Skip to main content

Molecular Design of Novel Classes of Luminescent Transition Metal Complexes and Their Use in Sensing, Biolabeling, and Cell Imaging

  • Chapter
  • First Online:
Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents

Part of the book series: Structure and Bonding ((STRUCTURE,volume 165))

Abstract

The design and synthesis of a number of luminescent transition metal complexes will be described, and their rich photophysical properties will be examined. Upon the incorporation of various functionalities to the ancillary ligands, not only will their electronic absorption and emission properties be tuned, but also they may serve as optical and luminescent sensors for ions and molecules of biological interest and as reagents and probes for biolabeling and cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bpy:

2,2′-Bipyridine

DIC:

Differential interference contrast

DLS:

Dynamic light scattering

DMAP:

4-(Dimethylamino)pyridine

FRET:

Förster resonance energy transfer

GNPs:

Gold nanoparticles

HSA:

Human serum albumin

IL:

Intraligand

LLCT:

Ligand-to-ligand charge transfer

MDCK:

Madin–Darby canine kidney

MLCT:

Metal-to-ligand charge transfer

MMLCT:

Metal–metal-to-ligand charge transfer

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide

NIR:

Near-infrared

PET:

Photoinduced electron transfer

SPR:

Surface plasmon resonance

tBu3tpy:

4,4′,4″-Tri-tert-butyl-2,2′:6′,2″-terpyridine

tpy:

2,2′:6′,2″-Terpyridine

References

  1. Yam VWW, Wong KMC (2005) Luminescent molecular rods – transition-metal alkynyl complexes. Top Curr Chem 257:1–32

    Article  CAS  Google Scholar 

  2. Yam VWW, Wong KMC (2011) Luminescent metal complexes of d6, d8 and d10 transition metal centres. Chem Commun 47:11579–11592

    Article  CAS  Google Scholar 

  3. Soini E, Hemmilä I (1979) Fluoroimmunoassay: present status and key problems. Clin Chem (Washington, DC) 25:353–361

    CAS  Google Scholar 

  4. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–92

    Article  CAS  Google Scholar 

  5. Licha K (2002) Contrast agents for optical imaging. Top Curr Chem 222:1–29

    Article  CAS  Google Scholar 

  6. Balzani V, Sabbatini N, Scandola F (1986) “Second-sphere” photochemistry and photophysics of coordination compounds. Chem Rev 86:319–337

    Article  CAS  Google Scholar 

  7. Caspar JV, Meyer TJ (1983) Photochemistry of MLCT excited states. Effect of nonchromophoric ligand variations on photophysical properties in the series cis-Ru(bpy)2 L2 2+. Inorg Chem 22:2444–2453

    Article  CAS  Google Scholar 

  8. Crosby GA (1975) Spectroscopic investigations of excited states of transition-metal complexes. Acc Chem Res 8:231–238

    Article  CAS  Google Scholar 

  9. Watts RJ (1983) Ruthenium polypyridyls: a case study. J Chem Educ 60:834–842

    Article  CAS  Google Scholar 

  10. Scandola F, Indelli MT, Chiorboli C, Bignozzi CA (1990) Photoinduced electron and energy transfer in polynuclear complexes. Top Curr Chem 158:73–149

    Article  CAS  Google Scholar 

  11. De Cola L, Belser P, von Zelewsky A, Vögtle F (2007) Design, synthesis and photophysics of ruthenium and osmium complexes through 20 years of collaboration. Inorg Chim Acta 360:775–784

    Article  Google Scholar 

  12. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  13. Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V (2007) Photochemistry and photophysics of coordination compounds: ruthenium. Top Curr Chem 280:117–214

    Article  CAS  Google Scholar 

  14. Wrighton M, Morse DL (1974) Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes. J Am Chem Soc 96:998–1003

    Article  CAS  Google Scholar 

  15. Caspar JV, Meyer TJ (1983) Application of the energy gap law to nonradiative, excited-state decay. J Phys Chem 87:952–957

    Article  CAS  Google Scholar 

  16. Sacksteder LA, Zipp AP, Brown EA, Streich J, Demas JN, DeGraff BA (1990) Luminescence studies of pyridine α-diimine rhenium(I) tricarbonyl complexes. Inorg Chem 29:4335–4340

    Article  CAS  Google Scholar 

  17. Lees AJ (1987) Luminescence properties of organometallic complexes. Chem Rev 87:711–743

    Article  CAS  Google Scholar 

  18. Miskowski VM, Houlding VH (1989) Electronic spectra and photophysics of platinum(II) complexes with α-diimine ligands. Solid-state effects. 1. Monomers and ligand π dimers. Inorg Chem 28:1529–1533

    Article  CAS  Google Scholar 

  19. Houlding VH, Miskowski VM (1991) The effect of linear chain structure on the electronic structure of Pt(II) diimine complexes. Coord Chem Rev 111:145–152

