Skip to main content

Navigation Techniques for MRI-Guided Interventions

  • Chapter
Interventional Magnetic Resonance Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2097 Accesses

Abstract

Medical navigation is the process of locating and controlling the movement of medical instruments both inside and outside the patient’s body. Since the inception of intraoperative MRI in the mid-1990s, navigation systems for MRI-guided procedures have been shown to substantially assist with proper trajectory planning, safe instrument manipulation inside the body, and accurate targeting of focal regions. Most MRI navigation systems have been described for percutaneous procedures with clinical applications in nearly all regions of the body. This chapter presents some fundamental concepts, provides a brief history of MRI-based navigation, and then highlights some of the early, current, and emerging techniques and implementations. Specific advantages and limitations of navigation solutions for different interventional settings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Augmented reality

CT:

Computer tomography

LCD:

Liquid crystal display

MR:

Magnetic resonance

OR:

Operating room

RF:

Radiofrequency

RFID:

Radiofrequency identification

US:

Ultrasonography

References

  • Abe H, Kurumi Y, Naka S et al (2005) Open-configuration MR-guided microwave thermocoagulation therapy for metastatic liver tumors from breast cancer. Breast Cancer 12:26–31

    Article  PubMed  Google Scholar 

  • Albert FK, Forsting M, Sartor K et al (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60; discussion 60–61

    Google Scholar 

  • Alexander E 3rd, Moriarty TM, Kikinis R et al (1997) The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact Funct Neurosurg 68:10–17

    Article  PubMed  Google Scholar 

  • Beyersdorff D, Winkel A, Hamm B et al (2005) MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 234:576–581

    Article  PubMed  Google Scholar 

  • Black PM, Alexander E 3rd, Martin C et al (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45:423–431; discussion 431–433

    Google Scholar 

  • Bock M, Volz S, ZĂ¼hlsdorff S et al (2004) MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils. J Magn Reson Imaging 19:580–589

    Article  PubMed  Google Scholar 

  • Bock M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27:326–338

    Article  PubMed  Google Scholar 

  • Bohinski RJ, Warnick RE, Gaskill-Shipley MF et al (2001) Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery 49:1133–1143; discussion 1143–1144

    Google Scholar 

  • Boss A, Rempp H, Martirosian P et al (2008) Wide-bore 1.5 tesla MR imagers for guidance and monitoring of radiofrequency ablation of renal cell carcinoma: initial experience on feasibility. Eur Radiol 18:1449–1455

    Article  PubMed  Google Scholar 

  • Busse H, Schmitgen A, Trantakis C et al (2006) Advanced approach for intraoperative MRI guidance and potential benefit for neurosurgical applications. J Magn Reson Imaging 24:140–151

    Article  PubMed  Google Scholar 

  • Busse H, Trampel R, GrĂ¼nder W et al (2007) Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures. J Magn Reson Imaging 26:1087–1096

    Article  PubMed  Google Scholar 

  • Busse H, Garnov N, Thörmer G et al (2010) Flexible add-on solution for MR image-guided interventions in a closed-bore scanner environment. Magn Reson Med 64:922–928

    Article  PubMed  Google Scholar 

  • Chappelow J, Bloch BN, Rofsky N et al (2011) Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information. Med Phys 38:2005–2018

    Article  PubMed  Google Scholar 

  • Coutts GA, Gilderdale DJ, Chui M et al (1998) Integrated and interactive position tracking and imaging of interventional tools and internal devices using small fiducial receiver coils. Magn Reson Med 40:908–913

    Article  PubMed  CAS  Google Scholar 

  • DiMaio SP, Samset E, Fischer G et al (2007) Dynamic MRI scan plane control for passive tracking of instruments and devices. Med Image Comput Comput Assist Interv 10:50–58

    PubMed  CAS  Google Scholar 

  • Elhawary H, Liu H, Patel P et al (2011) Intraoperative real-time querying of white matter tracts during frameless stereotactic neuronavigation. Neurosurgery 68:506–516; discussion 516

    Google Scholar 

  • Engelhard K, Hollenbach HP, Kiefer B et al (2006) Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur Radiol 16:1237–1243

    Article  PubMed  CAS  Google Scholar 

  • Fiedler VU, Schwarzmaier HJ, Eickmeyer F et al (2001) Laser-induced interstitial thermotherapy of liver metastases in an interventional 0.5 tesla MRI system: technique and first clinical experiences. J Magn Reson Imaging 13:729–737

