Role of Mechanical Stimulations in Directing Mesenchymal Stem Cell Adipogenesis

  • Hillary Stoll
  • Jung Yul LimEmail author
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 16)


An increased recruitment of new preadipocytes from mesenchymal stem cell (MSC) sources to form adipocytes and deposit adipose tissue is one of the features of obesity. In this chapter, the role of mechanical extracellular environments in directing MSC adipogenic commitment and differentiation will be reviewed. It was recently highlighted that adipose cells and their precursor cells, including MSCs, are exposed in vivo to complex mechanical stimulations. Further, studies proposed that adipose cells are ‘mechanically sensitive and responsive’, which is a characteristic of traditionally well-established mechanoresponsive cells such as osteoblasts, chondrocytes, myoblasts, etc. While it is still in the early stage of ‘adipocyte mechanotransduction’ research, this chapter will review the data reported on the control of MSC fate decision to adipogenesis via utilizing mechanical cell stimulations (stretch, compression, fluid flow) and also via static mechanophysical signals from the cell culture substrate. Also, comparison of MSC adipogenesis with the osteogenesis, as attempted in many of these studies, will be reviewed. Determining extracellular mechanophysical conditions optimal to inhibit the MSC adipogenesis and revealing underlying molecular mechanistic pathways may significantly advance the strategy to deal with obesity.


Mesenchymal Stem Cell Focal Adhesion Kinase Fluid Shear Stress Mechanical Stretch Cyclic Stretch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, G.J., Darshan, D.: Small-molecule dissection of BMP signaling. Nat. Chem. Biol. 4, 15–16 (2008)CrossRefGoogle Scholar
  2. 2.
    Arnsdorf, E.J., Tummala, P., Kwon, R.Y., Jacobs, C.R.: Mechanically induced osteogenic differentiation: the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122, 546–553 (2009)CrossRefGoogle Scholar
  3. 3.
    Baron, R., Kneissel, M.: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013)CrossRefGoogle Scholar
  4. 4.
    Bennett, C.N., Ross, S.E., Longo, K.A., Bajnok, L., Hemati, N., Johnson, K.W., Harrison, S.D., MacDougald, O.A.: Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 277, 30998–31004 (2002)CrossRefGoogle Scholar
  5. 5.
    Bowers, R.R., Lane, M.D.: A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle 6, 385–389 (2007)CrossRefGoogle Scholar
  6. 6.
    Bowers, R.R., Kim, J.W., Otto, T.C., Lane, M.D.: Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc. Natl. Acad. Sci. U.S.A. 103, 13022–13027 (2006)CrossRefGoogle Scholar
  7. 7.
    Charoenpanich, A., Wall, M.E., Tucker, C.J., Andrews, D.M., Lalush, D.S., Dirschl, D.R., Loboa, E.G.: Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic nonors. Tissue Eng. Part A [Epub ahead of print] PMID:23927731Google Scholar
  8. 8.
    Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of cell life and death. Science 276, 1425–1428 (1997)CrossRefGoogle Scholar
  9. 9.
    Chen, D., Zhao, M., Mundy, G.R.: Bone morphogenetic proteins. Growth Factors 22, 233–241 (2004)CrossRefGoogle Scholar
  10. 10.
    David, V., Martin, A., Lafage-Proust, M.H., Malaval, L., Peyroche, S., Jones, D.B., Vico, L., Guignandon, A.: Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148, 2553–2562 (2007)CrossRefGoogle Scholar
  11. 11.
    Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRefGoogle Scholar
  12. 12.
    Gortchacow, M., Terrier, A., Pioletti, D.P.: A flow sensing model for mesenchymal stromal cells using morphogen dynamics. Biophys. J. 104, 2132–2136 (2013)CrossRefGoogle Scholar
  13. 13.
    Gregory, C.A., Gunn, W.G., Reyes, E., Smolarz, A.J., Munoz, J., Spees, J.L., Prockop, D.J.: How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann. N. Y. Acad. Sci. 1049, 97–106 (2005)CrossRefGoogle Scholar
  14. 14.
    Gurkan, U.A., Akkus, O.: The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36, 1978–1991 (2008)CrossRefGoogle Scholar
  15. 15.
    Haasper, C., Jagodzinski, M., Drescher, M., Meller, R., Wehmeier, M., Krettek, C., Hesse, E.: Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp. Toxicol. Pathol. 59, 355–363 (2008)CrossRefGoogle Scholar
  16. 16.
    Hanson, A.D., Marvel, S.W., Bernacki, S.H., Banes, A.J., van Aalst, J., Loboa, E.G.: Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities. Ann. Biomed. Eng. 37, 955–965 (2009)CrossRefGoogle Scholar
  17. 17.
