Skip to main content

The Role of Plants in Water Regulation and Pollution Control

  • Chapter
  • First Online:
Nature-Based Solutions for Flood Mitigation

Abstract

Development of the human society has a conspicuous negative influence on water resources and causes serious environmental contamination that is nowadays reaching a critical level. The quality of water is one of the vital components of the overall environment. Thus, water pollution can lead to human health issues, poisoned wildlife, and to long-term ecosystem damages. Plants are the first organisms that react to negative environmental changes and they are often used as bioindicators of water and air pollution. In addition, a significant number of plant species have the ability to accumulate harmful pollutants from soils and water. Recently, special attention has been paid to investigating the potential of plants to absorb toxic substances and reduce their negative impact on water resources. Besides, proper management of water resources depends upon understanding how plants regulate the use and retention of water. Environmental pollutants such as heavy metals can cause disturbance in root structure and function, thus having a negative effect on the water uptake. This chapter will review and discuss the role of the plants in water regulation and the control of water pollution in urban and mining areas. Information presented in this chapter will provide better insights into the plant-based technologies aimed at contributing to the purification and remediation of polluted water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inyinbor Adejumoke A, Adebesin Babatunde O, Oluyori Abimbola P, Adelani-Akande Tabitha A, Dada Adewumi O, Oreofe Toyin A (2018) Water pollution: effects, prevention, and climatic impact. In: Water challenges of an urbanizing world. https://doi.org/10.5772/intechopen.72018

    Chapter  Google Scholar 

  2. Schwarzenbach RP (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. https://doi.org/10.1126/science.1127291

    Article  CAS  Google Scholar 

  3. Kjellstrom T, Lodh M, McMichael T, Ranmuthugala G, Shrestha R, Kingsland S (2006) Air and water pollution: burden and strategies for control. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P, Mills A, Musgrove P (eds) Disease control priorities in developing countries, 2nd edn. The International Bank for Reconstruction and Development/The World Bank, Washington, pp 817–832. Co-published by Oxford University Press, New York, https://www.ncbi.nlm.nih.gov/books/NBK11769/

  4. Azizullah A, Khattak MNK, Richter P, Hader DP (2011) Water pollution in Pakistan and its impact on public health – a review. Environ Int 37(2):479–497. https://doi.org/10.1016/j.envint.2010.10.007

    Article  CAS  Google Scholar 

  5. Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Env Resour 35(1):109–136. https://doi.org/10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  6. Owa FD (2013) Water pollution: sources, effects, control and management. Mediterr J Soc Sci 4(8):65. https://www.mcser.org/journal/index.php/mjss/article/view/1760/1764. Accessed 27 July 2020

  7. Fuerhacker M (2009) EU water framework directive and Stockholm convention. Environ Sci Pollut Res 16(S1):92–97. https://doi.org/10.1007/s11356-009-0126-4

    Article  CAS  Google Scholar 

  8. Van den Bosch M, Ode Sang Å (2017) Urban natural environments as nature-based solutions for improved public health – a systematic review of reviews. Environ Res 158:373–384. https://doi.org/10.1016/j.envres.2017.05.040

    Article  CAS  Google Scholar 

  9. European Commission (2017) Environment – research & innovation policy topics – nature based solutions

    Google Scholar 

  10. Zhang H, Liu P, Yang Y, Chen W (2007) Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J Environ Sci 19:902–909

    Article  CAS  Google Scholar 

  11. Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220. https://doi.org/10.1631/jzus.b0710633

    Article  CAS  Google Scholar 

  12. Song Y, Kirkwood N, Maksimović Č, Zhen X, O’Connor D, Jin Y, Hou D (2019) Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: a review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.01.347

  13. González-Oreja JA, Rozas M, Alkorta I, Garbisu C (2008) Dendroremediation of heavy metal polluted soils. Rev Environ Health 23(3). https://doi.org/10.1515/reveh.2008.23.3.223

  14. Dadea C, Russo A, Tagliavini M, Mimmo T, Zerbe S (2017) Tree species as tools for biomonitoring and phytoremediation in urban environments. Arboricult Urban For 43(4):155–167

    Google Scholar 

  15. Bose S, Vedamati J, Rai V, Ramanathan AL (2008) Metal uptake and transport by Tyaha angustata L. grown on metal contaminated waste amended soil: an implication of phytoremediation. Geoderma 145:136–142

    Article  CAS  Google Scholar 

  16. Smith GR (2015) Phytoremediation-by-design: community-scale landscape systems design for healthy communities. Int J Sustain Dev World Ecol:1–7. https://doi.org/10.1080/13504509.2015.1079276

  17. Kadlec RH, Wallace S (2008) Treatment wetlands. CRC Press, Boca Raton

    Book  Google Scholar 

  18. Srivastava J, Gupta A, Chandra H (2008) Managing water quality with aquatic macrophytes. Rev Environ Sci Biotechnol 7(3):255–266. https://doi.org/10.1007/s11157-008-9135-x

    Article  CAS  Google Scholar 

  19. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  20. Aisien FA, Oboh IO, Aisien ET (2013) Phytotechnology-remediation of inorganic contaminants. In: Anjun NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 75–82

    Google Scholar 

  21. Salt D, Blaylock M, Kumar N, Dushenkov V, Ensley B, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474. https://doi.org/10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  22. Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928. https://www.ajol.info/index.php/ajb/article/view/59987. Accessed 29 July 2020