    Article  PubMed  CAS  Google Scholar 

  • Fischbach F, Bunke J, Thormann M et al (2011a) MR-guided freehand biopsy of liver lesions with fast continuous imaging using a 1.0-T open MRI scanner: experience in 50 patients. Cardiovasc Intervent Radiol 34:188–192

    Google Scholar 

  • Fischbach F, Porsch M, Krenzien F et al (2011b) MR imaging guided percutaneous nephrostomy using a 1.0 tesla open MR scanner. Cardiovasc Intervent Radiol 34:857–863

    Google Scholar 

  • Fischer GS, Deguet A, Schlattman D et al (2006) MRI image overlay: applications to arthrography needle insertion. Stud Health Technol Inform 119:150–155

    PubMed  Google Scholar 

  • Flask C, Elgort D, Wong E et al (2001) A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR-FISP) sequence. J Magn Reson Imaging 14:617–627

    Article  PubMed  CAS  Google Scholar 

  • Garnov N, Thörmer G, Trampel R et al (2011) Suitability of miniature inductively coupled RF coils as MR visible markers for clinical purposes. Med Phys 38:6327–6335

    Article  PubMed  Google Scholar 

  • Gering DT, Nabavi A, Kikinis R et al (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13:967–975

    Article  PubMed  CAS  Google Scholar 

  • Gossmann A, Bangard C, Warm M et al (2008) Real-time MR-guided wire localization of breast lesions by using an open 1.0-T imager: initial experience. Radiology 247:535–542

    Article  PubMed  Google Scholar 

  • Hall WA, Liu H, Martin AJ et al (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46:632–641; discussion 641–642

    Google Scholar 

  • Hall WA, Liu H, Truwit CL (2005) Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 64:20–27; discussion 27

    Google Scholar 

  • Hardy SM, Melroy C, White DR et al (2006) A comparison of computer-aided surgery registration methods for endoscopic sinus surgery. Am J Rhinol 20:48–52

    PubMed  Google Scholar 

  • Hoffmann J, Westendorff C, Leitner C et al (2005) Validation of 3D-laser surface registration for image-guided cranio-maxillofacial surgery. J Craniomaxillofac Surg 33:13–18

    Article  PubMed  Google Scholar 

  • Hu J, Jin X, Lee JB et al (2007) Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model. J Neurosurg 106:164–169

    Article  PubMed  Google Scholar 

  • Hunt CH, Wood CP, Lane JI et al (2011) Wide, short bore magnetic resonance at 1.5 T: reducing the failure rate in claustrophobic patients. Clin Neuroradiol 21:141–144

    Article  PubMed  CAS  Google Scholar 

  • Jeron A, Fredersdorf S, Debl K et al (2009) First-in-man (FIM) experience with the magnetic medical positioning system (MPS) for intracoronary navigation. EuroIntervention 5:552–557

    Article  PubMed  Google Scholar 

  • Jolesz FA (2011) Intraoperative imaging in neurosurgery: where will the future take us? In: Pamir MN, Seifert V, Kiris T (eds) Intraoperative imaging. Springer, Vienna, pp 21–25

    Chapter  Google Scholar 

  • Jolesz FA, Tempany CM (2011) Advanced multimodality image guided operating (AMIGO) suite. Friends of AMIGO newsletter, issue 2. http://www.ncigt.org/IGTWeb/images/4/4b/Friends_of_Amigo_NewsletterIssue2.pdf. Accessed 30 Aug 2011

  • Kansy K, Wisskirchen P, Behrens U et al (1999) LOCALITE—a frameless neuronavigation system for interventional magnetic resonance imaging systems. In: Taylor C, Colchester A (eds) Medical image computing and computer-assisted intervention—MICCAI’99. Springer, Berlin, pp 832–841

    Chapter  Google Scholar 

  • Kober H, Grummich P, Vieth J (1995) Fit of the digitized head surface with the surface reconstructed from MRI tomography. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: fundamental research and clinical applications. Elsevier, Amsterdam, pp 309–312

    Google Scholar 

  • Konings MK, Bartels LW, Smits HF, Bakker CJ (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12:79–85

    Article  PubMed  CAS  Google Scholar 

  • Kranzfelder M, Zywitza D, Jell T et al (2012) Real-time monitoring for detection of retained surgical sponges and team motion in the surgical operation room using radio-frequency-identification (RFID) technology: a preclinical evaluation. J Surg Res 175:191–198

    Article  PubMed  Google Scholar 

  • Krieger A, Iordachita II, Guion P et al (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58:3049–3060

    Article  PubMed  Google Scholar 

  • KĂ¼hn J-P, Langner S, Hegenscheid K et al (2010) Magnetic resonance-guided upper abdominal biopsies in a high-field wide-bore 3-T MRI system: feasibility, handling, and needle artefacts. Eur Radiol 20:2414–2421

    Article  PubMed  Google Scholar 

  • Kurumi Y, Tani T, Naka S et al (2007) MR-guided microwave ablation for malignancies. Int J Clin Oncol 12:85–93

    Article  PubMed  Google Scholar 

  • Larson PS, Starr PA, Bates G et al (2012) An optimized system for interventional MRI guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery 70:ons95–ons103

    Article  Google Scholar 

  • Ledderose GJ, Stelter K, Leunig A, Hagedorn H (2007) Surface laser registration in ENT-surgery: accuracy in the paranasal sinuses—a cadaveric study. Rhinology 45:281–285

    PubMed  Google Scholar 

  • Lewin JS, Petersilge CA, Hatem SF et al (1998) Interactive MR imaging-guided biopsy and aspiration with a modified clinical C-arm system. AJR Am J Roentgenol 170:1593–1601

    PubMed  CAS  Google Scholar 

  • Liu H, Hall WA, Truwit CL (2001) Neuronavigation in interventional MR imaging. Prospective stereotaxy. Neuroimaging Clin N Am 11:695–704

    PubMed  CAS  Google Scholar 

  • Lorenz CH, Kirchberg KJ, Zuehlsdorff S et al (2005) Interactive frontend (IFE): a platform for graphical MR scanner control and scan automation. In: Proceedings of the ISMRM 13th scientific meeting, Miami Beach, p 2170

    Google Scholar 

  • Lufkin R, Teresi L, Chiu L, Hanafee W (1988) A technique for MR-guided needle placement. AJR Am J Roentgenol 151:193–196

    PubMed  CAS  Google Scholar 

  • Martin AJ, Hall WA, Roark C et al (2008) Minimally invasive precision brain access using prospective stereotaxy and a trajectory guide. J Magn Reson Imaging 27:737–743

    Article  PubMed  Google Scholar 

  • Moche M, Busse H, Dannenberg C et al (2001) Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions. Radiologe 41:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Moche M, Schmitgen A, Schneider JP et al (2004) First clinical experience with extended planning and navigation in an interventional MRI unit. Rofo 176:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Moche M, Trampel R, Kahn T, Busse H (2008) Navigation concepts for MR image-guided interventions. J Magn Reson Imaging 27:276–291

    Article  PubMed  Google Scholar 

  • Moche M, Zajonz D, Kahn T, Busse H (2010) MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations. J Magn Reson Imaging 31:964–974

    Article  PubMed  Google Scholar 

  • Morikawa S, Inubushi T, Kurumi Y et al (2003) Advanced computer assistance for magnetic resonance-guided microwave thermocoagulation of liver tumors. Acad Radiol 10:1442–1449

    Article  PubMed  Google Scholar 

  • Mueller PR, Stark DD, Simeone JF et al (1986) MR-guided aspiration biopsy: needle design and clinical trials. Radiology 161:605–609

    PubMed  CAS  Google Scholar 

  • Mursch K, Gotthardt T, Kröger R et al (2005) Minimally invasive neurosurgery within a 0.5 tesla intraoperative magnetic resonance scanner using an off-line neuro-navigation system. Minim Invasive Neurosurg 48:213–217

    Article  PubMed  CAS  Google Scholar 

  • Nabavi A, Gering DT, Kacher DF et al (2003) Surgical navigation in the open MRI. Acta Neurochir Suppl 85:121–125

    Article  PubMed  CAS  Google Scholar 

  • Nakajima S, Atsumi H, Bhalerao AH et al (1997) Computer-assisted surgical planning for cerebrovascular neurosurgery. Neurosurgery 41:403–409; discussion 409–410

    Google Scholar 

  • Nicolau S, Soler L, Mutter D, Marescaux J (2011) Augmented reality in laparoscopic surgical oncology. Surg Oncol 20:189–201

    Article  PubMed  Google Scholar 

  • Nimsky C (2011) Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am 22:269–277

    Google Scholar 

  • Nimsky C, Ganslandt O, Kober H et al (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255; discussion 1255–1256

    Google Scholar 

  • Nimsky C, Ganslandt O, Kober H et al (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48:1082–1089; discussion 1089–1091

    Google Scholar 

  • Nimsky C, Fujita A, Ganslandt O et al (2004) Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 55:358–370; discussion 370–371

    Google Scholar 

  • Nimsky C, Ganslandt O, von Keller B, Fahlbusch R (2006) Intraoperative high-field MRI: anatomical and functional imaging. Acta Neurochir Suppl 98:87–95

    Article  PubMed  CAS  Google Scholar 

  • Oh DS, Black PM (2005) A low-field intraoperative MRI system for glioma surgery: is it worthwhile? Neurosurg Clin N Am 16:135–141

    Article  PubMed  Google Scholar 

  • Ooi MB, Krueger S, Thomas WJ et al (2009) Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 62:943–954

    Article  PubMed  Google Scholar 

  • Pandya A, Siadat M-R, Auner G (2005) Design, implementation and accuracy of a prototype for medical augmented reality. Comput Aided Surg 10:23–35

    PubMed  Google Scholar 

  • Quinn J, Spiro D, Schulder M (2011) Stereotactic brain biopsy with a low-field intraoperative magnetic resonance imager. Neurosurgery 68:217–224; discussion 224

    Google Scholar 

  • Rachinger J, von Keller B, Ganslandt O et al (2006) Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg 84:109–117

    Article  PubMed  Google Scholar 

  • Rea M, McRobbie D, Elhawary H et al (2009) Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI. MAGMA 22:71–76

    Article  PubMed  Google Scholar 

  • Rempp H, Clasen S, Pereira PL (2011) Image-based monitoring of magnetic resonance-guided thermoablative therapies for liver tumors. Cardiovasc Intervent Radiol. doi: 10.1007/s00270-011-0227-6

  • Richardson RM, Kells AP, Martin AJ et al (2011) Novel platform for MRI-guided convection-enhanced delivery of therapeutics: preclinical validation in nonhuman primate brain. Stereotact Funct Neurosurg 89:141–151

    Article  PubMed  Google Scholar 

  • Ricke J, Thormann M, Ludewig M et al (2010) MR-guided liver tumor ablation employing open high-field 1.0T MRI for image-guided brachytherapy. Eur Radiol 20:1985–1993

    Article  PubMed  Google Scholar 

  • Rozen WM, Buckland A, Ashton MW et al (2009) Image-guided, stereotactic perforator flap surgery: a prospective comparison of current techniques and review of the literature. Surg Radiol Anat 31:401–408

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Nakamoto M, Tamaki Y et al (1998) Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imaging 17:681–693

    Article  PubMed  CAS  Google Scholar 

  • Schenck JF, Jolesz FA, Roemer PB et al (1995) Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 195:805–814

    PubMed  CAS  Google Scholar 

  • Schlaier J, Warnat J, Brawanski A (2002) Registration accuracy and practicability of laser-directed surface matching. Comput Aided Surg 7:284–290

    Article  PubMed  CAS  Google Scholar 

  • Schneider JP, Schulz T, Schmidt F et al (2001) Gross-total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. AJNR Am J Neuroradiol 22:89–98

    PubMed  CAS  Google Scholar 

  • Schneider JP, Schulz T, Horn LC et al (2002) MR-guided percutaneous core biopsy of small breast lesions: first experience with a vertically open 0.5 T scanner. J Magn Reson Imaging 15:374–385

    Article  PubMed  Google Scholar 

  • Schulder M (2008) Intracranial surgery with a compact, low-field-strength magnetic resonance imager. Top Magn Reson Imaging 19:179–189

    Article  Google Scholar 

  • Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94:936–945

    Article  PubMed  CAS  Google Scholar 

  • Schulder M, Salas S, Brimacombe M et al (2006) Cranial surgery with an expanded compact intraoperative magnetic resonance imager. Technical note. J Neurosurg 104:611–617

    Article  PubMed  Google Scholar 

  • Schulz T, Schneider JP, Bootz F et al (2001) Transnasal and transsphenoidal MRI-guided biopsies of petroclival tumors. J Magn Reson Imaging 13:3–11

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TH, Stieg PE, Anand VK (2006) Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery 58:ONS44–51; discussion ONS44–51

    Google Scholar 

  • Silverman SG, Collick BD, Figueira MR et al (1995) Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology 197:175–181

    PubMed  CAS  Google Scholar 

  • Silverman SG, Jolesz FA, Newman RW et al (1997) Design and implementation of an interventional MR imaging suite. AJR Am J Roentgenol 168:1465–1471

    PubMed  CAS  Google Scholar 

  • Starr PA, Martin AJ, Ostrem JL et al (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–490

    Article  PubMed  Google Scholar 

  • Stattaus J, Maderwald S, Baba HA et al (2008a) MR-guided liver biopsy within a short, wide-bore 1.5 tesla MR system. Eur Radiol 18:2865–2873

