Skip to main content

Diversity in Hearing in Fishes: Ecoacoustical, Communicative, and Developmental Constraints

  • Chapter
  • First Online:
Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Fishes evolved a large diversity of hearing sensitivities. This diversity is linked mainly to differences in the way the inner ear is connected to gas-filled cavities such as the swim bladder. A close connection via accessory hearing structures such as Weberian ossicles results in higher auditory sensitivity or an expansion of the detectable frequency range or in both.

Hearing enhancements might be related to the detection of conspecific vocalizations. However, a comparison of hearing abilities in fish with and without accessory hearing structures does not support this notion. Fish can possess enhanced hearing abilities independently of their ability to produce sounds and communicate acoustically.

Differences of the ambient noise regimes of aquatic habitats seem to be a more likely explanation for the diversity in hearing abilities. Low ambient noise levels most likely facilitated the evolution of accessory hearing structures, allowing fish to detect low level abiotic and biotic sounds emanating from con- and heterospecifics, including predators and prey items. The “ecoacoustical constraints hypothesis” postulates that the fish’s hearing sensitivity is adapted to the ambient noise in their habitat.

Fishes show major changes in hearing during ontogenetic development. In several nonrelated taxa an improvement in sensitivity within the first weeks of life was described. In others an expansion of the detectable frequency range or even no change at all have been observed. The ontogenetic changes in sensitivity do not seem to correlate to the changes in sound production and thus do not facilitate acoustic communication during ontogenetic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderks, P. W., & Sisneros, J. A. (2011). Ontogeny of auditory saccular sensitivity in the plainfin midshipman fish, Porichthys notatus. Journal of Comparative Physiology A, 197, 387–398.

    Article  Google Scholar 

  • Amoser, S., & Ladich, F. (2005). Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats? Journal of Experimental Biology, 208, 3533–3542.

    Article  PubMed  Google Scholar 

  • Amoser, S., & Ladich, F. (2010). Year-round variability of ambient noise in temperate freshwater habitats and its implications for fishes. Aquatic Sciences, 72, 371–378.

    Article  PubMed Central  PubMed  Google Scholar 

  • Belanger, A. J., Bobeica, I., & Higgs, D. M. (2010). The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus. Journal of Fish Biology, 77, 1488–1504.

    Article  CAS  PubMed  Google Scholar 

  • Blaxter, J. H. S., Denton, E. J., & Gray, J. A. B. (1981). Acousticolateralis system in clupeid fishes. In W. N. Tavolga, A. N. Popper & R. R. Fay (Eds.), Hearing and sound communication in fishes (pp. 39–56). New York: Springer.

    Chapter  Google Scholar 

  • Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of animal communication. Sunderland, MA: Sinauer.

    Google Scholar 

  • Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication. 2nd edition. Sunderland, MA: Sinauer.

    Google Scholar 

  • Braun, C. B., & Grande, T. (2008). Evolution of peripheral mechanisms for the enhancement of sound reception. In J. F. Webb, A. N. Popper & R. R. Fay (Eds.), Fish bioacoustics (pp. 99–144). New York: Springer.

    Chapter  Google Scholar 

  • Bridge, T. W., & Haddon, A. C. (1889). Contribution to the anatomy of fishes. I. The airbladder and Weberian ossicles in the Siluridae. Proceedings of the Royal Society London, 46, 209–227.

    Google Scholar 

  • Canfield, J. G., & Eaton, R. C. (1990). Swimbladder acoustic pressure transduction initiates Mauthner-mediated escape. Nature, 347, 760–762.

    Article  Google Scholar 

  • Canfield, J. G., & Rose, G. J. (1996). Hierarchical sensory guidance of Mauthner-mediated escape response in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni). Brain, Behavior and Evolution, 48, 137–156.

    Google Scholar 

  • Chapman, C. J. (1973). Field studies of hearing in teleost fish. Helgoländer wissenschaftliche Meeresuntersuchungen, 24, 371–390.

