Advertisement

Fetal MRI pp 471-487 | Cite as

Postmortem Magnetic Resonance Imaging of the Fetus

  • Elspeth Whitby
  • Martyn Paley
  • Marta Cohen
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Postmortem fetal MR imaging is regarded as a valuable adjunct or alternative method to autopsy. The latter is frequently denied by the parents of the deceased. In addition, autopsy may be impaired by tissue autolysis. High quality anatomical information and a permanent record of the information may be obtained from postmortem MRI. Most experience exists with postmortem MRI of the brain. An examiner with experience and knowledge of both fetal development and common artefacts from postmortem MR images is essential to ensure the accurate interpretation of the information obtained.

Keywords

Ganglionic Eminence Postmortem Imaging Central Nervous System Abnormality Gyral Pattern Grey White Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamsbaum C, Gelot A, Andre C, Baron JM (2001) Atlas d’IRM du cerveau foetal. Masson, ParisGoogle Scholar
  2. Aghayev E, Thali MJ et al (2007) Post-mortem tissue sampling using computed tomography guidance. Forensic Sci Int 166(2–3):199–203PubMedCrossRefGoogle Scholar
  3. Alderliesten ME, Peringa J et al (2003) Perinatal mortality: clinical value of postmortem magnetic resonance imaging compared with autopsy in routine obstetric practice. BJOG 110(4):378–382PubMedCrossRefGoogle Scholar
  4. Bar W, Kratzer A et al (1988) Postmortem stability of DNA. Forensic Sci Int 39(1):59–70PubMedCrossRefGoogle Scholar
  5. Bendersky M, Musolino PL et al (2006) Normal anatomy of the developing fetal brain. Ex vivo anatomical-magnetic resonance imaging correlation. J Neurol Sci 250(1–2):20–26PubMedCrossRefGoogle Scholar
  6. Bisset R (1998) Magnetic resonance imaging may be alternative to necropsy. BMJ 317(7170):1450PubMedCrossRefGoogle Scholar
  7. Bisset RA, Thomas NB et al (2002) Postmortem examinations using magnetic resonance imaging: four year review of a working service. BMJ 324(7351):1423–1424PubMedCrossRefGoogle Scholar
  8. Breeze AC, Cross JJ et al (2006) Use of a confidence scale in reporting postmortem fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 28(7):918–924PubMedCrossRefGoogle Scholar
  9. Breeze AC, Gallagher FA et al (2008a) Postmortem fetal organ volumetry using magnetic resonance imaging and comparison to organ weights at conventional autopsy. Ultrasound Obstet Gynecol 31(2):187–193PubMedCrossRefGoogle Scholar
  10. Breeze AC, Jessop FA et al (2008b) Feasibility of percutaneous organ biopsy as part of a minimally invasive perinatal autopsy. Virchows Arch 452(2):201–207PubMedCrossRefGoogle Scholar
  11. Brookes JS, Hall-Craggs MA (1997) Postmortem perinatal examination: the role of magnetic resonance imaging. Ultrasound Obstet Gynecol 9(3):145–147PubMedCrossRefGoogle Scholar
  12. Burton JL (2001) Getting consent for necropsies. Perhaps we should seek consent to show necropsies to students. BMJ 323(7326):1426PubMedCrossRefGoogle Scholar
  13. Burton JL, Underwood J (2007) Clinical, educational, and epidemiological value of autopsy. Lancet 369(9571):1471–1480PubMedCrossRefGoogle Scholar
  14. Burton JL, Underwood JC (2003) Necropsy practice after the “organ retention scandal”: requests, performance, and tissue retention. J Clin Pathol 56(7):537–541PubMedCrossRefGoogle Scholar
  15. Cartlidge PH, Dawson AT et al (1995) Value and quality of perinatal and infant postmortem examinations: cohort analysis of 400 consecutive deaths. BMJ 310(6973):155–158PubMedCrossRefGoogle Scholar
  16. CEMACH (2008). CEMACH perinatal mortality 2006: England, Wales and Northern Ireland.Google Scholar
  17. Chi JG, Dooling EC et al (1977) Gyral development of the human brain. Ann Neurol 1(1):86–93PubMedCrossRefGoogle Scholar