    Article  PubMed  Google Scholar 

  • Stattaus J, Maderwald S, Forsting M et al (2008b) MR-guided core biopsy with MR fluoroscopy using a short, wide-bore 1.5-tesla scanner: feasibility and initial results. J Magn Reson Imaging 27:1181–1187

    Article  PubMed  Google Scholar 

  • Steffen T, Luechinger R, Wildermuth S et al (2010) Safety and reliability of radio frequency identification devices in magnetic resonance imaging and computed tomography. Patient Saf Surg 4:2

    Article  PubMed  Google Scholar 

  • Steinmeier R, Fahlbusch R, Ganslandt O et al (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43:739–747; discussion 747–748

    Google Scholar 

  • Streitparth F, Walter T, Wonneberger U et al (2010) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 20:395–403

    Article  PubMed  CAS  Google Scholar 

  • Susil RC, Camphausen K, Choyke P et al (2004) System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn Reson Med 52:683–687

    Article  PubMed  Google Scholar 

  • Susil RC, MĂ©nard C, Krieger A et al (2006) Transrectal prostate biopsy and fiducial marker placement in a standard 1.5T magnetic resonance imaging scanner. J Urol 175:113–120

    Article  PubMed  Google Scholar 

  • Terraz S, Cernicanu A, Lepetit-CoiffĂ© M et al (2010) Radiofrequency ablation of small liver malignancies under magnetic resonance guidance: progress in targeting and preliminary observations with temperature monitoring. Eur Radiol 20:886–897

    Article  PubMed  Google Scholar 

  • Tomikawa M, Hong J, Shiotani S et al (2010) Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery. J Am Coll Surg 210:927–933

    Article  PubMed  Google Scholar 

  • Tronnier VM, Wirtz CR, Knauth M et al (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40:891–900; discussion 900–902

    Google Scholar 

  • Truwit CL, Hall WA (2001) Intraoperative MR systems. High-field approaches. Neuroimaging Clin N Am 11:645–650

    Google Scholar 

  • Truwit CL, Hall WA (2006) Intraoperative magnetic resonance imaging-guided neurosurgery at 3-T. Neurosurgery 58:ONS-338–345; discussion ONS-345–346

    Google Scholar 

  • Truwit CL, Liu H (2001) Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging 13:452–457

    Article  PubMed  CAS  Google Scholar 

  • Vogt S, Khamene A, Niemann H, Sauer F (2004) An AR system with intuitive user interface for manipulation and visualization of 3D medical data. Stud Health Technol Inform 98:397–403

    PubMed  Google Scholar 

  • Wacker FK, Vogt S, Khamene A et al (2006) An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology 238:497–504

    Article  PubMed  Google Scholar 

  • Wang D, Yang Z (2008) A detailed study on the use of polynomial functions for modeling geometric distortion in magnetic resonance imaging. Med Phys 35:908–916

    Article  PubMed  Google Scholar 

  • Weiss CR, Marker DR, Fischer GS et al (2011) Augmented reality visualization using image-overlay for MR-guided interventions: system description, feasibility, and initial evaluation in a spine phantom. AJR Am J Roentgenol 196:W305–W307

    Article  PubMed  Google Scholar 

  • Wendt M, Sauer F, Khamene A et al (2003) A head-mounted display system for augmented reality: initial evaluation for interventional MRI. Rofo 175:418–421

    Article  PubMed  CAS  Google Scholar 

  • Werner R, Krueger S, Winkel A et al (2006) MR-guided breast biopsy using an active marker: a phantom study. J Magn Reson Imaging 24:235–241

    Article  PubMed  Google Scholar 

  • Wirtz CR, Knauth M, Staubert A et al (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46:1112–1120; discussion 1120–1122

    Google Scholar 

  • Wonneberger U, KrĂ¼ger S, Wirtz D et al (2011) Clinically usable tool for dynamic scan-plane tracking for real-time MRI-guided needle interventions in a high-field-open MRI system. In: Proceeedings of the ISMRM 19th scientific meeting, Montreal, p 202

    Google Scholar 

  • Yeo CT, Ungi T, U-Thainual P et al (2011) The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng 58:2031–2037

    Article  PubMed  Google Scholar 

  • Yutzy SR, Duerk JL (2008) Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging 27:267–275

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Busse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Busse, H., Kahn, T., Moche, M. (2012). Navigation Techniques for MRI-Guided Interventions. In: Kahn, T., Busse, H. (eds) Interventional Magnetic Resonance Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_579

Download citation

  • DOI: https://doi.org/10.1007/174_2012_579

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20705-1

  • Online ISBN: 978-3-642-20706-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics