Skip to main content

Recent Advances in High-Temperature Fractionation of Polyolefins

Part of the Advances in Polymer Science book series (POLYMER,volume 251)

Abstract

The synthesis and characterization of polyolefins continues to be one of the most important areas for academic and industrial research. One consequence of the development of new “tailor-made” polyolefins is the need for new and improved analytical techniques for the analysis of polyolefins with respect to molar mass, molecular topology and chemical composition distribution. This review presents different new and relevant techniques for polyolefin analysis. The analysis of copolymers by combining high-temperature SEC and FTIR spectroscopy yields information on chemical composition and molecular topology as a function of molar mass. Crystallization based fractionation techniques are powerful methods for the analysis of short-chain branching in LLDPE and the analysis of polyolefin blends. These methods include temperature-rising elution fractionation, crystallization analysis fractionation and the recently developed crystallization-elution fractionation.

The latest development in the field of polyolefin fractionation is high-temperature interaction chromatography. Based on the principles of gradient HPLC and liquid chromatography at critical conditions this method is used for fast analysis of the chemical composition distribution of complex olefin copolymers. The efficiency of HPLC based systems for the separation of various olefin copolymers will be discussed. The ultimate development in high-temperature fractionation of polyolefins is comprehensive high-temperature two-dimensional liquid chromatography. The review will discuss some of the pioneering work that has been done since 2008.

Finally, the correlation between molar mass and chemical composition can be accessed by on-line coupling of high-temperature SEC and 1H-NMR spectroscopy. It is shown that the on-line NMR analysis of chromatographic fractions from high-temperature fractionations is possible and yields information on microstructure and tacticity in addition to molar mass and copolymer composition.

Keywords

  • Crystallization analysis fractionation
  • Field Flow Fractionation
  • High performance liquid chromatography
  • Hyphenated techniques
  • Liquid chromatography
  • Polyolefin analysis
  • SEC-NMR coupling
  • Size exclusion chromatography
  • Temperature rising elution fractionation
  • Two-dimensional liquid chromatography

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/12_2012_167
  • Chapter length: 64 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-34330-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Abbreviations

AFFFF, AF4:

Asymmetric flow field flow fractionation

A-TREF:

Analytical temperature rising elution fractionation

CCD:

Chemical composition distribution

CEF:

Crystallization elution fractionation

CRYSTAF:

Crystallization analysis fractionation

2D-LC:

Two-dimensional liquid chromatography

DSC:

Differential scanning calorimetry

EGMBE:

Ethylene glycol monobutylether

ELSD:

Evaporative light scattering detector

EPDM:

Ethylene-propylene-diene monomer

EVA:

Ethylene-vinyl acetate

FFF:

Field flow fractionation

FTIR:

Fourier transform infrared

HDPE:

High density polyethylene

HPLC:

High performance liquid chromatography

HT:

High temperature

IC:

Interactive chromatography

ICPP:

Impact polypropylene copolymer

IR:

Infrared

LAM:

Longitudinal acoustic mode

LCCC:

Liquid chromatography at critical conditions

LDPE:

Low-density polyethylene

LLDPE:

Linear low-density polyethylene

MALLS:

Multi angle laser light scattering

MALS:

Multi angle light scattering

MMA:

Methylmethacrylate

MT-AF4:

Medium temperature asymmetric flow field flow fractionation

M n :

Number average molar mass

M w :

Weight average molar mass

MM:

Molar mass

MMD:

Molar mass distribution

NMR:

Nuclear magnetic resonance

ODCB:

1,2-Dichlorobenzene

PBA:

Polybutylacrylate

PE:

Polyethylene

PMMA:

Polymethylmethacrylate

PP:

Polypropylene

PS-DVB:

Polystyrene-divinylbenzene copolymer

P-TREF:

Preparative temperature rising elution fractionation

PVAc:

Polyvinylacetate

RALLS:

Right angle laser light scattering

R g :

Radius of gyration

RI:

Refractive index

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

SSA:

Successive self-nucleation annealing

SSF:

Successive solution fractionation

TCB:

1,2,4-Trichlorobenzene

TGA:

Thermo-gravimetric analysis

TGIC:

Temperature gradient interactive chromatography

TREF:

Temperature rising elution fractionation

UHM:

Ultra high molar mass

VA:

Vinyl acetate

VIS:

Viscosimetric detector

WAXD:

