Navigation Techniques for MRI-Guided Interventions

Part of the Medical Radiology book series (MEDRAD)


Medical navigation is the process of locating and controlling the movement of medical instruments both inside and outside the patient’s body. Since the inception of intraoperative MRI in the mid-1990s, navigation systems for MRI-guided procedures have been shown to substantially assist with proper trajectory planning, safe instrument manipulation inside the body, and accurate targeting of focal regions. Most MRI navigation systems have been described for percutaneous procedures with clinical applications in nearly all regions of the body. This chapter presents some fundamental concepts, provides a brief history of MRI-based navigation, and then highlights some of the early, current, and emerging techniques and implementations. Specific advantages and limitations of navigation solutions for different interventional settings are discussed.


Augmented Reality Augmented Reality System Passive Marker Navigation Technique Open Scanner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Augmented reality


Computer tomography


Liquid crystal display


Magnetic resonance


Operating room




Radiofrequency identification




  1. Abe H, Kurumi Y, Naka S et al (2005) Open-configuration MR-guided microwave thermocoagulation therapy for metastatic liver tumors from breast cancer. Breast Cancer 12:26–31PubMedCrossRefGoogle Scholar
  2. Albert FK, Forsting M, Sartor K et al (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60; discussion 60–61Google Scholar
  3. Alexander E 3rd, Moriarty TM, Kikinis R et al (1997) The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact Funct Neurosurg 68:10–17PubMedCrossRefGoogle Scholar
  4. Beyersdorff D, Winkel A, Hamm B et al (2005) MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 234:576–581PubMedCrossRefGoogle Scholar
  5. Black PM, Alexander E 3rd, Martin C et al (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45:423–431; discussion 431–433Google Scholar
  6. Bock M, Volz S, Zühlsdorff S et al (2004) MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils. J Magn Reson Imaging 19:580–589PubMedCrossRefGoogle Scholar
  7. Bock M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27:326–338PubMedCrossRefGoogle Scholar
  8. Bohinski RJ, Warnick RE, Gaskill-Shipley MF et al (2001) Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery 49:1133–1143; discussion 1143–1144Google Scholar
  9. Boss A, Rempp H, Martirosian P et al (2008) Wide-bore 1.5 tesla MR imagers for guidance and monitoring of radiofrequency ablation of renal cell carcinoma: initial experience on feasibility. Eur Radiol 18:1449–1455PubMedCrossRefGoogle Scholar
  10. Busse H, Schmitgen A, Trantakis C et al (2006) Advanced approach for intraoperative MRI guidance and potential benefit for neurosurgical applications. J Magn Reson Imaging 24:140–151PubMedCrossRefGoogle Scholar
  11. Busse H, Trampel R, Gründer W et al (2007) Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures. J Magn Reson Imaging 26:1087–1096PubMedCrossRefGoogle Scholar
  12. Busse H, Garnov N, Thörmer G et al (2010) Flexible add-on solution for MR image-guided interventions in a closed-bore scanner environment. Magn Reson Med 64:922–928PubMedCrossRefGoogle Scholar
  13. Chappelow J, Bloch BN, Rofsky N et al (2011) Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information. Med Phys 38:2005–2018PubMedCrossRefGoogle Scholar
  14. Coutts GA, Gilderdale DJ, Chui M et al (1998) Integrated and interactive position tracking and imaging of interventional tools and internal devices using small fiducial receiver coils. Magn Reson Med 40:908–913PubMedCrossRefGoogle Scholar
  15. DiMaio SP, Samset E, Fischer G et al (2007) Dynamic MRI scan plane control for passive tracking of instruments and devices. Med Image Comput Comput Assist Interv 10:50–58PubMedGoogle Scholar
  16. Elhawary H, Liu H, Patel P et al (2011) Intraoperative real-time querying of white matter tracts during frameless stereotactic neuronavigation. Neurosurgery 68:506–516; discussion 516Google Scholar
  17. Engelhard K, Hollenbach HP, Kiefer B et al (2006) Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur Radiol 16:1237–1243PubMedCrossRefGoogle Scholar
  18. Fiedler VU, Schwarzmaier HJ, Eickmeyer F et al (2001) Laser-induced interstitial thermotherapy of liver metastases in an interventional 0.5 tesla MRI system: technique and first clinical experiences. J Magn Reson Imaging 13:729–737PubMedCrossRefGoogle Scholar
  19. Fischbach F, Bunke J, Thormann M et al (2011a) MR-guided freehand biopsy of liver lesions with fast continuous imaging using a 1.0-T open MRI scanner: experience in 50 patients. Cardiovasc Intervent Radiol 34:188–192Google Scholar
  20. Fischbach F, Porsch M, Krenzien F et al (2011b) MR imaging guided percutaneous nephrostomy using a 1.0 tesla open MR scanner. Cardiovasc Intervent Radiol 34:857–863Google Scholar
  21. Fischer GS, Deguet A, Schlattman D et al (2006) MRI image overlay: applications to arthrography needle insertion. Stud Health Technol Inform 119:150–155PubMedGoogle Scholar
  22. Flask C, Elgort D, Wong E et al (2001) A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR-FISP) sequence. J Magn Reson Imaging 14:617–627PubMedCrossRefGoogle Scholar
  23. Garnov N, Thörmer G, Trampel R et al (2011) Suitability of miniature inductively coupled RF coils as MR visible markers for clinical purposes. Med Phys 38:6327–6335PubMedCrossRefGoogle Scholar
  24. Gering DT, Nabavi A, Kikinis R et al (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13:967–975PubMedCrossRefGoogle Scholar
  25. Gossmann A, Bangard C, Warm M et al (2008) Real-time MR-guided wire localization of breast lesions by using an open 1.0-T imager: initial experience. Radiology 247:535–542PubMedCrossRefGoogle Scholar
  26. Hall WA, Liu H, Martin AJ et al (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46:632–641; discussion 641–642Google Scholar
  27. Hall WA, Liu H, Truwit CL (2005) Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 64:20–27; discussion 27Google Scholar
  28. Hardy SM, Melroy C, White DR et al (2006) A comparison of computer-aided surgery registration methods for endoscopic sinus surgery. Am J Rhinol 20:48–52PubMedGoogle Scholar
  29. Hoffmann J, Westendorff C, Leitner C et al (2005) Validation of 3D-laser surface registration for image-guided cranio-maxillofacial surgery. J Craniomaxillofac Surg 33:13–18PubMedCrossRefGoogle Scholar
  30. Hu J, Jin X, Lee JB et al (2007) Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model. J Neurosurg 106:164–169PubMedCrossRefGoogle Scholar
  31. Hunt CH, Wood CP, Lane JI et al (2011) Wide, short bore magnetic resonance at 1.5 T: reducing the failure rate in claustrophobic patients. Clin Neuroradiol 21:141–144PubMedCrossRefGoogle Scholar
  32. Jeron A, Fredersdorf S, Debl K et al (2009) First-in-man (FIM) experience with the magnetic medical positioning system (MPS) for intracoronary navigation. EuroIntervention 5:552–557PubMedCrossRefGoogle Scholar
  33. Jolesz FA (2011) Intraoperative imaging in neurosurgery: where will the future take us? In: Pamir MN, Seifert V, Kiris T (eds) Intraoperative imaging. Springer, Vienna, pp 21–25CrossRefGoogle Scholar
  34. Jolesz FA, Tempany CM (2011) Advanced multimodality image guided operating (AMIGO) suite. Friends of AMIGO newsletter, issue 2. Accessed 30 Aug 2011
  35. Kansy K, Wisskirchen P, Behrens U et al (1999) LOCALITE—a frameless neuronavigation system for interventional magnetic resonance imaging systems. In: Taylor C, Colchester A (eds) Medical image computing and computer-assisted intervention—MICCAI’99. Springer, Berlin, pp 832–841CrossRefGoogle Scholar
  36. Kober H, Grummich P, Vieth J (1995) Fit of the digitized head surface with the surface reconstructed from MRI tomography. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: fundamental research and clinical applications. Elsevier, Amsterdam, pp 309–312Google Scholar
  37. Konings MK, Bartels LW, Smits HF, Bakker CJ (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12:79–85PubMedCrossRefGoogle Scholar
  38. Kranzfelder M, Zywitza D, Jell T et al (2012) Real-time monitoring for detection of retained surgical sponges and team motion in the surgical operation room using radio-frequency-identification (RFID) technology: a preclinical evaluation. J Surg Res 175:191–198PubMedCrossRefGoogle Scholar