    Article  CAS  Google Scholar 

  20. Miskowski VM, Houlding VH (1991) Electronic spectra and photophysics of platinum(II) complexes with α-diimine ligands. Solid-state effects. 2. Metal–metal interaction in double salts and linear chains. Inorg Chem 30:4446–4452

    Article  CAS  Google Scholar 

  21. Herber RH, Croft M, Coyer MJ, Bilash B, Sahiner A (1994) Origin of polychromism of cis square-planar platinum(II) complexes: comparison of two forms of [Pt(2,2′-bpy)(Cl)2]. Inorg Chem 33:2422–2426

    Article  CAS  Google Scholar 

  22. Connick WB, Marsh RE, Schaefer WP, Gray HB (1997) Linear-chain structures of platinum(II) diimine complexes. Inorg Chem 36:913–922

    Article  CAS  Google Scholar 

  23. Jennette KW, Gill JT, Sadownick JA, Lippard SJ (1976) Metallointercalation reagents. Synthesis, characterization, and structural properties of thiolato(2,2′,2″-terpyridine)platinum(II) complexes. J Am Chem Soc 98:6159–6168

    Article  CAS  Google Scholar 

  24. Yip HK, Cheng LK, Cheung KK, Che CM (1993) Luminescent platinum(II) complexes. Electronic spectroscopy of platinum(II) complexes of 2,2′:6′,2″-terpyridine (terpy) and p-substituted phenylterpyridines and crystal structure of [Pt(terpy)Cl][CF3SO3]. J Chem Soc Dalton Trans 2933–2938

    Google Scholar 

  25. Bailey JA, Hill MG, Marsh RE, Miskowski VM, Schaefer WP, Gray HB (1995) Electronic spectroscopy of chloro(terpyridine)platinum(II). Inorg Chem 34:4591–4599

    Article  CAS  Google Scholar 

  26. Connick WB, Henling LM, Marsh RE, Gray HB (1996) Emission spectroscopic properties of the red form of dichloro(2,2′-bipyridine)platinum(II). Role of intermolecular stacking interactions. Inorg Chem 35:6261–6265

    Article  CAS  Google Scholar 

  27. Büchner R, Field JS, Haines RJ, Cunningham CT, McMillin DR (1997) Luminescence properties of salts of the [Pt(trpy)Cl]+ and [Pt(trpy)(MeCN)]2+ chromophores: crystal structure of [Pt(trpy)(MeCN)](SbF6)2. Inorg Chem 36:3952–3956

    Article  Google Scholar 

  28. Büchner R, Cunningham CT, Field JS, Haines RJ, McMillin DR, Summerton GC (1999) Luminescence properties of salts of the [Pt(4′Ph-terpy)Cl]+ chromophore: crystal structure of the red form of [Pt(4′Ph-terpy)Cl]BF4 (4′Ph-terpy =4′-phenyl-2,2′:6′,2″-terpyridine). J Chem Soc Dalton Trans 711–717

    Google Scholar 

  29. Wadas TJ, Wang QM, Kim YJ, Flaschenreim C, Blanton TN, Eisenberg R (2004) Vapochromism and its structural basis in a luminescent Pt(II) terpyridine–nicotinamide complex. J Am Chem Soc 126:16841–16849

    Article  CAS  Google Scholar 

  30. Kunkely H, Vogler A (1990) Photoluminescence of [PtII(4,7-diphenyl-1,10-phenanthroline)(CN)2] in solution. J Am Chem Soc 112:5625–5627

    Article  CAS  Google Scholar 

  31. Jennette KW, Lippard SJ, Vassiliades GA, Bauer WR (1974) Metallointercalation reagents. 2-Hydroxyethanethiolato(2,2′,2″-terpyridine)platinum(II) monocation binds strongly to DNA by intercalation. Proc Natl Acad Sci U S A 71:3839–3843

    Article  CAS  Google Scholar 

  32. Hill MG, Bailey JA, Miskowski VM, Gray HB (1996) Spectroelectrochemistry and dimerization equilibria of chloro(terpyridine)platinum(II). Nature of the reduced complexes. Inorg Chem 35:4585–4590

    Article  CAS  Google Scholar 

  33. Crites DK, Cunningham CT, McMillin DR (1998) Remarkable substituent effects on the photophysics of Pt(4′-X-trpy)Cl+ systems (trpy =2,2′:6′,2″-terpyridine). Inorg Chim Acta 273:346–353

    Article  CAS  Google Scholar 

  34. Yam VWW, Tang RPL, Wong KMC, Cheung KK (2001) Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes. Organometallics 20:4476–4482

    Article  CAS  Google Scholar 

  35. Wong KMC, Yam VWW (2007) Luminescence platinum(II) terpyridyl complexes – From fundamental studies to sensory functions. Coord Chem Rev 251:2477–2488

    Article  CAS  Google Scholar 

  36. Yam VWW, Wong KMC, Zhu N (2002) Solvent-induced aggregation through metal⋅⋅⋅metal/π⋅⋅⋅π interactions: large solvatochromism of luminescent organoplatinum(II) terpyridyl complexes. J Am Chem Soc 124:6506–6507

    Article  CAS  Google Scholar 

  37. Wong KMC, Yam VWW (2011) Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. Acc Chem Res 44:424–434

    Article  CAS  Google Scholar 

  38. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  39. Pedersen CJ, Frensdorff HK (1972) Macrocyclic polyethers and their complexes. Angew Chem Int Ed 11:16–25

    Article  CAS  Google Scholar 

  40. Frensdorff HK (1971) Salt complexes of cyclic polyethers. Distribution equilibriums. J Am Chem Soc 93:4684–4688

    Article  CAS  Google Scholar 

  41. Patai S, Rappoport Z (1989) Crown ethers and analogs. Wiley, Chichester

    Google Scholar 

  42. Tang WS, Lu XX, Wong KMC, Yam VWW (2005) Synthesis, photophysics and binding studies of Pt(II) alkynyl terpyridine complexes with crown ether pendant. Potential luminescent sensors for metal ions. J Mater Chem 15:2714–2720

    Article  CAS  Google Scholar 

  43. Gutsche CD (1989) Calixarenes: monographs in supramolecular chemistry. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  44. Böhmer V (1995) Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed 34:713–745

    Article  Google Scholar 

  45. Lo HS, Yip SK, Wong KMC, Zhu N, Yam VWW (2006) Selective luminescence chemosensing of potassium ions based on a novel platinum(II) alkynylcalix[4]crown-5 complex. Organometallics 25:3537–3540

    Article  CAS  Google Scholar 

  46. Li MJ, Chu BWK, Zhu N, Yam VWW (2007) Synthesis, structure, photophysics, electrochemistry, and ion-binding studies of ruthenium(II) 1,10-phenanthroline complexes containing thia-, selena-, and aza-crown pendants. Inorg Chem 46:720–733

    Article  CAS  Google Scholar 

  47. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  Google Scholar 

  48. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638

    Article  CAS  Google Scholar 

  49. Wang S, Gaylord BS, Bazan GC (2004) Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. J Am Chem Soc 126:5446–5451

    Article  CAS  Google Scholar 

  50. Ono A, Togashi H (2004) Highly selective oilgonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302

    Article  CAS  Google Scholar 

  51. He F, Tang Y, Wang S, Li Y, Zhu D (2005) Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. J Am Chem Soc 127:12343–12346

    Article  CAS  Google Scholar 

  52. Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107:3780–3799

    Article  CAS  Google Scholar 

  53. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  54. Li MJ, Kwok WM, Lam WH, Tao CH, Yam VWW, Phillips DL (2009) Synthesis of coumarin-appended pyridyl tricarbonylrhenium(I) 2,2′-bipyridyl complexes with oligoether spacer and their fluorescence resonance energy transfer studies. Organometallics 28:1620–1630

    Article  CAS  Google Scholar 

  55. Yam VWW, Song HO, Chan STW, Zhu N, Tao CH, Wong KMC, Wu LX (2009) Synthesis, characterization, ion-binding properties, and fluorescence resonance energy transfer behavior of rhenium(I) complexes containing a coumarin-appended 2,2′-bipyridine. J Phys Chem C 113:11674–11682

    Article  CAS  Google Scholar 

  56. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  57. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  CAS  Google Scholar 

  58. Leung FCM, Tam AYY, Au VKM, Li MJ, Yam VWW (2014) Förster resonance energy transfer studies of luminescent gold nanoparticles functionalized with ruthenium(II) and rhenium(I) complexes: modulation via esterase hydrolysis. ACS Appl Mater Interfaces 6:6644–6653

    Article  CAS  Google Scholar 

  59. Wong KMC, Tang WS, Lu XX, Zhu N, Yam VWW (2005) Functionalized platinum(II) terpyridyl alkynyl complexes as colorimetric and luminescence pH sensors. Inorg Chem 44:1492–1498

    Article  CAS  Google Scholar 

  60. Chung CYS, Li SPY, Louie MW, Lo KKW, Yam VWW (2013) Induced self-assembly and disassembly of water-soluble alkynylplatinum(II) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem Sci 4:2453–2462

    Article  CAS  Google Scholar 

  61. Wong KMC, Tang WS, Chu BWK, Zhu N, Yam VWW (2004) Synthesis, photophysical properties, and biomolecular labeling studies of luminescent platinum(II)-terpyridyl alkynyl complexes. Organometallics 23:3459–3465

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the University Grants Committee Areas of Excellence Scheme (AoE/P-03/08), General Research Fund (GRF) (HKU 7064/11P and 7051/13P), and Collaborative Research Fund (CRF) (HKUST2/CRF/10) from the Research Grants Council of Hong Kong Special Administrative Region, China, and The University of Hong Kong are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Wing-Wah Yam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeung, M.CL., Yam, V.WW. (2014). Molecular Design of Novel Classes of Luminescent Transition Metal Complexes and Their Use in Sensing, Biolabeling, and Cell Imaging. In: Lo, KW. (eds) Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents. Structure and Bonding, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_172

Download citation

Publish with us

Policies and ethics