    Hara, Y., Wakino, S., Tanabe, Y., Saito, M., Tokuyama, H., Washida, N., Tatematsu, S., Yoshioka, K., Homma, K., Hasegawa, K., Minakuchi, H., Fujimura, K., Hosoya, K., Hayashi, K., Nakayama, K., Itoh, H.: Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Sci. Signal. 4, ra3 (2011)Google Scholar
  18. 18.
    Haudenschild, A.K., Hsieh, A.H., Kapila, S., Lotz, J.C.: Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann. Biomed. Eng. 37, 492–502 (2009)CrossRefGoogle Scholar
  19. 19.
    Hossain, M.G., Iwata, T., Mizusawa, N., Shima, S.W., Okutsu, T., Ishimoto, K., Yoshimoto, K.: Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARγ2 and C/EBPα. J. Biosci. Bioeng. 109, 297–303 (2010)CrossRefGoogle Scholar
  20. 20.
    Huang, H., Song, T.J., Li, X., Hu, L., He, Q., Liu, M., Lane, M.D., Tang, Q.Q.: BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U.S.A. 106, 12670–12675 (2009)CrossRefGoogle Scholar
  21. 21.
    Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M.: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 107, 4872–4877 (2010)CrossRefGoogle Scholar
  22. 22.
    Koike, M., Shimokawa, H., Kanno, Z., Ohya, K., Soma, K.: Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J. Bone Miner. Metab. 23, 219–225 (2005)CrossRefGoogle Scholar
  23. 23.
    Lee, J.S., Park, J.H., Kwon, I.K., Lim, J.Y.: Retinoic acid inhibits BMP4-induced C3H10T1/2 stem cell commitment to adipocyte via downregulating Smad/p38MAPK signaling. Biochem. Biophys. Res. Commun. 409, 550–555 (2011)CrossRefGoogle Scholar
  24. 24.
    Lee, J.S., Ha, L., Park, J.H., Lim, J.Y.: Mechanical stretch suppresses BMP4 induction of stem cell adipogenesis via upregulating ERK but not through downregulating Smad or p38. Biochem. Biophys. Res. Commun. 418, 278–283 (2012)CrossRefGoogle Scholar
  25. 25.
    Lee, J.S., Ha, L., Kwon, I.K., Lim, J.Y.: The role of focal adhesion kinase in BMP4 induction of mesenchymal stem cell adipogenesis. Biochem. Biophys. Res. Commun. 435, 696–701 (2013)CrossRefGoogle Scholar
  26. 26.
    Lee, J., Abdeen, A.A., Zhang, D., Kilian, K.A.: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148 (2013)CrossRefGoogle Scholar
  27. 27.
    Levy, A., Enzer, S., Shoham, N., Zaretsky, U., Gefen, A.: Large, but not small sustained tensile strains stimulate adipogenesis in culture. Ann. Biomed. Eng. 40, 1052–1060 (2012)CrossRefGoogle Scholar
  28. 28.
    Li, D., Tang, T., Lu, J., Dai, K.: Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng. Part A 15, 2773–2783 (2009)CrossRefGoogle Scholar
  29. 29.
    Lim, J.Y., Dreiss, A.D., Zhou, Z., Hansen, J.C., Siedlecki, C.A., Hengstebeck, R.W., Cheng, J., Winograd, N., Donahue, H.J.: The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 28, 1787–1797 (2007)CrossRefGoogle Scholar
  30. 30.
    Lim, J.Y., Loiselle, A.E., Lee, J.S., Zhang, Y., Salvi, J.D., Donahue, H.J.: Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J. Orthop. Res. 29, 1627–1633 (2011)CrossRefGoogle Scholar
  31. 31.
    Liu, L., Yuan, W., Wang, J.: Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech. Model. Mechanobiol. 9, 659–670 (2010)CrossRefGoogle Scholar
  32. 32.
    Marthiens, V., Kazanis, I., Moss, L., Long, K., Ffrench-Constant, C.: Adhesion molecules in the stem cell niche-more than just staying in shape? J. Cell Sci. 123, 1613–1622 (2010)CrossRefGoogle Scholar
  33. 33.
    McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004)CrossRefGoogle Scholar
  34. 34.
    Meyer, E.G., Buckley, C.T., Thorpe, S.D., Kelly, D.J.: Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J. Biomech. 43, 2516–2523 (2010)CrossRefGoogle Scholar
  35. 35.
    Park, S.H., Sim, W.Y., Min, B.H., Yang, S.S., Khademhosseini, A., Kaplan, D.L.: Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS ONE 7, e46689 (2012)CrossRefGoogle Scholar
  36. 36.
    Poudel, I., Menter, D.E., Lim, J.Y.: Directing cell function and fate via micropatterning: role of cell patterning size, shape, and interconnectivity. Biomed. Eng. Lett. 2, 38–45 (2012)CrossRefGoogle Scholar
  37. 37.
    Riehl, B.D., Lim, J.Y.: Macro and microfluidic flows for skeletal regenerative medicine. Cells 1, 1225–1245 (2012)CrossRefGoogle Scholar
  38. 38.
    Riehl, B.D., Park, J.H., Kwon, I.K., Lim, J.Y.: Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng. Part B Rev. 18, 288–300 (2012)CrossRefGoogle Scholar
  39. 39.
    Salvi, J.D., Lim, J.Y., Donahue, H.J.: Finite element analyses of fluid flow conditions in cell culture. Tissue Eng. Part C Methods 16, 661–670 (2010)CrossRefGoogle Scholar
  40. 40.
    Salvi, J.D., Lim, J.Y., Donahue, H.J.: Increased mechanosensitivity of cells cultured on nanotopographies. J. Biomech. 43, 3058–3062 (2010)CrossRefGoogle Scholar
  41. 41.
    Schätti, O., Grad, S., Goldhahn, J., Salzmann, G., Li, Z., Alini, M., Stoddart, M.J.: A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater. 22, 214–225 (2011)Google Scholar
  42. 42.
    Sen, B., Xie, Z., Case, N., Thompson, W.R., Uzer, G., Styner, M., Rubin, J.: mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow derived mesenchymal stem cells. J. Bone Miner. Res. 29, 78–89 (2014)Google Scholar
  43. 43.
    Sen, B., Xie, Z., Case, N., Ma, M., Rubin, C., Rubin, J.: Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149, 6065–6075 (2008)CrossRefGoogle Scholar
  44. 44.
    Sen, B., Styner, M., Xie, Z., Case, N., Rubin, C.T., Rubin, J.: Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J. Biol. Chem. 11(284), 34607–34617 (2009)CrossRefGoogle Scholar
  45. 45.
    Sen, B., Xie, Z., Case, N., Styner, M., Rubin, C.T., Rubin, J.: Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44, 593–599 (2011)CrossRefGoogle Scholar
  46. 46.
    Sharma, R.I., Snedeker, J.G.: Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS ONE 7, e31504 (2012)CrossRefGoogle Scholar
  47. 47.
    Shoham, N., Gefen, A.: Mechanotransduction in adipocytes. J. Biomech. 45, 1–8 (2012)CrossRefGoogle Scholar
  48. 48.
    Shoham, N., Gottlieb, R., Sharabani-Yosef, O., Zaretsky, U., Benayahu, D., Gefen, A.: Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am. J. Physiol. Cell Physiol. 302, C429–C441 (2012)CrossRefGoogle Scholar
  49. 49.
    Song, W., Lu, H., Kawazoe, N., Chen, G.: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir 27, 6155–6162 (2011)CrossRefGoogle Scholar
  50. 50.
    Takada, I., Kouzmenko, A.P., Kato, S.: Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat. Rev. Rheumatol. 5, 442–447 (2009)CrossRefGoogle Scholar
  51. 51.
    Tanabe, Y., Koga, M., Saito, M., Matsunaga, Y., Nakayama, K.: Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2. J. Cell Sci. 117, 3605–3614 (2004)CrossRefGoogle Scholar
  52. 52.
    Wang, X., Yan, C., Ye, K., He, Y., Li, Z., Ding, J.: Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 34, 2865–2874 (2013)CrossRefGoogle Scholar
  53. 53.
    Weyand, B., Kasper, C., Israelowitz, M., Gille, C., von Schroeder, H.P., Reimers, K., Vogt, P.M.: A differential pressure laminar flow reactor supports osteogenic differentiation and extracellular matrix formation from adipose mesenchymal stem cells in a macroporous ceramic scaffold. Biores. Open Access 1, 145–156 (2012)CrossRefGoogle Scholar
  54. 54.
    Yang, X., Cai, X., Wang, J., Tang, H., Yuan, Q., Gong, P., Lin, Y.: Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells. Cell Prolif. 45, 158–166 (2012)CrossRefGoogle Scholar
  55. 55.
    Yourek, G., McCormick, S.M., Mao, J.J., Reilly, G.C.: Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen. Med. 5, 713–724 (2010)CrossRefGoogle Scholar
  56. 56.
    Zheng, W., Xie, Y., Zhang, W., Wang, D., Ma, W., Wang, Z., Jiang, X.: Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr. Biol. (Camb). 4, 1102–1111 (2012)CrossRefGoogle Scholar
  57. 57.
    Zhong, W., Tian, K., Zheng, X., Li, L., Zhang, W., Wang, S., Qin, J.: Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by Yes-associated protein. Stem Cells Dev. 22, 2083–2093 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations