Skip to main content
Log in

Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy: I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    Google Scholar 

  2. Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy: II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    Google Scholar 

  3. Kinney HC, Karthigasan J, Borenshteyn NI, Flax JD, Kirschner DA (1994) Myelination in the developing human brain: biochemical correlates. Neurochem Res 19:983–996

    Google Scholar 

  4. Larroche JC (1977) Development of the central nervous system. In Larroche JC (ed) Developmental pathology of the neonate. Elsevier North-Holland Biomedical, Amsterdam, pp 319–353

    Google Scholar 

  5. Barkovich AJ (2000) Pediatric neuroimaging, 3rd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  6. Girard N, Raybaud C, Du Lac P (1991) MRI study of brain myelination. J Neuroradiol 18:291–307

    Google Scholar 

  7. Van Der Knaap MS, Valk J (1995) Magnetic resonance of myelin, myelination and myelin disorders, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266

    Google Scholar 

  9. Rivkin MJ (2000) Developmental neuroimaging of children using magnetic resonance techniques. Ment Retard Dev Disabil Res Rev 6:68–80

    Google Scholar 

  10. Girard N, Gambarelli D (2001) Normal fetal brain. Magnetic resonance imaging. An atlas with anatomic correlations. The Journal of Paediatric and Fetal Imaging, Rickmansworth

    Google Scholar 

  11. Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JF, Sebag G, Hassan M (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. Am J Neuroradiol 22:184–189

    Google Scholar 

  12. Brisse H, Fallet C, Sebag G, Nessmann C, Blot P, Hassan M (1997) Supratentorial parenchyma in the developing fetal brain: in vitro MR study with histologic comparison. Am J Neuroradiol 18:1491–1497

    Google Scholar 

  13. Chong BW, Babcook CJ, Salamat MS, Nemzek W, Kroeker D, Ellis WG (1996) A magnetic resonance template for normal neuronal migration in the fetus. Neurosurgery 39:110–116

    Google Scholar 

  14. Girard N, Raybaud C, Poncet M (1995) In vivo MR study of brain maturation in normal fetuses. Am J Neuroradiol 16:407–413

    Google Scholar 

  15. Huisman TA, Martin E, Kubik-Huch R, Marincek B (2002) Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development. Eur Radiol 12:1941–1951

    Google Scholar 

  16. Girard N, Raybaud C, Gambarelli D, Figarella-Branger D (2001) Fetal brain MR imaging. Magn Reson Imaging Clin N Am 9:19–56

    Google Scholar 

  17. Levine D, Barnes PD (1999) Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology 210:751–758

    Google Scholar 

  18. Trop I, Levine D (2001) Normal fetal anatomy as visualized with fast magnetic resonance imaging. Top Magn Reson Imaging 12:3–17

    Google Scholar 

  19. Garel C, Chantrel E, Elmaleh M, Brisse H, Sebag G (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Child’s Nerv Syst 19:422–425

    Google Scholar 

  20. Twickler DM, Reichel T, McIntire DD, Magee KP, Ramus RM (2002) Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging. Am J Obstet Gynecol 187:927–931

    Google Scholar 

  21. Woodward PJ, Sohaey R, Harris DP, Jackson GM, Klatt EC, Alexander AL, Kennedy A (1997) Postmortem fetal MR imaging: comparison with findings at autopsy. Am J Roentgenol 168:41–46

    Google Scholar 

  22. Isaksen CV, Eik-Nes SH, Blaas HG, Torp SH (1998) Comparison of prenatal ultrasound and postmortem findings in fetuses and infants with central nervous system anomalies. Ultrasound Obstet Gynecol 11:246–253

    Google Scholar 

  23. Malinger G, Lerman-Sagie T, Watemberg N, Rotmensch S, Lev D, Glezerman M (2002) A normal second-trimester ultrasound does not exclude intracranial structural pathology. Ultrasound Obstet Gynecol 20:51–56

    Google Scholar 

  24. Malinger G, Ben-Sira L, Lev D, Ben-Aroya Z, Kidron D, Lerman-Sagie T (2004) Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography. Ultrasound Obstet Gynecol 23:333–340

    Google Scholar 

  25. Monteagudo A, Timor-Tritsch IE (1997) Development of fetal gyri, sulci and fissures: a transvaginal sonographic study. Ultrasound Obstet Gynecol 9:222–228

    Google Scholar 

  26. Yamashita Y, Namimoto T, Abe Y, Takahashi M, Iwamasa J, Miyazaki K, Okamura H (1997) MR imaging of the fetus by a HASTE sequence. Am J Roentgenol 168:513–519

    Google Scholar 

  27. Stazzone MM, Hubbard AM, Bilaniuk LT, Harty MP, Meyer JS, Zimmerman RA, Mahboubi S (2000) Ultrafast MR imaging of the normal posterior fossa in fetuses. Am J Roentgenol 175:835–839

    Google Scholar 

  28. Chen Q, Levine D (2001) Fast fetal magnetic resonance imaging techniques. Top Magn Reson Imaging 12:67–79

    Google Scholar 

  29. Nitz WR (2002) Fast and ultrafast non-echo-planar MR imaging techniques. Eur Radiol 12:2866–2882

    Google Scholar 

  30. Breysem L, Bosmans H, Dymarkowski S, Schoubroeck DV, Witters I, Deprest J, Demaerel P, Vanbeckevoort D, Vanhole C, Casaer P, Smet M (2003) The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur Radiol 13:1538–1548

    Google Scholar 

  31. Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA (2004) Fetal MRI: a developing technique for the developing patient. Am J Roentgenol 182:243–252

    Google Scholar 

  32. Heidemann RM, Ozsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, Muller M, Breuer F, Blaimer M, Griswold MA, Jakob PM (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337

    Google Scholar 

  33. Lan LM, Yamashita Y, Tang Y, Sugahara T, Takahashi M, Ohba T, Okamura H (2000) Normal fetal brain development: MR imaging with a half-Fourier rapid acquisition with relaxation enhancement sequence. Radiology 215:205–210

    Google Scholar 

  34. Brunel H, Girard N, Confort-Gouny S, Viola A, Chaumoitre K, D’Ercole C, Figarella-Branger D, Raybaud C, Cozzone P, Panuel M (2004) Fetal brain injury. J Neuroradiol 31:123–137

    Google Scholar 

  35. Chung HW, Chen CY, Zimmerman RA, Lee KW, Lee CC, Chin SC (2000) T2-weighted fast MR imaging with true FISP versus HASTE: comparative efficacy in the evaluation of normal fetal brain maturation. Am J Roentgenol 175:1375–1380

    Google Scholar 

  36. Baldoli C, Righini A, Parazzini C, Scotti G, Triulzi F (2002) Demonstration of acute ischemic lesions in the fetal brain by diffusion magnetic resonance imaging. Ann Neurol 52:243–246

    Google Scholar 

  37. Righini A, Bianchini E, Parazzini C, Gementi P, Ramenghi L, Baldoli C, Nicolini U, Mosca F, Triulzi F (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. Am J Neuroradiol 24:799–804

    Google Scholar 

  38. Boujraf S, Luypaert R, Shabana W, De Meirleir L, Sourbron S, Osteaux M (2002) Study of pediatric brain development using magnetic resonance imaging of anisotropic diffusion. Magn Reson Imaging 20:327–336

    Google Scholar 

  39. Prayer D, Prayer L (2003) Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 45:235–243

    Google Scholar 

  40. Kato T, Nishina M, Matsushita K, Hori E, Mito T, Takashima S (1997) Neuronal maturation and N-acetyl-l-aspartic acid development in human fetal and child brains. Brain Dev 19:131–133

    Google Scholar 

  41. Kreis R, Ernst T, Ross BD (1993) Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 30:424–437

    Google Scholar 

  42. Vion-Dury J, Salvan AM, Confort-Gouny S, Cozzone PJ (1998) Atlas of brain proton magnetic resonance spectra: Part I. General and methodological considerations. J Neuroradiol 25:207–212

    Google Scholar 

  43. Kok RD, van den Berg PP, van den Bergh AJ, Nijland R, Heerschap A (2002) Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med 48:611–616

    Google Scholar 

  44. Sotello C, Triller A (1997) The central neuron. In Graham DI, Lantos PL (eds) Greensfield’s neuropathology. Arnold, London, pp 3–61

    Google Scholar 

  45. Berry M, Butt AM (1997) Structure and function of glia in the central nervous system. In Graham DI, Lantos PL (eds) Greensfield’s neuropathology. Arnold, London, pp 63–83

    Google Scholar 

  46. Yakovlev P, Lecours A (1967) The myelogenetic cycles of regional maturation of the brain. In Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific Publications, Oxford, pp 3–70

    Google Scholar 

  47. Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143:S35–S45

    Google Scholar 

  48. Gilles FH (1985) Perinatal neuropathology. In Davis RL, Robertson DM (eds) Texbook of neuropathology. Williams and Wilkins, Baltimore, pp 243–283

    Google Scholar 

  49. Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35

    Google Scholar 

  50. Sun XZ, Takahashi S, Cui C, Zhang R, Sakata-Haga H, Sawada K, Fukui Y (2002) Normal and abnormal neuronal migration in the developing cerebral cortex. J Med Investig 49:97–110

    Google Scholar 

  51. Parnavelas JG, Nadarajah B (2001) Radial glial cells. Are they really glia? Neuron 31:881–884

    Google Scholar 

  52. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432

    Google Scholar 

  53. Rallu M, Corbin JG, Fishell G (2002) Parsing the prosencephalon. Nat Rev Neurosci 3:943–951

    Google Scholar 

  54. Encha-Razavi F, Sonigo P (2003) Features of the developing brain. Child’s Nerv Syst 19:426–428

    Google Scholar 

  55. Fees-Higgins A, Larroche JC (1987) Development of the human fetal brain. In: INSERM (ed) An anatomical atlas. Masson, Paris

    Google Scholar 

  56. Garel C (2004) The role of MRI in the evaluation of the fetal brain with an emphasis on biometry, gyration and parenchyma. Pediatr Radiol 34:694–699

    Google Scholar 

  57. Naidich TP, Grant JL, Altman N, Zimmerman RA, Birchansky SB, Braffman B, Daniel JL (1994) The developing cerebral surface. Preliminary report on the patterns of sulcal and gyral maturation—anatomy, ultrasound, and magnetic resonance imaging. Neuroimaging Clin N Am 4:201–240

    Google Scholar 

  58. Dooling EC, Chi JG, Gilles FH (1983) Telencephalic development: Changing gyral patterns. In Gilles FH, Leviton A, Dooling EC (eds) The developing human brain. Growth and epidemiologic neuropathology. John Wright PSG Inc, Boston, pp 94–104

    Google Scholar 

  59. Cardoza JD, Goldstein RB, Filly RA (1988) Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169:711–714

    Google Scholar 

  60. Hilpert PL, Hall BE, Kurtz AB (1995) The atria of the fetal lateral ventricles: a sonographic study of normal atrial size and choroid plexus volume. Am J Roentgenol 164:731–734

    Google Scholar 

  61. Snijders RJ, Nicolaides KH (1994) Fetal biometry at 14–40 weeks’ gestation. Ultrasound Obstet Gynecol 4:34–48

    Google Scholar 

  62. Girard NJ, Raybaud CA (2001) Ventriculomegaly and pericerebral CSF collection in the fetus: early stage of benign external hydrocephalus? Child’s Nerv Syst 17:239–245

    Google Scholar 

  63. Gilles FH, Shankle W, Dooling EC (1983) Myelinated tracts: Growth patterns. In Gilles FH, Leviton A, Dooling EC (Eds.) The developing human brain. Growth and epidemiologic neuropathology. John Wright PSG Inc, Boston, pp 117–183

    Google Scholar 

  64. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    Google Scholar 

  65. Compston A, Zajicek J, Sussman J, Webb A, Hall G, Muir D, Shaw C, Wood A, Scolding N (1997) Glial lineages and myelination in the central nervous system. J Anat 190( Pt 2):161–200

    Google Scholar 

  66. Hardy RJ, Friedrich VL Jr (1996) Progressive remodeling of the oligodendrocyte process arbor during myelinogenesis. Dev Neurosci 18:243–254

    Google Scholar 

  67. Rogister B, Ben-Hur T, Dubois-Dalcq M (1999) From neural stem cells to myelinating oligodendrocytes. Mol Cell Neurosci 14:287–300

    Google Scholar 

  68. Sarnat HB (1995) Ependymal reactions to injury. A review. J Neuropathol Exp Neurol 54:1–15

    Google Scholar 

  69. Back SA (2001) Recent advances in human perinatal white matter injury. Prog Brain Res 132:131–147

    Google Scholar 

  70. Bosio A, Bussow H, Adam J, Stoffel W (1998) Galactosphingolipids and axono–glial interaction in myelin of the central nervous system. Cell Tissue Res 292:199–210

    Google Scholar 

  71. Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo–glial organization. Biochim Biophys Acta 1573:406–413

    Google Scholar 

  72. Fralix TA, Ceckler TL, Wolff SD, Simon SA, Balaban RS (1991) Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn Reson Med 18:214–223

    Google Scholar 

  73. Koenig SH (1991) Cholesterol of myelin is the determinant of gray–white contrast in MRI of brain. Magn Reson Med 20:285–291

    Google Scholar 

  74. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144

    Google Scholar 

  75. Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192:521–529

    Google Scholar 

  76. Girard N (2002) Fetal MR imaging. Eur Radiol 12:1869–1871

    Google Scholar 

  77. Dimitrova A, Weber J, Redies C, Kindsvater K, Maschke M, Kolb FP, Forsting M, Diener HC, Timmann D (2002) MRI atlas of the human cerebellar nuclei. NeuroImage 17:240–255

    Google Scholar 

  78. Voogd J (2003) The human cerebellum. J Chem Neuroanat 26:243–252

    Google Scholar 

  79. Harding BN, Copp AJ (1997) Malformations. In Graham DI, Lantos PL (eds) Greenfield’s neuropathology. Arnold, London, pp 397–533

    Google Scholar 

  80. Tortori-Donati P, Fondelli MP, Rossi A, Carini S (1996) Cystic malformations of the posterior cranial fossa originating from a defect of the posterior membranous area. Mega cisterna magna and persisting Blake’s pouch: two separate entities. Child’s Nerv Syst 12:303–308

    Google Scholar 

  81. Blake JA (1900) The roof and lateral recesses of the fourth ventricle, considered morphologically and embryologically. J Comp Neurol 10:79–108

    Google Scholar 

  82. Adamsbaum C, Moutard ML, Andre C, Merzoug V, Ferey S, Quere MP, Lewin F Fallet-Bianco C (2005) MRI of the fetal posterior fossa. Pediatr Radiol 35:124–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Girard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogliarini, C., Chaumoitre, K., Chapon, F. et al. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation. Eur Radiol 15, 1671–1685 (2005). https://doi.org/10.1007/s00330-005-2782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2782-1

Keywords

Navigation