  39. Krieger A, Iordachita II, Guion P et al (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58:3049–3060PubMedCrossRefGoogle Scholar
  40. Kühn J-P, Langner S, Hegenscheid K et al (2010) Magnetic resonance-guided upper abdominal biopsies in a high-field wide-bore 3-T MRI system: feasibility, handling, and needle artefacts. Eur Radiol 20:2414–2421PubMedCrossRefGoogle Scholar
  41. Kurumi Y, Tani T, Naka S et al (2007) MR-guided microwave ablation for malignancies. Int J Clin Oncol 12:85–93PubMedCrossRefGoogle Scholar
  42. Larson PS, Starr PA, Bates G et al (2012) An optimized system for interventional MRI guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery 70:ons95–ons103CrossRefGoogle Scholar
  43. Ledderose GJ, Stelter K, Leunig A, Hagedorn H (2007) Surface laser registration in ENT-surgery: accuracy in the paranasal sinuses—a cadaveric study. Rhinology 45:281–285PubMedGoogle Scholar
  44. Lewin JS, Petersilge CA, Hatem SF et al (1998) Interactive MR imaging-guided biopsy and aspiration with a modified clinical C-arm system. AJR Am J Roentgenol 170:1593–1601PubMedGoogle Scholar
  45. Liu H, Hall WA, Truwit CL (2001) Neuronavigation in interventional MR imaging. Prospective stereotaxy. Neuroimaging Clin N Am 11:695–704PubMedGoogle Scholar
  46. Lorenz CH, Kirchberg KJ, Zuehlsdorff S et al (2005) Interactive frontend (IFE): a platform for graphical MR scanner control and scan automation. In: Proceedings of the ISMRM 13th scientific meeting, Miami Beach, p 2170Google Scholar
  47. Lufkin R, Teresi L, Chiu L, Hanafee W (1988) A technique for MR-guided needle placement. AJR Am J Roentgenol 151:193–196PubMedGoogle Scholar
  48. Martin AJ, Hall WA, Roark C et al (2008) Minimally invasive precision brain access using prospective stereotaxy and a trajectory guide. J Magn Reson Imaging 27:737–743PubMedCrossRefGoogle Scholar
  49. Moche M, Busse H, Dannenberg C et al (2001) Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions. Radiologe 41:993–1000PubMedCrossRefGoogle Scholar
  50. Moche M, Schmitgen A, Schneider JP et al (2004) First clinical experience with extended planning and navigation in an interventional MRI unit. Rofo 176:1013–1020PubMedCrossRefGoogle Scholar
  51. Moche M, Trampel R, Kahn T, Busse H (2008) Navigation concepts for MR image-guided interventions. J Magn Reson Imaging 27:276–291PubMedCrossRefGoogle Scholar
  52. Moche M, Zajonz D, Kahn T, Busse H (2010) MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations. J Magn Reson Imaging 31:964–974PubMedCrossRefGoogle Scholar
  53. Morikawa S, Inubushi T, Kurumi Y et al (2003) Advanced computer assistance for magnetic resonance-guided microwave thermocoagulation of liver tumors. Acad Radiol 10:1442–1449PubMedCrossRefGoogle Scholar
  54. Mueller PR, Stark DD, Simeone JF et al (1986) MR-guided aspiration biopsy: needle design and clinical trials. Radiology 161:605–609PubMedGoogle Scholar
  55. Mursch K, Gotthardt T, Kröger R et al (2005) Minimally invasive neurosurgery within a 0.5 tesla intraoperative magnetic resonance scanner using an off-line neuro-navigation system. Minim Invasive Neurosurg 48:213–217PubMedCrossRefGoogle Scholar
  56. Nabavi A, Gering DT, Kacher DF et al (2003) Surgical navigation in the open MRI. Acta Neurochir Suppl 85:121–125PubMedCrossRefGoogle Scholar
  57. Nakajima S, Atsumi H, Bhalerao AH et al (1997) Computer-assisted surgical planning for cerebrovascular neurosurgery. Neurosurgery 41:403–409; discussion 409–410Google Scholar
  58. Nicolau S, Soler L, Mutter D, Marescaux J (2011) Augmented reality in laparoscopic surgical oncology. Surg Oncol 20:189–201PubMedCrossRefGoogle Scholar
  59. Nimsky C (2011) Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am 22:269–277Google Scholar
  60. Nimsky C, Ganslandt O, Kober H et al (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255; discussion 1255–1256Google Scholar
  61. Nimsky C, Ganslandt O, Kober H et al (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48:1082–1089; discussion 1089–1091Google Scholar
  62. Nimsky C, Fujita A, Ganslandt O et al (2004) Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 55:358–370; discussion 370–371Google Scholar
  63. Nimsky C, Ganslandt O, von Keller B, Fahlbusch R (2006) Intraoperative high-field MRI: anatomical and functional imaging. Acta Neurochir Suppl 98:87–95PubMedCrossRefGoogle Scholar
  64. Oh DS, Black PM (2005) A low-field intraoperative MRI system for glioma surgery: is it worthwhile? Neurosurg Clin N Am 16:135–141PubMedCrossRefGoogle Scholar
  65. Ooi MB, Krueger S, Thomas WJ et al (2009) Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 62:943–954PubMedCrossRefGoogle Scholar
  66. Pandya A, Siadat M-R, Auner G (2005) Design, implementation and accuracy of a prototype for medical augmented reality. Comput Aided Surg 10:23–35PubMedGoogle Scholar
  67. Quinn J, Spiro D, Schulder M (2011) Stereotactic brain biopsy with a low-field intraoperative magnetic resonance imager. Neurosurgery 68:217–224; discussion 224Google Scholar
  68. Rachinger J, von Keller B, Ganslandt O et al (2006) Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg 84:109–117PubMedCrossRefGoogle Scholar
  69. Rea M, McRobbie D, Elhawary H et al (2009) Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI. MAGMA 22:71–76PubMedCrossRefGoogle Scholar
  70. Rempp H, Clasen S, Pereira PL (2011) Image-based monitoring of magnetic resonance-guided thermoablative therapies for liver tumors. Cardiovasc Intervent Radiol. doi:  10.1007/s00270-011-0227-6
  71. Richardson RM, Kells AP, Martin AJ et al (2011) Novel platform for MRI-guided convection-enhanced delivery of therapeutics: preclinical validation in nonhuman primate brain. Stereotact Funct Neurosurg 89:141–151PubMedCrossRefGoogle Scholar
  72. Ricke J, Thormann M, Ludewig M et al (2010) MR-guided liver tumor ablation employing open high-field 1.0T MRI for image-guided brachytherapy. Eur Radiol 20:1985–1993PubMedCrossRefGoogle Scholar
  73. Rozen WM, Buckland A, Ashton MW et al (2009) Image-guided, stereotactic perforator flap surgery: a prospective comparison of current techniques and review of the literature. Surg Radiol Anat 31:401–408PubMedCrossRefGoogle Scholar
  74. Sato Y, Nakamoto M, Tamaki Y et al (1998) Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imaging 17:681–693PubMedCrossRefGoogle Scholar
  75. Schenck JF, Jolesz FA, Roemer PB et al (1995) Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 195:805–814PubMedGoogle Scholar
  76. Schlaier J, Warnat J, Brawanski A (2002) Registration accuracy and practicability of laser-directed surface matching. Comput Aided Surg 7:284–290PubMedCrossRefGoogle Scholar
  77. Schneider JP, Schulz T, Schmidt F et al (2001) Gross-total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. AJNR Am J Neuroradiol 22:89–98PubMedGoogle Scholar
  78. Schneider JP, Schulz T, Horn LC et al (2002) MR-guided percutaneous core biopsy of small breast lesions: first experience with a vertically open 0.5 T scanner. J Magn Reson Imaging 15:374–385PubMedCrossRefGoogle Scholar
  79. Schulder M (2008) Intracranial surgery with a compact, low-field-strength magnetic resonance imager. Top Magn Reson Imaging 19:179–189CrossRefGoogle Scholar
  80. Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94:936–945PubMedCrossRefGoogle Scholar
  81. Schulder M, Salas S, Brimacombe M et al (2006) Cranial surgery with an expanded compact intraoperative magnetic resonance imager. Technical note. J Neurosurg 104:611–617PubMedCrossRefGoogle Scholar
  82. Schulz T, Schneider JP, Bootz F et al (2001) Transnasal and transsphenoidal MRI-guided biopsies of petroclival tumors. J Magn Reson Imaging 13:3–11PubMedCrossRefGoogle Scholar
  83. Schwartz TH, Stieg PE, Anand VK (2006) Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery 58:ONS44–51; discussion ONS44–51Google Scholar
  84. Silverman SG, Collick BD, Figueira MR et al (1995) Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology 197:175–181PubMedGoogle Scholar
  85. Silverman SG, Jolesz FA, Newman RW et al (1997) Design and implementation of an interventional MR imaging suite. AJR Am J Roentgenol 168:1465–1471PubMedGoogle Scholar
  86. Starr PA, Martin AJ, Ostrem JL et al (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–490PubMedCrossRefGoogle Scholar
  87. Stattaus J, Maderwald S, Baba HA et al (2008a) MR-guided liver biopsy within a short, wide-bore 1.5 tesla MR system. Eur Radiol 18:2865–2873PubMedCrossRefGoogle Scholar
  88. Stattaus J, Maderwald S, Forsting M et al (2008b) MR-guided core biopsy with MR fluoroscopy using a short, wide-bore 1.5-tesla scanner: feasibility and initial results. J Magn Reson Imaging 27:1181–1187PubMedCrossRefGoogle Scholar
  89. Steffen T, Luechinger R, Wildermuth S et al (2010) Safety and reliability of radio frequency identification devices in magnetic resonance imaging and computed tomography. Patient Saf Surg 4:2PubMedCrossRefGoogle Scholar
  90. Steinmeier R, Fahlbusch R, Ganslandt O et al (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43:739–747; discussion 747–748Google Scholar
  91. Streitparth F, Walter T, Wonneberger U et al (2010) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 20:395–403PubMedCrossRefGoogle Scholar
  92. Susil RC, Camphausen K, Choyke P et al (2004) System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn Reson Med 52:683–687PubMedCrossRefGoogle Scholar
  93. Susil RC, Ménard C, Krieger A et al (2006) Transrectal prostate biopsy and fiducial marker placement in a standard 1.5T magnetic resonance imaging scanner. J Urol 175:113–120PubMedCrossRefGoogle Scholar
  94. Terraz S, Cernicanu A, Lepetit-Coiffé M et al (2010) Radiofrequency ablation of small liver malignancies under magnetic resonance guidance: progress in targeting and preliminary observations with temperature monitoring. Eur Radiol 20:886–897PubMedCrossRefGoogle Scholar
  95. Tomikawa M, Hong J, Shiotani S et al (2010) Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery. J Am Coll Surg 210:927–933PubMedCrossRefGoogle Scholar
  96. Tronnier VM, Wirtz CR, Knauth M et al (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40:891–900; discussion 900–902Google Scholar
  97. Truwit CL, Hall WA (2001) Intraoperative MR systems. High-field approaches. Neuroimaging Clin N Am 11:645–650Google Scholar
  98. Truwit CL, Hall WA (2006) Intraoperative magnetic resonance imaging-guided neurosurgery at 3-T. Neurosurgery 58:ONS-338–345; discussion ONS-345–346Google Scholar
  99. Truwit CL, Liu H (2001) Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging 13:452–457PubMedCrossRefGoogle Scholar
  100. Vogt S, Khamene A, Niemann H, Sauer F (2004) An AR system with intuitive user interface for manipulation and visualization of 3D medical data. Stud Health Technol Inform 98:397–403PubMedGoogle Scholar
  101. Wacker FK, Vogt S, Khamene A et al (2006) An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology 238:497–504PubMedCrossRefGoogle Scholar
  102. Wang D, Yang Z (2008) A detailed study on the use of polynomial functions for modeling geometric distortion in magnetic resonance imaging. Med Phys 35:908–916PubMedCrossRefGoogle Scholar
  103. Weiss CR, Marker DR, Fischer GS et al (2011) Augmented reality visualization using image-overlay for MR-guided interventions: system description, feasibility, and initial evaluation in a spine phantom. AJR Am J Roentgenol 196:W305–W307PubMedCrossRefGoogle Scholar
  104. Wendt M, Sauer F, Khamene A et al (2003) A head-mounted display system for augmented reality: initial evaluation for interventional MRI. Rofo 175:418–421PubMedCrossRefGoogle Scholar
  105. Werner R, Krueger S, Winkel A et al (2006) MR-guided breast biopsy using an active marker: a phantom study. J Magn Reson Imaging 24:235–241PubMedCrossRefGoogle Scholar
  106. Wirtz CR, Knauth M, Staubert A et al (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46:1112–1120; discussion 1120–1122Google Scholar
  107. Wonneberger U, Krüger S, Wirtz D et al (2011) Clinically usable tool for dynamic scan-plane tracking for real-time MRI-guided needle interventions in a high-field-open MRI system. In: Proceeedings of the ISMRM 19th scientific meeting, Montreal, p 202Google Scholar
  108. Yeo CT, Ungi T, U-Thainual P et al (2011) The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng 58:2031–2037PubMedCrossRefGoogle Scholar
  109. Yutzy SR, Duerk JL (2008) Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging 27:267–275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of Diagnostic and Interventional RadiologyLeipzig University HospitalLeipzigGermany

Personalised recommendations