    Article  Google Scholar 

  • Chapman, C. J., & Hawkins, A. D. (1973). A field study of hearing in the cod, Gadus morhua L. Journal of Comparative Physiology A, 85, 147–167.

    Google Scholar 

  • Codarin, A., Wysocki, L. E., Ladich, F., & Picciulin, M. (2009). Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Marine Pollution Bulletin, 58, 1880–1887.

    Google Scholar 

  • Coombs, S., & Popper, A. N. (1979). Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. Journal of Comparative Physiology, 132, 203–207.

    Article  Google Scholar 

  • Coombs, S., & Popper, A. N. (1982). Structure and function of the auditory system in the clown knifefish Notopterus chitala. Journal of Experimental Biology, 97, 225–239.

    Google Scholar 

  • Egner, S. A., & Mann, D. A. (2005). Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Marine Ecology Progress Series, 285, 213–222.

    Article  Google Scholar 

  • Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay, R. R. (2009). Soundscapes and the sense of hearing in fishes. Integrative Zoology, 4, 26–32.

    Article  PubMed  Google Scholar 

  • Fay, R. R., & Popper, A. N. (1974). Acoustic stimulation of the ear of the goldfish (Carassius auratus). Journal of Experimental Biology, 61, 243–260.

    CAS  PubMed  Google Scholar 

  • Fletcher, L. B., & Crawford, J. D. (2001). Acoustic detection by sound-producing fishes (Mormyridae): The role of gas-filled tympanic bladders. Journal of Experimental Biology, 204, 175–183.

    CAS  PubMed  Google Scholar 

  • Hawkins, A. D. (1981). The hearing abilities of fish. In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and sound communication in fishes (pp. 109–133). New York: Springer.

    Chapter  Google Scholar 

  • Hawkins, A. D. (1993). Underwater sound and fish behaviour. In T. J. Pitcher (Ed.), Behaviour of teleost fishes (pp. 129–169). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Henglmüller, S. M., & Ladich, F. (1999). Development of agonistic behaviour and vocalization in croaking gourami. Journal of Fish Biology, 54, 380–395.

    Article  Google Scholar 

  • Higgs, D. M., Rollo, A. K., Souza, M. J., & Popper, A. N. (2003). Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). Journal of the Acoustical Society of America, 113, 1145–1154.

    Article  PubMed  Google Scholar 

  • Higgs, D. M., Plachta, D. T. T., Rollo, A. K., Singheiser, M., Hastings, M. C., & Popper, A.N. (2004). Development of ultrasound detection in American shad (Alosa sapidissima). Journal of Experimental Biology, 207, 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Iwashita, A., Sakamoto, M., Kojima, T., Watanabe, Y., & Soeda, H. (1999). Growth effects on the auditory threshold of red sea bream. Nippon Suisan Gakkaishi, 65, 833–838.

    Article  Google Scholar 

  • Kennedy, E. V., Holderied, M. W., Mair, J. M., Guzman, H. M., & Simpson, S. D. (2010). Spatial patterns in reef-generated noise relate to habitats and communities: Evidence from a Panamanian case study. Journal of Experimental Marine Biology and Ecology, 395, 85–92.

    Article  Google Scholar 

  • Kenyon, T. N. (1996). Ontogenetic changes in the auditory sensitivity of damselfishes (Pomacentridae). Journal of Comparative Physiology, 179, 553–561.

    Article  Google Scholar 

  • Kenyon, T. N., Ladich, F., & Yan, H. Y. (1998). A comparative study of hearing ability in fishes: The auditory brainstem response approach. Journal of Comparative Physiology A, 182, 307–318.

    Article  CAS  Google Scholar 

  • Kleerekoper, H., & Roggenkamp, P. A. (1959). An experimental study on the effect of the swimbladder on hearing sensitivity in Ameiurus nebulosus (Lesueur). Canadian Journal of Zoology, 37, 1–8.

    Google Scholar 

  • Ladich, F. (1999). Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain, Behaviour and Evolution, 53, 288–304.

    Google Scholar 

  • Ladich, F. (2000). Acoustic communication and the evolution of hearing in fishes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 355, 1285–1288.

    Article  CAS  PubMed  Google Scholar 

  • Ladich, F. (2007). Females whisper briefly during sex: Context- and sex-specific differences in sounds made by croaking gouramis. Animal Behaviour, 73, 379–387.

    Article  Google Scholar 

  • Ladich, F., & Yan, H. Y. (1998). Correlation between auditory sensitivity and vocalization in anabantoid fishes. Journal of Comparative Physiology A, 182, 737–746.

    Article  CAS  Google Scholar 

  • Ladich, F., & Wysocki, L. E. (2003). How does tripus extirpation affect auditory sensitivity in goldfish? Hearing Research, 182, 119–129.

    Article  PubMed  Google Scholar 

  • Ladich, F., & Popper, A. N. (2004). Parallel evolution in fish hearing organs. In G. Manley, R. R. Fay, & A. N. Popper (Eds.), Evolution of the vertebrate auditory system (pp. 95–127). New York: Springer.

    Chapter  Google Scholar 

  • Ladich, F., & Bass, A.H. (2005). Sonic motor pathways in piranhas with a reassessment of phylogenetic patterns of sonic mechanisms among teleosts. Brain, Behavior and Evolution, 66, 167–176.

    Google Scholar 

  • Ladich, F., & Fine, M. L. (2006). Sound-generating mechanisms in fishes: A unique diversity in vertebrates. In F. Ladich, S. P. Collin, P. Moller. & B. G. Kapoor (Eds.), Communication in fishes (pp. 3–43). Enfield, NH: Science Publishers.

    Google Scholar 

  • Ladich, F., & Wysocki, L. E. (2009). Does speaker presentation affect auditory evoked potential thresholds in goldfish? Comparative Biochemistry and Physiology A, 154, 341–346.

    Article  Google Scholar 

  • Ladich, F., & Bass, A. H. (2011). Vocal behavior of fishes: Anatomy and physiology. In A. P. Farrell (Ed.), Encyclopedia of fish physiology: From genome to environment (Vol. 1, pp. 321–329). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Ladich, F., & Fay, R. R. (2013). Auditory evoked potential audiometry in fish. Reviews in Fish Biology and Fisheries, 23, 317–364.

    Article  Google Scholar 

  • Laming, P. R., & Morrow, G. (1981). The contribution of the swimbladder to audition in the roach (Rutilus rutilus). Comparative Biochemistry and Physiology A, 69, 537–541.

    Article  Google Scholar 

  • Lechner, W., & Ladich, F. (2008). Size matters: Diversity in swimbladders and Weberian ossicles affects hearing in catfishes. Journal of Experimental Biology, 211, 1681–1689.

    Article  PubMed  Google Scholar 

  • Lechner, W., & Ladich, F. (2011). How do albino fish hear? Journal of Zoology, 283, 186– 192.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lechner, W., Wysocki, L. E., & Ladich, F. (2010). Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni. BMC Biology, 8, 10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lechner, W., Heiss, E., Schwaha, T., Glösmann, M., & Ladich, F. (2011). Ontogenetic development of Weberian ossicles and hearing abilities in the African bullhead catfish. Plos One 6/4, e18511.

    Google Scholar 

  • Lugli, M. (2010). Sound of shallow water fishes pitch within the quiet window of the habitat noise. Journal of Comparative Physiology A, 196, 439–451.

    Article  Google Scholar 

  • Lugli, M., & Fine, M. L. (2003). Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams. Journal of the Acoustical Society of America, 114, 512–521.

    Article  CAS  PubMed  Google Scholar 

  • Lugli. M., & Fine, M. L. (2007). Stream ambient noise, spectrum and propagation of sounds in goby Padogobius martensii: sound pressure and particle velocity. Journal of the Acoustical Society of America, 122, 2881–2892.

    Google Scholar 

  • Mann, D. A., Popper, A. N., & Wilson, B. (2005), Pacific herring hearing: Does not include ultrasound. Biological Letters, 1, 158–161.

    Article  Google Scholar 

  • Markl, H. (1972). Aggression und Beuteverhalten bei Piranhas (Serrasalminae, Characidae). Zeitschrift für Tierpsychologie, 30, 190–216.

    CAS  PubMed  Google Scholar 

  • Maruska, K. P., Boyle, K. S., Dewan, L. R., & Tricas, T. G. (2007). Sound production and spectral hearing sensitivity in the Hawaiian sergeant damselfish, Abudefduf abdominalis. Journal of Experimental Biology, 210, 3990–4000.

    Article  PubMed  Google Scholar 

  • McCormick, C. A., & Popper, A. N. (1984). Auditory sensitivity and psychophysical tuning curves in the elephantnose fish, Gnathonemus petersii. Journal of Comparative Physiology A, 155, 753–761.

    Article  Google Scholar 

  • Myrberg, A. A., & Spires, J. Y. (1980). Hearing in damselfishes: An analysis of signal detection among closely related species. Journal of Comparative Physiology A, 140, 135–144.

    Article  Google Scholar 

  • Nelson, J. S. (2006). Fishes of the world (3rd ed). New York: John Wiley & Sons.

    Google Scholar 

  • Parker, G. H. (1903). Hearing and allied senses in fishes. Bulletin of the United States Fish Commission, 1902, 45–64.

    Google Scholar 

  • Parker, G. H. (1918). A critical survey of the sense of hearing in fishes. Proceedings of the American Philosophical Society, 57(2), 69–98.

    Google Scholar 

  • Parmentier, E., Mann, K., & Mann, D. (2011). Hearing and morphological specializations of the mojarra (Eucinostomus argenteus). The Journal of Experimental Biology, 214, 2697–2701.

    Article  PubMed  Google Scholar 

  • Poggendorf, D. (1952). Die absolute Hörschwelle des Zwergwelses (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Zeitschrift für vergleichende Physiologie, 34, 222–257.

    Article  Google Scholar 

  • Popper, A. N. (1971). The effects of size on auditory capacities of the goldfish. Journal of Auditory Research, 11, 239–247.

    Google Scholar 

  • Popper, A. N., & Fay, R. R. (1999). The auditory periphery in fishes. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 43–100). New York: Springer.

    Chapter  Google Scholar 

  • Popper, A. N., & Schilt, C. R. (2008). Hearing and acoustic behavior: Basic and applied considerations. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.), Fish bioacoustics (pp. 17–48). New York: Springer.

    Chapter  Google Scholar 

  • Popper, A. N., & Fay R. R. (2011). Rethinking sound detection by fishes. Hearing Research, 273, 25–36.

    Article  PubMed  Google Scholar 

  • Radford, C. A., Stanley, J. A., Simpson, S. D., & Jeffs, A. G. (2011). Juvenile coral reef fish use sound to locate habitats. Coral Reefs, 30, 295–305.

    Article  Google Scholar 

  • Ramcharitar, J. U., Higgs, D. M., & Popper, A. N. (2006). Audition in sciaenid fishes with different swim bladder-inner ear configurations. Journal of the Acoustical Society of America, 119, 439–443.

    Article  PubMed  Google Scholar 

  • Richardson, W. J., Greene, C. R., Malme, C. J., & Thomson, D. H. (1995). Marine mammals and noise. San Diego: Academic Press.

    Google Scholar 

  • Rogers, P. H., & Cox, H. (1988). Underwater sound as a biological stimulus. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 131–149). New York: Springer.

    Chapter  Google Scholar 

  • Romer, A. S., & Parsons, T. S. (1983). Vergleichende Anatomie der Wirbeltiere. Hamburg: Paul Parey.

    Google Scholar 

  • Sand, O., & Enger, P. S. (1973). Evidence for an auditory function of the swimbladder in the cod. Journal of Experimental Biology, 59, 405–414.

    CAS  PubMed  Google Scholar 

  • Schellart, N. A. M., & Popper, A. N. (1992). Functional aspects of the evolution of the auditory system of actinopterygian fish. In D. E. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 295–322). New York: Springer.

    Chapter  Google Scholar 

  • Schneider, H. (1941). Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen. Zeitschrift für Vergleichende Physiologie, 29, 172–194.

    Google Scholar 

  • Schulz-Mirbach, T., Ladich, F., Riesch, F., & Plath, M. (2010). Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae). Hearing Research, 267, 137–148.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz-Mirbach, T., Metscher, B., & Ladich, F. (2012). Relationship between swim bladder morphology and hearing abilities: A case study on Asian and African cichlids. PloS ONE 7, e42292.

    Google Scholar 

  • Simpson, S. D., Meekan, M. G., Jeffs, A., Montgomery, J. C., & McCauley, R. D. (2008). Settlement-stage coral reef fish prefer the higher frequency invertebrate-generated audible component of reef noise. Animal Behaviour, 75, 1861–1868.

    Article  Google Scholar 

  • Sisneros, J. A., & Bass, A. H. (2005). Ontogenetic changes in the response properties of individual, primary auditory afferents in the vocal plainfin midshipman Porichthys notatus. Journal of Experimental Biology, 208, 3121–3131.

    Article  PubMed  Google Scholar 

  • Sörensen, W. (1895). Are the extrinsic muscles of the air-bladder in some Siluroidae and the “elastic spring” apparatus of others subordinate to the voluntary production of sounds? II. What is, according to our present knowledge, the function of the Weberian ossicles? Journal of Anatomy and Physiology, 399–423.

    Google Scholar 

  • Speares, P., Holt, D., & Johnston, C. (2011). The relationship between ambient noise and dominant frequency of vocalization in two species of darters (Percidae: Etheostoma). Environmental Biology of Fishes, 90, 103–110.

    Article  Google Scholar 

  • Spindler, T. (1997). Fischfauna in Österreich. Ökologie – Gefährdung – Bioindikation –Fischerei – Gesetzgebung (Fishfauna of Austria. Ecology – Endangerment – Bioindication – Fisheries – Legislation) Vienna. Umweltbundesamt Monographien [Federal Environment Agency Monographs), 87, 140 pp.

    Google Scholar 

  • Steinberg, R. (1957). Unterwassergeräusche und Fischerei. Protokolle zur Fischereitechnik, 4, 216–249.

    Google Scholar 

  • Stetter, H. (1929). Untersuchungen über den Gehörsinn der Fische, besonders von Phoxinus laevis L. und Amiurus nebulosus Raf. Zeitschrift für Vergleichende Physiologie, 339– 477.

    Google Scholar 

  • Stipetić, E. (1939). Über das Gehörorgan der Mormyriden. Zeitschrift für Vergleichende Physiologie, 26, 740–752.

    Article  Google Scholar 

  • Tavolga, W. N. (1971). Sound production and detection. In W. S. Hoar & D. J. Randall (Eds.), Fish physiology, Vol. 5: Sensory systems and electric organs (pp. 135–205). New York: Academic Press.

    Google Scholar 

  • Tavolga, W. N., & Wodinsky, J. (1963). Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bulletin of the American Museum of Natural History, 126 (Article 2), 177–240.

    Google Scholar 

  • Tolimieri, N., Haine, O., Jeffs, A., McCauley, R., & Montgomery, J. (2004). Directional orientation of pomacentrid larvae to ambient reef sound. Coral Reefs, 23, 184–191.

    Article  Google Scholar 

  • Tolimieri. N., Jeffs, A., & Montgomery, J.C. (2000). Ambient sound as a cue for navigation by the pelagic larvae of reef fishes. Marine Ecology Progress Series 207, 219–224.

    Google Scholar 

  • Tonolla, D., Lorang, M. S., Heutschi, K., & Tockner, K. (2009). A flume experiment to examine underwater sound generation by flowing water. Aquatic Sciences, 71, 449– 462.

    Article  Google Scholar 

  • Urick, R. J. (1983). The noise background of the sea: Ambient noise. In Principles of underwater sound (pp. 202–236).Los Altos, CA: Peninsula Publishing.

    Google Scholar 

  • Vasconcelos, R. O., & Ladich, F. (2008). Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. Journal of Experimental Biology, 211, 502–509.