    CAS  Google Scholar 

  23. Pilipović A, Zalesny Jr RS, Rončević S, Nikolić N, Orlović S, Beljin J, Katanić M (2019) Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J Environ Manage 239:352–365. https://doi.org/10.1016/j.jenvman.2019.03.072

    Article  CAS  Google Scholar 

  24. Prasad MNV, Freitas H (2003) Metal-tolerant plants: biodiversity prospecting for phytoremediation technology. Electron J Biomed 6:110–146

    Google Scholar 

  25. Jagdale S, Chabukswar A (2016) Phyto-remediation: using plants to clean up soils: Phyto-remediation. In: Rathoure AK, Dhatwalia VK (eds) Toxicity and waste management using bioremediation. IGI Global, pp 215–235. https://doi.org/10.4018/978-1-4666-9734-8.ch011

  26. Russell K (2005) The use and effectiveness of phytoremediation to treat persistent organic pollutants. US Environmental Protection Agency, Washington. https://clu-in.org/download/studentpapers/phyto_to_treat_pops_russell.pdf. Accessed 29 July 2020

    Google Scholar 

  27. Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS symposium series. American Chemical Society, Washington, pp 2–17. https://doi.org/10.1021/bk-1997-0664.ch001

    Chapter  Google Scholar 

  28. Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contamin 7(4):415–432. https://doi.org/10.1080/10588339891334438

    Article  Google Scholar 

  29. Vysloužilová M, Tlustoš P, Száková J (2003) Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49(12):542–547. https://doi.org/10.17221/4191-PSE

    Article  Google Scholar 

  30. Vysloužilová M, Tlustoš P, Száková J, Pavliková D (2003) As, Cd, Pb and Zn uptake by Salix spp clones grown in soils enriched by high loads of these elements. Plant Soil Environ 49(5):191–196. https://doi.org/10.17221/4112-PSE

    Article  Google Scholar 

  31. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56(1):15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

    Article  CAS  Google Scholar 

  32. Helmisaari H-S, Salemaa M, Derome J, Kiikkilä O, Uhlig C, Nieminen TM (2007) Remediation of heavy metal–contaminated forest soil using recycled organic matter and native woody plants. J Environ Qual 36(4):1145. https://doi.org/10.2134/jeq2006.0319

    Article  CAS  Google Scholar 

  33. Cioica N, Tudora C, Iuga D, Deak G, Matei M, Nagy EM, Gyorgy Z (2019) A review on phytoremediation as an ecological method for in situ clean up of heavy metals contaminated soils. E3S Web Conf 112:03024

    Article  CAS  Google Scholar 

  34. Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees – a review. Environ Int 29(4):529–540. https://doi.org/10.1016/S0160-4120(02)00152-6

    Article  CAS  Google Scholar 

  35. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794. https://doi.org/10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  36. Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci 2:1315–1325. https://doi.org/10.1016/j.proenv.2010.10.142

    Article  Google Scholar 

  37. Koptsik GN (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47(9):923–939

    Article  CAS  Google Scholar 

  38. Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81(6):2173–2181. https://doi.org/10.1128/aem.03359-14

    Article  CAS  Google Scholar 

  39. Pajević S, Borišev M, Nikoli, N, Arsenov DD, Orlović S, Župunski, M. (2016) Phytoextraction of heavy metals by fast-growing trees: a review. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants 3. Springer, Cham, pp. 29–64. https://doi.org/10.1007/978-3-319-40148-5_2

    Chapter  Google Scholar 

  40. Adams PW, Lamoureux S (2005) A literature review of the use of native northern plants for the re-vegetation of arctic mine tailings and mine waste. https://www.enr.gov.nt.ca/sites/enr/files/wkss_northern_plants_re-vegetation-2005.pdf. Accessed 29 July 2020

  41. Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Chapter 20-phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic Press, London, pp 495–529. https://doi.org/10.1016/B978-0-12-814864-8.00020-6

    Chapter  Google Scholar 

  42. Rubio J, Carissimi E, Rosa JJ (2007) Flotation in water and wastewater treatment and reuse: recent trends in Brazil. Int J Environ Pollut 30(2)

    Google Scholar 

  43. Elena A, Orbeci C, Lazau C, Sfirloaga P, Vlazan P, Bandas C, Grozescu I (2013) Waste water treatment methods. Water Treat. https://doi.org/10.5772/53755

  44. Hossein F, Nastaein Z, Ramlah T, Hamed F (2016) Advantages and disadvantages of phytoremediation A concise review. Int J Environ Technol Sci 2:69–75

    Google Scholar 

  45. Schnoor JL (1997) Phytoremediation. https://clu-in.org/download/toolkit/phyto_e.pdf

  46. Chibiuke GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  47. Pulford ID, Dickinson NM (2005) Phytoremediation technologies using trees. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, Boca Raton, Now Taylor and Francis, pp 383–403. https://doi.org/10.1201/9781420032048.sec4

    Chapter  Google Scholar 

  48. Kuzovkina YA, Knee M, Quigley MF (2004) Effects of soil compaction and flooding on the growth of 12 willow (Salix L.) species. J Environ Hortic 22(3):155–160

    Article  Google Scholar 

  49. Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162(1–4):183–204. https://doi.org/10.1007/s11270-005-6272-5

    Article  CAS  Google Scholar 

  50. Pilipović A, Orlović S, Nikolić N, Galić Z (2006) Investigating potential of some poplar (Populus sp.) clones for phytoremediation of nitrates through biomass production. Environmental applications of poplar and willow working party, Northern Ireland, May 2006, pp 18–20

    Google Scholar 

  51. Kuzovkina YA, Volk TA (2009) The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng 35(8):1178–1189. https://doi.org/10.1016/j.ecoleng.2009.03.010

    Article  Google Scholar 

  52. Hrkić Ilić Z, Pajević S, Borišev M, Luković J (2020) Assessment of phytostabilization potential of two Salix L. clones based on the effects of heavy metals on the root anatomical traits. Environ Sci Pollut Res Int 27(23):29361–29383. https://doi.org/10.1007/s11356-020-09228-8

    Article  CAS  Google Scholar 

  53. Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31(12):1319–1334. https://doi.org/10.1093/treephys/tpr090

    Article  CAS  Google Scholar 

  54. Sylvain B, Mikael M-H, Florie M, Emmanuel J, Marilyne S, Sylvain B, Domenico M (2016) Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena 136:44–52. https://doi.org/10.1016/j.catena.2015.07.008

    Article  CAS  Google Scholar 

  55. Lebrun M, Miard F, Nandillon R, Léger J-C, Hattab-Hambli N, Scippa GS, Bourgerie S, Morabito D (2018) Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: early stage evaluation of biochar feedstock and particle size effects on as and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere 194:316–326. https://doi.org/10.1016/j.chemosphere.2017.11.113

    Article  CAS  Google Scholar 

  56. Lux A, Luxová M, Abe J, Morita S (2004) Root cortex: structural and functional variability and responses to environmental stress. Root Res 13(3):117–131. https://doi.org/10.3117/rootres.13.117

    Article  Google Scholar 

  57. Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120(4):537–545. https://doi.org/10.1111/j.0031-9317.2004.0275.x

    Article  CAS  Google Scholar 

  58. Lux A, Martinká M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37. https://doi.org/10.1093/jxb/erq281

    Article  CAS  Google Scholar 

  59. Tlustoš P, Száková J, Vysloužilová M, Pavlíková D, Weger J, Javorská H (2007) Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol 2:254–275. https://doi.org/10.2478/s11535-007-0012-3

    Article  CAS  Google Scholar 

  60. Borišev M, Pajević S, Nikolić N, Krstić B, Župunski M, Kebert M, Pilipović A, Orlović S (2012) Response of Salix alba L. to heavy metals and diesel fuel contamination. Afr J Biotechnol 11:14313–14319. https://www.ajol.info/index.php/ajb/article/view/129437. Accessed 9 July 2020

    Google Scholar 

  61. Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Alexander Lux A, Hauser M-T (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126. https://doi.org/10.1016/j.envpol.2011.12.031

    Article  CAS  Google Scholar 

  62. Tőszér D, Magura T, Simon E (2017) Heavy metal uptake by plant parts of willow species: a meta-analysis. J Hazard Mater 336:101–109. https://doi.org/10.1016/j.jhazmat.2017.03.068

    Article  CAS  Google Scholar 

  63. Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediation 12:105–120. https://doi.org/10.1080/15226510902767163

    Article  CAS  Google Scholar 

  64. Zacchini M, Iori V, Mugnozza G, Pietrini F, Massacci A (2011) Cadmium accumulation and tolerance in Populus nigra and Salix alba. Biol Plant 55:383–386. https://doi.org/10.1007/s10535-011-0060-4

    Article  CAS  Google Scholar 

  65. Stoláriková M, Vaculík M, Lux A, Baccio D, Minnocci A, Andreucci A, Sebastiani L (2012) Anatomical differences of poplar (Populus × euramericana clone I-214) roots exposed to zinc excess. Biologia 67(3):483–489. https://doi.org/10.2478/s11756-012-0039-4

    Article  Google Scholar 

  66. Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions – hydroponic investigations. J Hazard Mater 217–218:429–438. https://doi.org/10.1016/j.jhazmat.2012.03.056

    Article  CAS  Google Scholar 

  67. Luković J, Merkulov L, Pajević S, Zorić L, Nikolić N, Borišev M, Karanović D (2012) Quantitative assessment of effects of cadmium on the histological structure of poplar and willow leaves. Water Air Soil Pollut 223(6):2979–2993. https://doi.org/10.1007/s11270-012-1081-0

    Article  CAS  Google Scholar 

  68. Kacálková L, Tlustoš P, Száková J (2014) Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow, and poplar. Pol J Environ Stud 23(3):753–761

    Google Scholar 

  69. Yang W, Wang Y, Zhao F, Ding Z, Zhang X, Zhu Z, Yang X (2014) Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction. J Zhejiang Univ Sci B 15:788–800. https://doi.org/10.1631/jzus.B1400029

    Article  CAS  Google Scholar 

  70. Nakai A, Yurugi Y, Kisanuki H (2010) Stress responses in Salix gracilistyla cuttings subjected to repetitive alternate flooding and drought. Trees 24:1087–1095. https://doi.org/10.1007/s00468-010-0481-2

    Article  Google Scholar 

  71. Rood SB, Nielsen JL, Shenton L, Gill KM, Letts MG (2009) Effects of flooding on leaf development, transpiration, and photosynthesis in narrowleaf cottonwood, a willow-like poplar. Photosynth Res 104(1):31–39. https://doi.org/10.1007/s11120-009-9511-6

    Article  CAS  Google Scholar 

  72. Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environ Exp Bot 52(1):79–88. https://doi.org/10.1016/j.envexpbot.2004.01.003

    Article  CAS  Google Scholar 

  73. Tognetti R, Sebastiani L, Minnocci A (2004) Gas exchange and foliage characteristics of two poplar clones grown in soil amended with industrial waste. Tree Physiol 24(1):75–82. https://doi.org/10.1093/treephys/24.1.75

    Article  Google Scholar 

  74. Borišev M, Pajević S, Nikolić N, Pilipović A, Krstić B, Orlović S (2009) Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Pol J Environ Stud 18(4):553–561

    Google Scholar 

  75. Ginn BK (2011) Distribution and limnological drivers of submerged aquatic plant communities in Lake Simcoe (Ontario, Canada): utility of macrophytes as bioindicators of lake trophic status. J Great Lakes Res 37:83–89. https://doi.org/10.1016/j.jglr.2011.03.015

    Article  CAS  Google Scholar 

  76. Favas PJC, Pratas J, Prasad MNV (2012) Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397. https://doi.org/10.1016/j.scitotenv.2012.06.091

    Article  CAS  Google Scholar 

  77. Maksimović T, Rončević S, Kukavica B (2019) Utricularia vulgaris L. and Salvinia natans (L.) All. Heavy metal (Fe, Mn, Cu, Zn and Pb) bioaccumulation specificity in the area of Bardača fishpond. Ekológia (Bratislava) 38(3):201–213. https://doi.org/10.2478/eko-2019-0016

    Article  Google Scholar 

  78. Borišev M, Pajević S, Stanković Ž, Krstić B (2008) Macrophytes as indicators and potential remediators in aquatic ecosystems: a case study. Large Rivers 18(1–2):107–115. https://doi.org/10.1127/lr/18/2008/107

    Article  Google Scholar 

  79. Bolpagni R, Fanelli G, Oggioni A, Testi A (2012) Macrophyte indicators of environmental quality of rivers in Italy at local, regional and geographical scales. In: Sridhar KR (ed) Aquatic plants and plant diseases. Nova Science Publishers, Inc, Hauppauge, pp 147–171

    Google Scholar 

  80. Pajević S, Borišev M, Rončević S, Vukov D, Igić R (2008) Heavy metal accumulation of Danube river aquatic plants – indication of chemical contamination. Cent Eur J Biol 3:285–294. https://doi.org/10.2478/s11535-008-0017-6

    Article  CAS  Google Scholar 

  81. Samecka-Cymerman A, Kempers AJ (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicol Environ Saf 35(3):242–247. https://doi.org/10.1006/eesa.1996.0106

    Article  CAS  Google Scholar 

  82. Lewander M, Greger M, Kautsky L, Szarek E (1996) Macrophytes as indicators of bioavailable Cd, Pb and Zn flow in the river Przemsza, Katowice Region. Appl Geochem 11(1–2):169–173. https://doi.org/10.1016/0883-2927(95)00074-7

    Article  CAS  Google Scholar 

  83. Pajević S, Kevrešan, Ž, Vučković M, Radulović S, Frontasyeva M, Pavlov S, Galinskaya T (2004) Aquatic macrophytes as biological resources for monitoring the impacts of heavy metals on the aquatic environment. Internat Assoc Danube Res (IAD), limnological reports 35 (Proceedings of the 35th conference, Novi Sad, Serbia and Montenegro), pp 323–330

    Google Scholar 

  84. Lu G, Wang B, Zhang C, Li S, Wen J, Lu G, Zhu C, Zhou Y (2018) Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int J Phytoremediation 20(8):839–846. https://doi.org/10.1080/15226514.2018.1438354

    Article  CAS  Google Scholar 

  85. Samecka-Cymerman A, Kempers AJ (2007) Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Arch Environ Contam Toxicol 53(2):198–206. https://doi.org/10.1007/s00244-006-0059-6

    Article  CAS  Google Scholar 

  86. Fletcher TD, Andrieu H, Hamel P (2013) Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Adv Water Resour 51:261–279. https://doi.org/10.1016/j.advwatres.2012.09.001

    Article  Google Scholar 

  87. Kuriata-Potasznik A, Szymczyk S (2015) Magnesium and calcium concentrations in the surface water and bottom deposits of a river-lake system. J Elem 20:677–692. https://doi.org/10.5601/jelem.2015.20.1.788

    Article  Google Scholar 

  88. Oral HV, Carvalho P, Gajewska M, Ursino N, Masi F, van Hullebusch ED, Kazak JK, Exposito A, Cipolletta G, Andersen TR, Finger DC, Simperler L, Regelsberger M, Rous V, Radinja M, Buttiglieri G, Krzeminski P, Rizzo A, Dehghanian K, Nikolova M, Zimmermann M (2020) A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature. Blue-Green Syst 2(1):112–136. https://doi.org/10.2166/bgs.2020.932

    Article  Google Scholar 

  89. McDonald RI, Weber K, Padowski J, Flörke M, Schneider C, Green PA, Gleeson T, Eckman S, Lehner B, Balk D, Boucher T, Grill G, Montgomery M (2014) Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob Environ Chang 27:96–105. https://doi.org/10.1016/j.gloenvcha.2014.04.022