  18. Cohen MC, Paley MN et al (2008) Less invasive autopsy: benefits and limitations of the use of magnetic resonance imaging in the perinatal postmortem. Pediatr Dev Pathol 11(1):1–9PubMedCrossRefGoogle Scholar
  19. D’Arceuil H, de Crespigny A (2007) The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 36(1):64–68PubMedCrossRefGoogle Scholar
  20. Dean A, Whitby EH (2007) Contribution of antenatal magnetic resonance imaging to diagnostic neuropathology. Curr Diagn Pathol 13(3):171–179CrossRefGoogle Scholar
  21. Evans C, Marton T, et al. (2008). Cranial vault defects: the description of 3 cases that illustrate a spectrum of anomalies. Pediatr Dev Pathol 1Google Scholar
  22. Fogliarini C, Chaumoitre K et al (2005a) Assessment of cortical maturation with prenatal MRI. Part I: Normal cortical maturation. Eur Radiol 15(8):1671–1685PubMedCrossRefGoogle Scholar
  23. Fogliarini C, Chaumoitre K et al (2005b) Assessment of cortical maturation with prenatal MRI: part II: abnormalities of cortical maturation. Eur Radiol 15(9):1781–1789PubMedCrossRefGoogle Scholar
  24. Garel C (2004) MRI of the fetal Brain. Springer, BerlinCrossRefGoogle Scholar
  25. Garel C, Chantrel E et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 22(1):184–189PubMedGoogle Scholar
  26. Garel C, Chantrel E et al (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19(7–8):422–425PubMedCrossRefGoogle Scholar
  27. Girard N, Confort-Gouny S et al (2007) MR imaging of brain maturation. J Neuroradiol 34(5):290–310PubMedCrossRefGoogle Scholar
  28. Grabherr S, Djonov V et al (2006) Postmortem angiography after vascular perfusion with diesel oil and a lipophilic contrast agent. AJR Am J Roentgenol 187(5):W515–W523PubMedCrossRefGoogle Scholar
  29. Grabherr S, Djonov V et al (2007) Postmortem angiography: review of former and current methods. AJR Am J Roentgenol 188(3):832–838PubMedCrossRefGoogle Scholar
  30. Grabherr S, Gygax E et al (2008) Two-step postmortem angiography with a modified heart-lung machine: preliminary results. AJR Am J Roentgenol 190(2):345–351PubMedCrossRefGoogle Scholar
  31. Grandjean H, Larroque D et al (1999) The performance of routine ultrasonographic screening of pregnancies in the Eurofetus Study. Am J Obstet Gynecol 181(2):446–454PubMedCrossRefGoogle Scholar
  32. Griffiths PD, Variend D et al (2003) Postmortem MR imaging of the fetal and stillborn central nervous system. AJNR Am J Neuroradiol 24(1):22–27PubMedGoogle Scholar
  33. Hagmann CF, Robertson NJ, et al. (2006). Postmortem MRI as an adjunct to perinatal autopsy for renal tract abnormalities. Arch Dis Child Fetal NeonatalGoogle Scholar
  34. Hagmann CF, Robertson NJ et al (2007) Postmortem magnetic resonance imaging as an adjunct to perinatal autopsy for renal-tract abnormalities. Arch Dis Child Fetal Neonatal Ed 92(3):F215–F218PubMedGoogle Scholar
  35. Huisman TA, Wisser J et al (2002) MR autopsy in fetuses. Fetal Diagn Ther 17(1):58–64PubMedCrossRefGoogle Scholar
  36. Jackowski C, Thali M et al (2006) Postmortem imaging of blood and its characteristics using MSCT and MRI. Int J Legal Med 120(4):233–240PubMedCrossRefGoogle Scholar
  37. Kostovic I, Judas M (2007) Transient patterns of cortical lamination during prenatal life: do they have implications for treatment? Neurosci Biobehav Rev 31(8):1157–1168PubMedCrossRefGoogle Scholar
  38. Kostovic I, Judas M et al (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12(5):536–544PubMedCrossRefGoogle Scholar
  39. Levine D, Barnes PD (1999) Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology 210(3):751–758PubMedGoogle Scholar
  40. Levy AD, Abbott RM et al (2006) Virtual autopsy: preliminary experience in high-velocity gunshot wound victims. Radiology 240(2):522–528PubMedCrossRefGoogle Scholar
  41. Maroun LL, Graem N (2005) Autopsy standards of body parameters and fresh organ weights in nonmacerated and macerated human fetuses. Pediatr Dev Pathol 8(2):204–217PubMedCrossRefGoogle Scholar
  42. McArdle CB, Richardson CJ et al (1987) Developmental features of the neonatal brain: MR imaging. Part I. Gray-white matter differentiation and myelination. Radiology 162(1 Pt 1):223–229PubMedGoogle Scholar
  43. Nicholl RM, Balasubramaniam VP et al (2007) Postmortem brain MRI with selective tissue biopsy as an adjunct to autopsy following neonatal encephalopathy. Eur J Paediatr Neurol 11(3):167–174PubMedCrossRefGoogle Scholar
  44. Pathologists, Joint Working Party Royal College Obstetricians and Gynaecologist and Royal College of Pathologists. (1988). Report of fetal and Perinatal pathology. London.Google Scholar
  45. Picone O, Levaillant JM et al (2008) Correlation between referral ultrasound with suspected foetal anomalies and autopsy examination in two prenatal diagnosis centres. Impact of the routine use of 3D/4D scan. Prenat Diagn 28(3):191–196PubMedCrossRefGoogle Scholar
  46. Prayer D, Kasprian G et al (2006) MRI of normal fetal brain development. Eur J Radiol 57(2):199–216PubMedCrossRefGoogle Scholar
  47. Rados M, Judas M et al (2006) In vitro MRI of brain development. Eur J Radiol 57(2):187–198PubMedCrossRefGoogle Scholar
  48. Roberts IS, Benbow EW et al (2003) Accuracy of magnetic resonance imaging in determining cause of sudden death in adults: comparison with conventional autopsy. Histopathology 42(5):424–430PubMedCrossRefGoogle Scholar
  49. Roberts ISD, Benbow EW (2007). The non-invasive or minimally invasive autopsy. Recent Advances in Histopathology 22. The Royal Society of Medicine Press, London.Google Scholar
  50. Roberts MD, Lange RC et al (1995) Fetal anatomy with magnetic resonance imaging. Magn Reson Imaging 13(4):645–649PubMedCrossRefGoogle Scholar
  51. Ros PR, Li KC et al (1990) Preautopsy magnetic resonance imaging: initial experience. Magn Reson Imaging 8(3):303–308PubMedCrossRefGoogle Scholar
  52. Sankar VH, Phadke SR (2006) Clinical utility of fetal autopsy and comparison with prenatal ultrasound findings. J Perinatol 26(4):224–229PubMedCrossRefGoogle Scholar
  53. Snowdon C, Elbourne DR et al (2004) Perinatal pathology in the context of a clinical trial: attitudes of neonatologists and pathologists. Arch Dis Child Fetal Neonatal Ed 89(3):F204–F207PubMedCrossRefGoogle Scholar
  54. Thali MJ, Yen K et al (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)–a feasibility study. J Forensic Sci 48(2):386–403PubMedGoogle Scholar
  55. Thayyil S (2008) Magnetic resonance imaging of the post-mortem fetus – technical factors.( personal communication)Google Scholar
  56. Thayyil S, Cleary JO, Price AC, et al (2008). Whole-body post-mortem magnetic resonance imaging at 9.4T: a rapid and less invasive autopsy for small fetuses. ISMRM, Toronto Canada.Google Scholar
  57. Thayyil S, Robertson NJ et al (2008b) Parental consent for research and sudden infant death. Lancet 372(9640):715PubMedCrossRefGoogle Scholar
  58. Thayyil S, Schievano S, et al. (2008) A semi-automated method for non-invasive internal organ weight estimation by post-mortem magnetic resonance imaging in fetuses, newborns and children. Eur J Radiol.Google Scholar
  59. Vasudevan PC, Cohen MC et al (2006) The OEIS complex: two case reports that illustrate the spectrum of abnormalities and a review of the literature. Prenat Diagn 26(3):267–272PubMedCrossRefGoogle Scholar
  60. Vujanic GM, Cartlidge PH et al (1998) Improving the quality of perinatal and infant necropsy examinations: a follow up study. J Clin Pathol 51(11):850–853PubMedCrossRefGoogle Scholar
  61. Woodward PJ, Sohaey R et al (1997) Postmortem fetal MR imaging: comparison with findings at autopsy. AJR Am J Roentgenol 168(1):41–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.University of SheffieldSheffieldUK
  2. 2.Sheffield Children’s HospitalSheffieldUK

Personalised recommendations