH, et al. Improving results in solitary pancreas transplantation with portal-enteric drainige, thymoglobulin induction, and tacrolimus/mycopehnolate mofetil-based immunosuppression. Transpl In. 2003;16:154.

    Article  CAS  Google Scholar 

  123. Sharpiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–238.

    Article  Google Scholar 

  124. Srinivasan P, Huang GC, Amiel SA, Heaton ND. Islet cell transplantation. Postgrad Med J. 2007;83:224–229.

    Article  PubMed  CAS  Google Scholar 

  125. Ryan EA, Lakey JR, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the edmonton protocol. Diabetes. 2001;50:710–719.

    Article  PubMed  CAS  Google Scholar 

  126. Foud T, Ricordi C, Baidal DA, et al. Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunopsuppression: Miami experience. Am J Transplant. 2005;5:2037–2046.

    Article  Google Scholar 

  127. Ault A. Edmonton’s islet success tough to duplicate elsewhere. Lancet. 2003;361:2054.

    PubMed  Google Scholar 

  128. Shapiro AM, Ricordi C, Haring B. Edmonton’s islet success has indeed been replicated elsewhere. Lancet. 2003;9391:1242.

    Article  Google Scholar 

  129. Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54:2060–2069.

    Article  PubMed  CAS  Google Scholar 

  130. Balamurugan AN, Bottino R, Giannoukakis N. Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas. 2006;32:231–243.

    Article  PubMed  CAS  Google Scholar 

  131. Shaprio AM, Lakey JR, Paty BW, et al. Strategic opportunities in clinical islet tranpslantation. Transplantation. 2005;79:1304–1307.

    Article  Google Scholar 

  132. Dufour JM, Rajotte RV, Zimmerman M, et al. Development of an ectopic site for islet transplantation, using biodegradable scaffolds. Tissue Eng. 2005;11:1323–1331.

    Article  PubMed  CAS  Google Scholar 

  133. Palma CA, Lindeman R, Tuch BE. Blood into beta-cells: can adult stem cells be used as a therapy for type 1 diabetes?. Regen Med. 2008;3:33–47.

    Article  PubMed  CAS  Google Scholar 

  134. Miszta-Lane H, Mirbolooki M, James Shapiro AM, Lakey JR. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells. Med Hypotheses. 2006;67:909–913.

    Article  PubMed  CAS  Google Scholar 

  135. Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng. 2007;13:589–599.

    Article  PubMed  CAS  Google Scholar 

  136. Bour-Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune disorders?. JCI. 2007;117:3642–3644.

    Article  PubMed  CAS  Google Scholar 

  137. Bingley PJ, Gale EA. European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European nicotinamide diabetes intervention trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia. 2006;49:881–890.

    Article  PubMed  CAS  Google Scholar 

  138. Diabetes Prevention Trial – Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346:1685–1691.

    Article  Google Scholar 

  139. Liu E, Li M, Jasinski J, et al. Deleting islet autoimmunity. Cell Biochem Biophys. 2007;48:177–182.

    Article  PubMed  CAS  Google Scholar 

  140. Matthews JB, Ramos E, Bluestone JA. Clinical trials of transplant tolerance: slow but steady progress. Am J Transplant. 2003;3:794–803.

    Article  PubMed  Google Scholar 

  141. Clinical Trials Database http://clinicaltrials.gov/ct2/results?term=type+1+diabetes&show_flds=Y. Accessed 1/23/2008.

  142. Trial Net. http://www2.diabetestrialnet.org/. Accessed 1/23/2008.

  143. Calafiore R, Basta G, Luca G, et al. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplant Proc. 2006;38:1156–1157.

    Article  PubMed  CAS  Google Scholar 

  144. Calafiore R, Basta G. Artificial pancreas to treat type 1 diabetes mellitus. Methods Mol Med. 2007;140:197–236.

    Article  PubMed  CAS  Google Scholar 

  145. Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Similarity of the impact of type 1 and type 2 diabetes on cardiovascular mortality in middle-aged subjects. Diabetes Care. 2008;31:714–719.

    Article  PubMed  Google Scholar 

  146. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–2653.

    Article  PubMed  Google Scholar 

  147. Cleary PA, Orchard TJ, Genuth S, et al. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2006;55:3556–3565.

    Article  PubMed  CAS  Google Scholar 

  148. McGill M, Molyneaux L, Twigg SM, Yue DK. The metabolic syndrome in type 1 diabetes: does it exist and does it matter?. J Diabetes Complicat. 2008;22:18–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne L. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cohan, P., Peters, A.L. (2010). Therapy of Type 1 Diabetes Mellitus. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_43

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics