Skip to main content

Advertisement

Log in

Watershed land use as a determinant of metal concentrations in freshwater systems

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Concentrations of Fe, Mn, Cu, dissolved organic matter (DOM), and pH were synthesized from 30 publications to determine the factors regulating concentrations and behavior of metals in freshwater systems. Results from the review suggest that contrasting watershed land use can directly (erosion and runoff) and indirectly (in-lake processes including metal–DOM–pH interactions) affect the metal concentrations in freshwater systems. Among the watershed land uses considered here, concentrations of Fe, Mn, and Cu were observed in the following order: arctic lakes < forested < agricultural < urbanized < mined. A drastic difference in mean metal concentrations has been observed when undisturbed or low impact watersheds (arctic and forested) were changed by agricultural, urban, and mining developments. Relationships between metal concentrations and pH revealed that metals precipitate at high pH (pH > 5). Additionally, at pH < 5, metal concentrations were significantly correlated with DOM due to metal–DOM complexation. High ratios of metal: DOM occur only at low DOM concentrations. Collectively, two general conclusions can be drawn from this review. First, lakes, rivers, and streams with urbanized watersheds are the most susceptible to increased concentrations of metals. Secondly, these results also suggest that regardless of high or low DOM in the water column, pH would affect metal concentrations in freshwater systems. Nonetheless, free metal ions would be higher in freshwater systems with acidic water and low DOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albaiges, J., Algaba, J., Arambarri, P., Carrera, F., Baluja, G., Hernandez, L. M., et al. (1987). Budget of organic and inorganic pollutants in the Donana National Park (Spain). The Science of the Total Environment, 63, 13–28. doi:10.1016/0048-9697(87)90033-7.

    Article  CAS  Google Scholar 

  • Albéric, P., Viollier, E., Jézéquel, D., Grosbois, C., & Michard, G. (2000). Trace elements-dissolved organic matter interaction in the anoxic deep layer of Lake Pavin (Puy-de-Dôme, France). Limnology and Oceanography, 45, 1088–1096.

    Google Scholar 

  • Anderson, R. F., Santschi, P. H., Nyffeler, U. P., & Schiff, S. L. (1987). Validating the use of radiotracers as analogs of stable metal behavior in enclosed aquatic ecosystem experiments. Canadian Journal of Fisheries and Aquatic Sciences, 44, 251–259. doi:10.1139/f87-299.

    Article  CAS  Google Scholar 

  • Arakel, A. V., & Hongjun, T. (1992). Heavy metal geochemistry and dispersion pattern in coastal sediments, soil, and water of Kedron Brook floodplain area, Brisbane, Australia. Environmental Geology, 20, 219–231.

    CAS  Google Scholar 

  • Aurilio, A. C., Durant, J. L., Hemond, H. F., & Knox, M. L. (1995). Sources and distribution of arsenic in the Aberjona Watershed, eastern Massachusetts. Water, Air, and Soil Pollution, 81, 265–282. doi:10.1007/BF01104014.

    Article  CAS  Google Scholar 

  • Babiarz, C. L., Benoit, J. M., Shafer, M. M., Andren, A. W., Hurley, J. P., & Webb, D. A. (1998). Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds. Biogeochemistry, 41, 237–257. doi:10.1023/A:1005940630948.

    Article  CAS  Google Scholar 

  • Balistrieri, L. S., Murray, J. W., & Paul, B. (1992). The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnology and Oceanography, 37, 510–528.

    CAS  Google Scholar 

  • Balogh, S. J., Meyer, M. L., & Johnson, D. K. (1998). Transport of mercury in three contrasting river basins. Environmental Science & Technology, 32, 456–462. doi:10.1021/es970506q.

    Article  CAS  Google Scholar 

  • Banks, D., Younger, P. L., Arnesen, R.- T., Iversen, E. R., & Banks, S. B. (1997). Mine-water chemistry: The good, the bad and the ugly. Environmental Geology, 32, 157–170. doi:10.1007/s002540050204.

    Article  Google Scholar 

  • Behra, R., Landwehrjohann, R., Vogel, K., Wagner, B., & Sigg, L. (2002). Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration. Aquatic Sciences, 64, 300–306. doi:10.1007/s00027-002-8074-9.

    Article  CAS  Google Scholar 

  • Benoit, G., & Rozan, T. F. (1999). The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochimica et Cosmochimica Acta, 63, 113–127. doi:10.1016/S0016-7037(98)00276-2.

    Article  CAS  Google Scholar 

  • Bibby, R. L., & Webster-Brown, J. G. (2006). Trace metal adsorption onto urban stream suspended particulate matter (Auckland region, New Zealand). Applied Geochemistry, 21, 1135–1151. doi:10.1016/j.apgeochem.2006.03.014.

    Article  CAS  Google Scholar 

  • Boult, S., Collins, D. N., White, K. N., & Curtis, C. D. (1994). Metal transport in a stream polluted by acid mine drainage—The Afon Goch, Anglesey, UK. Environmental Pollution, 84, 279–284. doi:10.1016/0269-7491(94)90139-2.

    Article  CAS  Google Scholar 

  • Bowell, R. J., & Bruce, I. (1995). Geochemistry of iron ochre and mine waters from Levant Mine, Cornwall. Applied Geochemistry, 10, 237–250. doi:10.1016/0883-2927(94)00036-6.

    Article  CAS  Google Scholar 

  • Chapman, B. M., Jones, D. R., & Jung, R. F. (1996). Processes controlling metal ion attenuation in acid mine drainage streams. Pure and Applied Chemistry, 68, 1639–1656. doi:10.1351/pac199668081639.

    Article  Google Scholar 

  • Chen, C. Y., Stemberger, R. S., Klaue, B., Blum, J. D., Pickhardt, P. C., & Folt, C. L. (2000). Accumulation of heavy metals in food web components across a gradient of lakes. Limnology and Oceanography, 45, 1525–1536.

    CAS  Google Scholar 

  • Cory, N., Buffam, I., Laudon, H., Köhler, S., & Bishop, K. (2006). Landscape control of stream water aluminum in a boreal catchment during spring flood. Environmental Science & Technology, 40, 3494–3500. doi:10.1021/es0523183.

    Article  CAS  Google Scholar 

  • Curtis, P. J. (1993). Effect of dissolved organic carbon on 59Fe scavenging. Limnology and Oceanography, 38, 1554–1561.

    CAS  Google Scholar 

  • Dai, M., & Martin, J. M. (1995). First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea. Earth and Planetary Science Letters, 131, 127–141. doi:10.1016/0012-821X(95)00021-4.

    Article  CAS  Google Scholar 

  • Davidson, W., & Tipping, E. (1984). Treading in Mortimer’s footsteps: The geochemical cycling of iron and manganese in Esthwaite Water. Freshwater Biological Association Annul Report, 52, 91–101.

    Google Scholar 

  • Debano, L. F., & Schmidt, L. J. (1990). Potential for enhancing riparian habitat is the southwestern United States with watershed practices. Forest Ecology and Management, 33/34, 385–403. doi:10.1016/0378-1127(90)90205-P.

    Article  Google Scholar 

  • Dickson, W. (1980). Properties of acidified water. In: Ecological impact of acid precipitation. Proceedings of the International Conference on SNSF Project, 75–83.

  • Dosskey, M. G., & Bertsch, P. M. (1994). Forest sources and pathways of organic matter transport to a blackwater stream: A hydrologic approach. Biogeochemistry, 24, 1–19. doi:10.1007/BF00001304.

    Article  CAS  Google Scholar 

  • Essington, M. E. (2004). Soil and water chemistry. An integrative approach (p. 534). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Eyrolle, F., Benedetti, M., Benaim, J., & Fevrier, D. (1996). The distribution of colloidal and dissolved organic carbon, major elements and trace elements in small tropical catchments. Geochimica et Cosmochimica Acta, 60, 3643–3656. doi:10.1016/0016-7037(96)00210-4.

    Article  CAS  Google Scholar 

  • Fish, W., Dzombak, D. A., & Morel, F. M. M. (1986). Metal-humate interactions 2 Application and comparison of models. Environmental Science & Technology, 20, 2676–2683. doi:10.1021/es00149a005.

    Article  Google Scholar 

  • Flintrop, C. F., Hohlmann, B., Jasper, T., Korte, C., Podlaha, O. G., Scheele, S., et al. (1996). Anatomy of pollution: Rivers of North Rhine-Westfali, Germany. American Journal of Science, 296, 58–98.

    CAS  Google Scholar 

  • Folkes, D. J., Kuehster, T. E., & Litle, R. A. (2001). Contributions of pesticide use to urban background concentrations of arsenic in Denver, Colorado. USA Environmental Forensics, 2, 127–139. doi:10.1006/enfo.2001.0048.

    Article  CAS  Google Scholar 

  • Freedman, B., & Clair, T. A. (1987). Ion mass balances and seasonal fluxes from four acidic brownwater streams in Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 44, 538–548. doi:10.1139/f87-066.

    Article  CAS  Google Scholar 

  • Gburek, W. J., & Folmer, G. J. (1999). Flow and chemical contributions to streamflow in an upland watershed: A baseflow survey. Journal of Hydrology (Amsterdam), 217, 1–18. doi:10.1016/S0022-1694(98)00282-0.

    Article  CAS  Google Scholar 

  • Gergel, S. E., Turner, M. G., & Kratz, T. K. (1999). Scale-dependent landscape effects on north temperate lakes and rivers. Ecological Applications, 9, 1377–1390. doi:10.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2.

    Article  Google Scholar 

  • Gergel, S. E., Turner, M. G., Miller, J. R., Melack, J. M., & Stanley, E. H. (2002). Landscape indicators of human impacts to riverine systems. Aquatic Sciences, 64, 118–128. doi:10.1007/s00027-002-8060-2.

    Article  CAS  Google Scholar 

  • Gray, N. F. (1998). Acid mine drainage composition and the implications for its impact on lotic systems. Water Research, 32, 2122–2134. doi:10.1016/S0043-1354(97)00449-1.

    Article  CAS  Google Scholar 

  • Guay, C. K., & Falkner, K. K. (1998). A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas. Continental Shelf Research, 18, 859–882. doi:10.1016/S0278-4343(98)00023-5.

    Article  Google Scholar 

  • Guieu, C., Wei, W. H., Martin, J.- M., & Yoon, Y. Y. (1996). Outflow of trace metals into the Laptev Sea by the Lena River. Marine Chemistry, 53, 255–267. doi:10.1016/0304-4203(95)00093-3.

    Article  CAS  Google Scholar 

  • Hamilton-Taylor, J., Davison, W., & Morfett, K. (1996). The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake. Limnology and Oceanography, 41, 408–418.

    Article  CAS  Google Scholar 

  • Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S., & Jones, E. B. D. (1998). Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Sciences of the United States of America, 95, 14843–14847. doi:10.1073/pnas.95.25.14843.

    Article  CAS  Google Scholar 

  • Hare, L., & Tessier, A. (1996). Predicting animal cadmium concentrations in lakes. Nature, 380, 430–432. doi:10.1038/380430a0.

    Article  CAS  Google Scholar 

  • Helmer, E. H. (1987). Aluminum speciation in bog waters and aluminum-organic matter conditional stability constants, M.S. thesis, Univ. Minnesota.

  • Hinton, M. J., Schiff, S. L., & English, M. C. (1998). Sources and flow paths of dissolved organic carbon during storms in two forested watersheds of the Precambrian Shield. Biogeochemistry, 41, 175–197.

    Article  CAS  Google Scholar 

  • Hites, R. A., & Eisenreich, S. J. (1987). Sources and fates of aquatic pollutants. In R. A. Hites & S. J. Eisenreich (Eds.), Advances in chemistry series 216. Washington, DC: American Chemical Society.

    Google Scholar 

  • Hudson-Edwards, K. A., Schell, C., & Macklin, M. G. (1999). Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio tinto area, southwest Spain. Applied Geochemistry, 14, 1015–1030. doi:10.1016/S0883-2927(99)00008-6.

    Article  CAS  Google Scholar 

  • Jaïry, A., Garban, B., Blanchard, M., & Chesterikoff, A. (1999). Speciation of organic carbon, Cu and Mn in the River Marne (France): The role of colloids. Hydrological Processes, 13, 223–237. doi:10.1002/(SICI)1099-1085(19990215)13:2<223::AID-HYP708>3.0.CO;2-F.

    Article  Google Scholar 

  • Johnson, C. A. (1986). The regulation of trace element concentrations in rivers and estuarine waters contaminated with acid mine drainage: The adsorption of Cu and Zn on amorphous Fe oxyhydroxides. Geochimica et Cosmochimica Acta, 50, 2433–2438. doi:10.1016/0016-7037(86)90026-8.

    Article  CAS  Google Scholar 

  • Lacerda, L. D., De Souza, M., & Ribeiro, M. G. (2004). The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environmental Pollution, 129, 247–255. doi:10.1016/j.envpol.2003.10.013.

    Article  CAS  Google Scholar 

  • LeBlanc, R. T., Brown, R. D., & FitzGibbon, J. E. (1997). Modeling the effects of land use change on water temperature in unregulated urban streams. Journal of Environmental Management, 49, 445–469. doi:10.1006/jema.1996.0106.

    Article  Google Scholar 

  • Mach, C. E., & Brezonik, P. L. (1989). Trace metal research at Little Rock Lake, Wisconsin: Background data, enclosure experiments, and the first three years of acidification. The Science of the Total Environment, 87/88, 269–285. doi:10.1016/0048-9697(89)90241-6.

    Article  Google Scholar 

  • Massoud, M., El-Fadel, M., Scrimshaw, M., & Lester, J. (2004). Land use impact on the spatial and seasonal variations of contaminant loads to Abou Ali River and its coastal zone in north Lebanon. Agricultural Engineering International: The CIGR Journal of Scientific Research and Development, 6, 1–18.

    Google Scholar 

  • Mayer, L. M., Liotta, F. P., & Norton, S. A. (1982). Hypolimnatic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine. Water Research, 16, 1189–1196. doi:10.1016/0043-1354(82)90137-3.

    Article  CAS  Google Scholar 

  • McGeer, J. C., Szebedinszky, C., McDonald, D. G., & Wood, C. M. (2000). Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: Tissue specific metal accumulation. Aquatic Toxicology Amsterdam, Netherlands, 50, 245–256. doi:10.1016/S0166-445X(99)00106-X.

    CAS  Google Scholar 

  • Merry, R. H., & Tiller, K. G. (2004). Distribution and budget of cadmium and lead in an agricultural region near Adelaide, South Australia. Water, Air, and Soil Pollution, 57–58, 171–180. doi:10.1007/BF00282880.

    Google Scholar 

  • Meylan, S., Behra, R., & Sigg, L. (2004). Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: A microcosm study. Environmental Science & Technology, 38, 3104–3111. doi:10.1021/es034993n.

    Article  CAS  Google Scholar 

  • Miller, G. C., Lyons, W. B., & Davis, A. (1996). Understanding the water quality of pit-lakes. Environmental Science and Technology News, 30(118), A–123A.

    Google Scholar 

  • Nelson, P. N., Baldock, J. A., & Oades, J. M. (1993). Concentration and composition of dissolved organic carbon in streams and relations to catchment soil properties. Biogeochemistry, 19, 27–50. doi:10.1007/BF00000573.

    Article  Google Scholar 

  • Nimick, D. A., Cleasby, T. E., & McCleskey, R. B. (2005). Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream. Environmental Geology, 47, 603–614. doi:10.1007/s00254-004-1178-x.

    Article  CAS  Google Scholar 

  • Omernik, J. M., Abernathy, A. R., & Male, L. M. (1981). Stream nutrient levels and proximity of agricultural and forest land to streams: Some relationships. Journal of Soil and Water Conservation, 36, 227–231.

    Google Scholar 

  • Preda, M., & Cox, M. (2001). Trace metals in acid sediments and waters, Pimpama River, southeast Queensland. Environmental Geology, 40, 755–768. doi:10.1007/s002540100318.

    Article  CAS  Google Scholar 

  • Prusha, B. A., & Clements, W. H. (2004). Landscape attributes, dissolved organic C, and metal bioaccumulation in aquatic macroinvertebrates (Arkansas River Basin, Colorado). Journal of the North American Benthological Society, 23, 327–339. doi:10.1899/0887-3593(2004)023<0327:LADOCA>2.0.CO;2.

    Article  Google Scholar 

  • Rember, R. D., & Trefry, J. H. (2004). Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan Arctic. Geochimica et Cosmochimica Acta, 68, 477–489. doi:10.1016/S0016-7037(03)00458-7.

    Article  CAS  Google Scholar 

  • Richards, C., Johnson, L. B., & Host, G. E. (1996). Landscape-scale influences on stream habitats. Canadian Journal of Fisheries and Aquatic Sciences, 53, 295–311. doi:10.1139/cjfas-53-S1-295.

    Article  Google Scholar 

  • Richards, J. G., Curtis, P. J., Burnison, B. K., & Playle, R. C. (2001). Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills. Environmental Toxicology and Chemistry, 20, 1159–1166. doi:10.1897/1551-5028(2001)020<1159:EONOMS>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156. doi:10.1007/BF02447513.

    Article  Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23. doi:10.1016/0375-6742(94)00039-E.

    Article  CAS  Google Scholar 

  • Schindler, D. W., Hesslein, R. H., Wageman, R., & Broecker, W. S. (1980). Effects of acidification on mobilization of heavy metals and radionuclides from the sediments of a freshwater lake. Canadian Journal of Fisheries and Aquatic Sciences, 37, 343–377.

    Google Scholar 

  • Schlosser, I. J., & Karr, J. R. (1981). Riparian vegetation and channel morphology impact on spatial patterns of water quality in agricultural watersheds. Environmental Management, 5, 233–243. doi:10.1007/BF01873282.

    Article  Google Scholar 

  • Seyler, P. T., & Boaventura, G. R. (2003). Distribution and partition of trace metals in the Amazon basin. Hydrological Processes, 17, 1345–1361. doi:10.1002/hyp.1288.

    Article  Google Scholar 

  • Steedman, R. J. (1988). Modification and assessment of an index of biotic integrity to quantify stream quality in Southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 45, 492–501. doi:10.1139/f88-059.

    Article  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry (p. 780). New York: Wiley.

    Google Scholar 

  • Tipping, E., Rey-Castro, C., Bryan, S. E., & Hamilton-Taylor, J. (2002). Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta, 66, 3211–3224. doi:10.1016/S0016-7037(02)00930-4.

    Article  CAS  Google Scholar 

  • Tong, S. T. Y., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66, 377–393. doi:10.1006/jema.2002.0593.

    Article  Google Scholar 

  • Tovar-Sanchez, A., Huerta-Diaz, M. A., Negro, J. J., Bravo, M. A., & Sañudo-Wilhelmy, S. A. (2006). Metal contamination in interstitial waters of Doñana Park. Journal of Environmental Management, 78, 286–293.

    CAS  Google Scholar 

  • Underwood, J. K., Ogden, J. G., & Smith, D. L. (1986). Contemporary chemistry of Nova Scotian lakes. Water, Air, and Soil Pollution, 30, 991–999. doi:10.1007/BF00303362.

    Article  CAS  Google Scholar 

  • Urban, N. R., Gorham, E., Underwood, J. K., Martin, F. B., & Ogden, J. G. (1990). Geochemical processes controlling concentrations of AL, Fe, and Mn in Nova Scotia lakes. Limnology and Oceanography, 35, 1516–1534.

    Article  CAS  Google Scholar 

  • Van den Berg, C. M. G., Merks, A. G. A., & Dursma, E. K. (1987). Organic complexation and its control of the dissolved concentration of copper and zinc in the Scheldt estuary. Estuarine, Coastal and Shelf Science, 24, 785–797. doi:10.1016/0272-7714(87)90152-1.

    Article  Google Scholar 

  • Xue, H. B., & Sigg, L. (1993). Free cupric ion concentration and Cu (II) speciation in a eutrophic lake. Limnology and Oceanography, 38, 1200–1213.

    CAS  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River, New Jersey, USA: Prentice Hall Inc.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Fred Wrona, University of Victoria, for comments, editorial correction, and statistical analysis. This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Graduate Scholarship Doctoral to B.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biplob Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, B., Nordin, R. & Mazumder, A. Watershed land use as a determinant of metal concentrations in freshwater systems. Environ Geochem Health 31, 595–607 (2009). https://doi.org/10.1007/s10653-008-9244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9244-z

Keywords

Navigation