    Article  Google Scholar 

  90. Butler D, Ward S, Sweetapple C, Astaraie-Imani M, Diao K, Farmani R, Fu G (2016) Reliable, resilient and sustainable water management: the safe & SuRe approach. Global Chall 1(1):63–77. https://doi.org/10.1002/gch2.1010

    Article  Google Scholar 

  91. Ramírez A, Rosas KG, Lugo AE, Ramos-González OM (2014) Spatio-temporal variation in stream water chemistry in a tropical urban watershed. Ecol Soc 19(2):45. https://doi.org/10.5751/ES-06481-190245

    Article  Google Scholar 

  92. Gunawardena J, Ziyath AM, Bostrom TE, Bekessy LK, Ayoko GA, Egodawatta P, Goonetilleke A (2013) Characterisation of atmospheric deposited particles during a dust storm in urban areas of eastern Australia. Sci Total Environ 2013(461–462):72–80. https://doi.org/10.1016/j.scitotenv.2013.04.080

    Article  CAS  Google Scholar 

  93. Meyer JL, Paul MJ, Taulbee WK (2005) Stream ecosystem function in urbanizing landscapes. J N Am Benthol Soc 24(3):602–612. https://doi.org/10.1899/04-021.1

    Article  Google Scholar 

  94. Biasioli MR, Barberis R, Ajmone-Marsan F (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356(1–3):154–164. https://doi.org/10.1016/j.scitotenv.2005.04.033

    Article  CAS  Google Scholar 

  95. Duda AM, Lenat DR, Penrose DL (1982) Water quality in urban streams: what we can expect. Water Pollut Control Fed 54(7):1139–1147. http://www.jstor.org/stable/25041633?origin=JSTOR-pdf

    CAS  Google Scholar 

  96. Müller A, Österlund H, Marsalek J, Viklander M (2020) The pollution conveyed by urban runoff: a review of sources. Sci Total Environ 709:1–18. https://doi.org/10.1016/j.scitotenv.2019.136125

    Article  CAS  Google Scholar 

  97. Salmore AK, Hollis EJ, McLellan SL (2006) Delineation of a chemical and biological signature for stormwater pollution in an urban river. J Water Health 4:247–262. https://doi.org/10.2166/wh.2006.006

    Article  CAS  Google Scholar 

  98. Luqman M, Butt TM, Tanvir A, Atiq M, Hussan MZY, Yaseen M (2013) Phytoremediation of polluted water by trees: a review. Afr J Agric Res 8(17):1591–1595. https://doi.org/10.5897/AJAR11.1111

    Article  Google Scholar 

  99. Martins RT, Melo AS, Gonçalves Jr JF, Hamada N (2015) Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Sci 34(2). https://doi.org/10.1086/681086

  100. Obolewski K (2013) Use of macrozoobenthos for biological assessment of water quality in oxbow lakes of varying hydrological connectivity to the main river channel in the example of Łyna river valley. Ochrona Środowiska 35:19–26

    Google Scholar 

  101. Loucks P, van Beek E (2017) Water resource systems planning and management – an introduction to methods, models, and applications. Springer, Cham. https://doi.org/10.1007/978-3-319-44234-1

    Book  Google Scholar 

  102. Cachada A, Pato P, Rocha-Santos T, da Silva EF, Duarte AC (2012) Levels, sources and potential human health risks of organic pollutants in urban soils. Sci Total Environ 430:184–192. https://doi.org/10.1016/j.scitotenv.2012.04.075

    Article  CAS  Google Scholar 

  103. European Communities (2001) Pollutants in urban waste water and sewage sludge. Final report Luxembourg: Office for Official Publications of the European Communities http://europa.eu.int

  104. Campanella BE, Bock C, Schröder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs – potential and limitations. Environ Sci Pollut Res 9(1):73–85. https://doi.org/10.1065/esDr2001.09.084.6

    Article  CAS  Google Scholar 

  105. Hatt BE, Fletcher TD, Walsh CJ, Taylor SL (2004) The influence of urban density and drainage infrastructure on concentrations and loads of pollutants in small streams. J Environ Manage 34(1):112–124. https://doi.org/10.1007/s00267-004-0221-8

    Article  Google Scholar 

  106. Henry HF, Burken JG, Maier RM, Newman LA, Rock S, Schnoor JL, Suk WA (2013) Phytotechnologies–preventing exposures, improving public health. Int J Phytoremediation 15(9):889–899. https://doi.org/10.1080/15226514.2012.760521

    Article  CAS  Google Scholar 

  107. Widney S, Fischer B, Vogt J (2016) Tree mortality undercuts ability of tree-planting programs to provide benefits: results of a three-city study. Forests 7(12):65. https://doi.org/10.3390/f7030065

    Article  Google Scholar 

  108. Young RF (2011) Planting the living city. J Am Plann Assoc 77(4):368–381. https://doi.org/10.1080/01944363.2011.616996

    Article  Google Scholar 

  109. Burger J (2006) Bioindicators: types, development, and use in ecological assessment and research. Environ Bioindic 1(1):22–39. https://doi.org/10.1080/15555270590966483

    Article  Google Scholar 

  110. Funk A, Reckendorfer W, Kucera-Hirzinger V, Raab R, Schiemer F (2009) Aquatic diversity in a former floodplain: remediation in an urban context. Ecol Eng 35:1476–1484. https://doi.org/10.1016/j.ecoleng.2009.06.013

    Article  Google Scholar 

  111. Bhatia M, Goyal D (2013) Analyzing remediation potential of wastewater through wetland plants: a review Environmental Progress & Sustainable Energy, 1-19. https://doi.org/10.1002/ep.11822

  112. Yadav BK, Siebel MA, van Bruggen JJA (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean (Weinh) 39(5):467–474. https://doi.org/10.1002/clen.201000385

    Article  CAS  Google Scholar 

  113. Ali S, Abbas Z, Muhammad Rizwan M, Zaheer IE, Yava I, Ünay A, Abdel-Daim MM, Bin-Jumah M, Hasanuzzaman M, Kalderis D (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12:1–33. https://doi.org/10.3390/su12051927

    Article  CAS  Google Scholar 

  114. Herath I, Vithanage M (2015) Phytoremediation in constructed wetlands. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer, Cham, pp 243–263. https://doi.org/10.1007/978-3-319-10969-5_21

    Chapter  Google Scholar 

  115. Horne AJ (2000) Phytoremediation by constructed wetlands. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton

    Google Scholar 

  116. Eisenman TS (2016) Greening cities in an urbanizing age: the human health bases in the nineteenth and early twenty-first centuries. Changing Times 6(2):216–246. http://scholarworks.umass.edu/larp_faculty_pubs/69. Accessed 29 July 2020

  117. Beatley T (2017) Handbook of biophilic city planning & design. Island Press, Washington

    Google Scholar 

  118. Kapović Solomun М (2019) Commentary: small retention in polish forests from a forest management perspective – copying of existing could be right path. In: Hartmann T, Slavíková L, McCarthy S (eds) Nature-based flood risk management on private land-disciplinary perspectives on a multidisciplinary challenge. Springer, Cham, pp 45–51. https://doi.org/10.1007/978-3-030-23842-1_5

    Chapter  Google Scholar 

  119. Pavlović M, Rakić T, Pavlović D, Kostić O, Jarić S, Mataruga Z, Pavlović P, Mitrović M (2017) Seasonal variations of trace element contents in leaves and bark of horse chestnut (Aesculus hippocastanum L.) in urban and industrial regions in Serbia. Arch Biol Sci 69(2):201–214. https://doi.org/10.2298/ABS161202005P

    Article  Google Scholar 

  120. Greksa A, Ljevnaić-Mašić B, Grabić J, Benka P, Radonić V, Blagojević B, Sekulić M (2019) Potential of urban trees for mitigating heavy metal pollution in the city of Novi Sad, Serbia. Environ Monit Assess 191(10):636. https://doi.org/10.1007/s10661-019-7791-7

    Article  CAS  Google Scholar 

  121. Helfield J, Diamond M (1997) Use of constructed wetlands for urban stream restoration: a critical analysis. Environ Manag 21:329–341. https://doi.org/10.1007/s002679900033

    Article  CAS  Google Scholar 

  122. Vymazal J (2001) Constructed wetlands for wastewater treatment in the Czech Republic. Water Sci Technol 44(11–12):369–374

    Article  CAS  Google Scholar 

  123. Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21(6):607–635. https://doi.org/10.1080/0735-260291044386

    Article  CAS  Google Scholar 

  124. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22(1–2):93–117. https://doi.org/10.1016/j.biotechadv.2003.08.010

    Article  CAS  Google Scholar 

  125. Calheiros CSC, Rangel OSS, Castro PML (2009) Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour Technol 100(13):3205–3213. https://doi.org/10.1016/j.biortech.2009.02.017

    Article  CAS  Google Scholar 

  126. Ranieri E, Young TM (2012) Clogging influence on metals migration and removal in sub-surface flow constructed wetlands. J Contam Hydrol 129–130:38–34. https://doi.org/10.1016/j.jconhyd.2012.01.002

    Article  CAS  Google Scholar 

  127. Vymazal J (2013) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res:47. https://doi.org/10.1016/j.watres.2013.05.029

  128. Guittonny-Philippe A, Petit M-E, Masotti V, Monnier Y, Malleret L, Coulomb B, Combroux I, Baumberger T, Viglione J, Laffont-Schwob I (2015) Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. J Environ Manage 147:108–123. https://doi.org/10.1016/j.jenvman.2014.09.009

    Article  CAS  Google Scholar 

  129. Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20. https://doi.org/10.1016/j.envint.2014.10.026

    Article  CAS  Google Scholar 

  130. Türker OC, Türe C, Böcük H, Yakar A (2016) Phyto-management of boron mine effluent using native macrophytes in mono-culture and poly-culture constructed wetlands. Ecol Eng 94:65–74. https://doi.org/10.1016/j.ecoleng.2016.05.043

    Article  Google Scholar 

  131. Dou T, Troesch S, Petitjean A, Gábor PT, Esser D (2017) Wastewater and rainwater management in urban areas: a role for constructed wetlands. Procedia Environ Sci 37:535–541. https://doi.org/10.1016/j.proenv.2017.03.036

    Article  Google Scholar 

  132. Stenström T, Carlander A (2001) Occurrence and die-off of indicator organisms in the sediment in two constructed wetlands. Water Sci Technol J Int Assoc Water Pollut Res 44:223–230. https://doi.org/10.2166/wst.2001.0833

    Article  Google Scholar 

  133. Morató J, Codony F, Sánchez O, Pérez LM, García J, Mas J (2014) Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands. Sci Total Environ 481:81–89. https://doi.org/10.1016/j.scitotenv.2014.01.068

    Article  CAS  Google Scholar 

  134. Malaviya P, Singh A (2012) Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42(20):2153–2214. https://doi.org/10.1080/10643389.2011.574107

    Article  CAS  Google Scholar 

  135. Reyes-Contreras C, Hijosa-Valsero M, Sidrach-Cardona R, Bayona JM, Bécares E (2012) Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: a medium-term study. Chemosphere 88(2):161–167. https://doi.org/10.1016/j.chemosphere.2012.02.064

    Article  CAS  Google Scholar 

  136. Prasad MNV, Greger M, Aravind P (2005) Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, Boca Raton, Now Taylor and Francis, Chap. 24, pp 443–474

    Chapter  Google Scholar 

  137. Yin K, Viana P, Zhao X, Rockne K (2010) Characterization, performance modeling, and design of an active capping remediation project in a heavily polluted urban channel. Sci Total Environ 408:3454–3463. https://doi.org/10.1016/j.scitotenv.2010.03.053

    Article  CAS  Google Scholar 

  138. Greenway M (2017) Stormwater wetlands for the enhancement of environmental ecosystem services: case studies for two retrofit wetlands in Brisbane, Australia. J Clean Prod 163:S91–S100

    Article  CAS  Google Scholar 

  139. Gimbert F, Petitjean Q, Al-Ashoor A, Cretenet C, Aleya L (2018) Encaged Chironomus riparius larvae in assessment of trace metal bioavailability and transfer in a landfill leachate collection pond. Environ Sci Pollut Res 25:11303–11312

    Article  CAS  Google Scholar 

  140. Wahsha M, Bini C, Argese E, Minello F, Fontana S, Wahsheh H (2012) Heavy metals accumulation in willows growing on spolic technosols from the abandoned Imperina Valley mine in Italy. J Geochem Explor 123:19–24. https://doi.org/10.1016/j.gexplo.2012.07.004

    Article  CAS  Google Scholar 

  141. Jovanović VS, Mitić V, Mandić SN, Ilić M, Simonović S (2015) Heavy metals in the post-catastrophic soils. In: Sherameti I, Varma A (eds) Heavy metal contamination of soils. Soil biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_1

    Chapter  Google Scholar 

  142. Prasad MNV (2005) Stabilization, remediation, and integrated management of metal – contaminated ecosystems by grasses (Poaceae). In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment (biogeochemistry, biotechnology and bioremediation). CRC Press, Boca Raton. Now Taylor and Francis, pp 405–424. https://doi.org/10.1201/9781420032048.ch21

    Chapter  Google Scholar 

  143. Krzaklewski W, Barszcz J, Małek S, Kozioł K, Pietrzykowski M (2004) Contamination of forest soils in the vicinity of the sedimentation pond after zinc and lead ore flotation (in the region of Olkusz, Southern Poland). Water Air Soil Pollut 159(1):151–164. https://doi.org/10.1023/B:WATE.0000049173.18935.71

    Article  CAS  Google Scholar 

  144. White S (2003) Wetland use in acid mine drainage remediation. http://home.eng.iastate.edu/~tge/ce421-521/Steven%20White.pdf. Accessed 29 July 2020

  145. Obreque-Contreras J, Pérez-Flores D, Gutiérrez P, Chávez-Crooker P (2015) Acid mine drainage in Chile: an opportunity to apply bioremediation technology. Hydrol Curr Res 6(3):215. https://doi.org/10.4172/2157-7587.1000215

    Article  CAS  Google Scholar 

  146. Holmström H, Ljungberg J, Öhlander B (2000) The character of the suspended and dissolved phases in the water cover of the flooded mine tailings at Stekenjokk, northern Sweden. Sci Total Environ 247(1):15–31. https://doi.org/10.1016/s0048-9697(99)00454-4

    Article  Google Scholar 

  147. Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  CAS  Google Scholar 

  148. Nyquist J, Greger M (2009) A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng 35:630–642. https://doi.org/10.1016/j.ecoleng.2008.10.018

    Article  Google Scholar 

  149. Kersten G, Majestic B, Quigley M (2017) Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicol Environ Saf 137:225–232. https://doi.org/10.1016/j.ecoenv.2016.12.001

    Article  CAS  Google Scholar 

  150. Kiiskila JD, Sarkar D, Panja S, Sahi SV, Datta R (2019) Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): a multiscale long-term study. Ecol Eng 129:97–108. https://doi.org/10.1016/j.ecoleng.2019.01.018

    Article  Google Scholar 

  151. Das B, Nordin R, Mazumder A (2009) Watershed land use as a determinant of metal concentrations in freshwater systems. Environ Geochem Health 31:595–607. https://doi.org/10.1007/s10653-008-9244-z

    Article  CAS  Google Scholar 

  152. Pourang N, Noori AS (2014) Heavy metals contamination in soil, surface water and groundwater of an agricultural area adjacent to Tehran oil refinery. Iran Int J Environ Res 8(4):871–886

    Google Scholar 

  153. Liao J, Wen Z, Ru X, Chen J, Wu H, Wei C (2016) Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: public health implications in Guangdong Province, China. Ecotoxicol Environ Saf 124:460–469. https://doi.org/10.1016/j.ecoenv.2015.11.023

    Article  CAS  Google Scholar 

  154. Festin ES, Tigabu M, Chileshe MN, Syampungani S, Odén PC (2019) Progresses in restoration of post-mining landscape in Africa. J For Res 30:381–396. https://doi.org/10.1007/s11676-018-0621-x

    Article  Google Scholar 

  155. Prasad M, Pratas J, Freitas H (2005) Trace elements in plants and soils of abandoned mines in Portugal. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment (biogeochemistry, biotechnology and bioremediation). CRC Press, Boca Raton. Now Taylor and Francis, pp 507–519. https://doi.org/10.1201/9781420032048.ch26

    Chapter  Google Scholar 

  156. RoyChowdhury A, Sarkar D, Datta R (2015) Remediation of acid mine drainage-impacted water. Curr Pollut Rep 1:131–141. https://doi.org/10.1007/s40726-015-0011-3

    Article  CAS  Google Scholar 

  157. Lai T, Cappai G, Carucci A (2016) Phytoremediation of mining areas: an overview of application in lead- and zinc-contaminated soils. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 3–27

    Chapter  Google Scholar 

  158. Ranđelović D, Gajić G, Mutić J, Pavlović P, Mihailović N, Jovanović S (2016) Ecological potential of Epilobium dodonaei Vill. for restoration of metalliferous mine wastes. Ecol Eng 95:800–810. https://doi.org/10.1016/j.ecoleng.2016.07.015

    Article  Google Scholar 

  159. Lam EJ, Cánovas M, Gálvez ME, Montofré ÍL, Keith BF, Faz Á (2017) Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J Geochem Explor 182:210–217. https://doi.org/10.1016/j.gexplo.2017.06.015

    Article  CAS  Google Scholar 

  160. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22(12):1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001

    Article  CAS  Google Scholar 

  161. Chaney RL, Reeves RD, Baklanov IA, Centofanti T, Broadhurst CL, Baker AJM, Van der Ent A, Roseberg RJ (2014) Phytoremediation and phytomining: using plants to remediate contaminated or mineralized environments. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environment. Nova Science Publishers, Hauppauge, pp 365–392. https://doi.org/10.13140/2.1.3750.2721

    Chapter  Google Scholar 

  162. Abreu MM, Tavares MT, Batista MJ (2008) Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal. J Geochem Explor 96:210–222. https://doi.org/10.1016/j.gexplo.2007.04.007

    Article  CAS  Google Scholar 

  163. Rungwa S, Arpa G, Sakulas H, Harakuwe A, Timi D (2013) Phytoremediation – an eco-friendly and sustainable method of heavy metal removal from closed mine environments in Papua New Guinea. Procedia Earth Planet Sci 6:269–277. https://doi.org/10.1016/j.proeps.2013.01.036

    Article  CAS  Google Scholar 

  164. Dean AP, Lynch S, Rowland P, Toft BD, Pittman JK, White KN (2013) Natural wetlands are efficient at providing long-term metal remediation of fresh water systems polluted by acid mine drainage. Environ Sci Technol 47(21):12029–12036. https://doi.org/10.1021/es4025904

    Article  CAS  Google Scholar 

  165. Das PK (2018) Phytoremediation and nanoremediation : emerging techniques for treatment of acid mine drainage water. Def Life Sci J 3(2):190–196. https://doi.org/10.14429/dlsj.3.11346

    Article  Google Scholar 

  166. Karathanasis A, Johnson C (2003) Metal removal potential by three aquatic plants in an acid mine drainage wetland. Mine Water Environ 22:22–30. https://doi.org/10.1007/s102300300004

    Article  CAS  Google Scholar 

  167. Pat-Espadas AM, Loredo Portales R, Amabilis-Sosa LE, Gomez G, Vidal G (2018) Review of constructed wetlands for acid mine drainage treatment. Water 10(11):1685. https://doi.org/10.3390/w10111685

    Article  CAS  Google Scholar 

  168. Sheoran AS (2006) A laboratory treatment study of acid mine water of wetlands with emergent macrophyte (Typha angustata). Int J Min Reclam Environ 20(3):209–222. https://doi.org/10.1080/13895260600564695

    Article  CAS  Google Scholar 

  169. Carleton JN, Grizzard TJ, Godrej AN, Post HE, Lampe L, Kenel PP (2000) Performance of a constructed wetlands in treating urban stormwater runoff. Water Environ Res 72(3):295–304. https://doi.org/10.2175/106143000x137518

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This chapter was supported by the Ministry of Scientific-Technological Development, Higher Education and Information Society of the Republic of Srpska, Grant No. 19/6-020/961-43/18, and by the EU Cost Action LAND4FLOOD: Natural Flood Retention on Private Land (CA16209), through the Short Term Scientific Mission (STSM) grant entitled “Forests and floods – Public Perception and Institutional Approaches.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorana Hrkić Ilić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hrkić Ilić, Z., Kapović Solomun, M., Šumatić, N., Ristić, R., Marjanović-Balaban, Ž. (2021). The Role of Plants in Water Regulation and Pollution Control. In: Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P. (eds) Nature-Based Solutions for Flood Mitigation. The Handbook of Environmental Chemistry, vol 107. Springer, Cham. https://doi.org/10.1007/698_2021_774

Download citation

Publish with us

Policies and ethics