    Article  PubMed  Google Scholar 

  • Vasconcelos, R. O., Amorim, M. C. P., & Ladich, F. (2007). Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. Journal of Experimental Biology, 210, 2104–2112.

    Article  PubMed  Google Scholar 

  • Von Frisch, K. (1923). Ein Zwergwels, der kommt, wenn man ihm pfeift. Biologisches Zentralblatt, 439–446.

    Google Scholar 

  • Von Frisch, K. (1936). Über den Gehörsinn der Fische. Biological Reviews, 210–246.

    Google Scholar 

  • Von Frisch, K. (1938). The sense of hearing in fish. Nature, 141, 8–11.

    Article  Google Scholar 

  • Von Frisch, K., & Stetter, H. (1932). Untersuchungen über den Sitz des Gehörsinnes bei der Elritze. Zeitschrift für Vergleichende Physiologie, 687–801.

    Google Scholar 

  • Webb, J. F., Walsh, R. M., Casper, B. M., Mann, D. A., Kelly, N., & Cicchino, N. (2012). Development of the ear, hearing capabilities and laterophysic connection in the spotfin butterflyfish (Chaetodon ocellatus). Environmental Biology of Fishes, 95, 275–290.

    Article  Google Scholar 

  • Weber, E. H. (1820). De aure et auditu hominis et animalium. Part I. De aure animalium aquatilium. Lipsiae: Apud Gerhardum Fleischerum.

    Google Scholar 

  • Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. Journal of the Acoustical Society of America, 34, 1936–1956.

    Article  Google Scholar 

  • Wilson, M., Montie, E. W., Mann, K. A., & Mann, D. A. (2009). Ultrasound detection in the gulf menhaden requires gas-filled bullae and an intact lateral line. Journal of Experimental Biology, 212, 3422–3427.

    Article  PubMed  Google Scholar 

  • Wolff, D. L. (1966). Akustische Untersuchungen zur Klapperfischerei und verwandter Methoden. Zeitschrift für Fischerei und deren Hilfswissenschaften, 14, 277–315.

    Google Scholar 

  • Wright, K. J., Higgs, D. M., & Leis, J. M. (2011). Ontogenetic and interspecific variation in hearing ability in marine fish larvae. Marine Ecology Progress Series, 424, 1–13.

    Article  Google Scholar 

  • Wysocki, L. E., & Ladich, F. (2001). The ontogenetic development of auditory sensitivity, vocalization and acoustic communication in the labyrinth fish Trichopsis vittata. Journal of Comparative Physiology A, 187, 177–187.

    Article  CAS  Google Scholar 

  • Wysocki, L. E., Amoser, S., & Ladich, F. (2007). Diversity in ambient noise in European freshwater habitats: Noise levels, spectral profiles, and impact on fishes. Journal of the Acoustical Society of America, 121, 2559–2566.

    Article  PubMed  Google Scholar 

  • Wysocki, L. E., Codarin, A., Ladich, F., & Picciulin, M. (2009). Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea. Journal of the Acoustical Society of America, 126, 2100–2107.

    Article  PubMed  Google Scholar 

  • Yan, H. Y. (1998). Auditory role of the suprabranchial chamber in gourami fish. Journal of Comparative Physiology A, 183, 325–333.

    Article  CAS  Google Scholar 

  • Yan, H. Y., & Curtsinger, W. S. (2000). The otic gasbladder as an ancillary structure in a mormyrid fish. Journal of Comparative Physiology A, 186, 595–600.

    Article  CAS  Google Scholar 

  • Yan, H. Y., Fine, M. L., Horn, H. S., & Colon, W. E. (2000). Variability in the role of the gasbladder in fish audition. Journal of Comparative Physiology A, 186, 435–445.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author was supported by the Austrian Science Fund (FWF grant 22319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Ladich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ladich, F. (2013). Diversity in Hearing in Fishes: Ecoacoustical, Communicative, and Developmental Constraints. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_26

Download citation

Publish with us

Policies and ethics