Wide angle X-ray diffraction

References

  1. Kaminsky W, Arndt M (1997) Polymer synthesis/polymer catalysis. Springer, Berlin, pp 143–187

    CrossRef  Google Scholar 

  2. Seymour RB, Cheng T (eds) (1986) History of polyolefins. D. Reidel Publishing Co, Dordrecht

    Google Scholar 

  3. Scheirs J, Kaminsky W (2000) Metallocene-based polyolefins: preparation, properties and technology. Wiley, Hoboken

    Google Scholar 

  4. Kaminsky W (2008) Macromol Chem Phys 209:459–466

    CrossRef  Google Scholar 

  5. Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin

    Google Scholar 

  6. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography. Wiley, Hoboken

    CrossRef  Google Scholar 

  7. Flory PJ (1953) Principles of polymer chemistry, chaps 12 and 13. Cornell University Press, Ithaca

    Google Scholar 

  8. Wunderlich B (1980) Macromolecular physics, vol 3, chaps 8 and 10. Academic, New York

    Google Scholar 

  9. Desreux V, Spiegels M (1950) Bull Soc Chim Belg 59:476

    CrossRef  Google Scholar 

  10. Shirayama K, Okada T, Kita S (1965) J Polym Sci A 3:907916

    Google Scholar 

  11. Wild L (1991) Adv Polym Sci 98:1–47

    CrossRef  Google Scholar 

  12. Soares JBP, Hamielec AE (1995) Polymer 36:1639–1654

    CrossRef  Google Scholar 

  13. Anantawaraskul S, Soares JBP, Wood-Adams PM (2005) Adv Polym Sci 182:1–54

    CrossRef  Google Scholar 

  14. Tomba JP, Carella JM, Pastor JM (2005) J Polym Sci Part B: Polym Phys 43:3083–3092

    CrossRef  ADS  Google Scholar 

  15. Suzuki S, Nakamura Y, Kamrul Hasan ATM, Liu B, Terano M, Nakatani H (2005) Polym Bull 54:311–319

    CrossRef  Google Scholar 

  16. Kissin YV, Mirabella FM, Meverden CC (2005) J Polym Sci Part A: Polym Chem 43:4351–4362

    CrossRef  ADS  Google Scholar 

  17. Schmidt CU, Busch M, Lilge D, Wulkow M (2005) Macromol Mater Eng 290:404–414

    CrossRef  Google Scholar 

  18. Gupta P, Wilkes GL, Sukhadia AM, Krishnaswamy RK, Lamborn MJ, Wharry SM, Tso CC, DesLauriers PJ, Mansfield T, Beyer FL (2005) Polymer 46:8819–8837

    CrossRef  Google Scholar 

  19. Kamrul Hasan ATM, Liu B, Terano M (2005) Polym Bull 54:225–236

    CrossRef  Google Scholar 

  20. Liu Y, Bo S, Zhu Y, Zhang W (2005) J Appl Polym Sci 97:232–239

    CrossRef  Google Scholar 

  21. Xu JT, Jin W, Fu ZS, Fan ZQ (2005) J Appl Polym Sci 98:243–246

    CrossRef  Google Scholar 

  22. Zhang Y (2006) J Appl Polym Sci 99:845–851

    CrossRef  Google Scholar 

  23. Aust N, Gahleitner M, Reichelt K, Raninger B (2006) Polymer Testing 25:896–903

    CrossRef  Google Scholar 

  24. Kissin YV, Chadwick JC, Mingozzi I, Morini G (2006) Macromol Chem Phys 207:1344–1350

    CrossRef  Google Scholar 

  25. Assumption HJ, Vermeulen JP, Jarrett WL, Mathias LJ, van Reenen AJ (2006) Polymer 47:67–74

    CrossRef  Google Scholar 

  26. Harding GW, van Reenen AJ (2006) Macromol Chem Phys 207:1680–1690

    CrossRef  Google Scholar 

  27. Nakatani H, Matsuoka H, Suzuki S, Taniike T, Boping L, Terano M (2007) Macromol Symp 257:112–121

    CrossRef  Google Scholar 

  28. Caballero MJ, Suarez I, Coto B, Van Grieken R, Monrabal B (2007) Macromol Symp 257:122–130

    CrossRef  Google Scholar 

  29. Shan CLP, Hazlitt LG (2007) Macromol Symp 257:80–93

    CrossRef  Google Scholar 

  30. Ortin A, Monrabal B, Sancho-Tello J (2007) Macromol Symp 257:13–28

    CrossRef  Google Scholar 

  31. Soares JBP (2007) Macromol Symp 257:1–12

    CrossRef  Google Scholar 

  32. Tanase S, Katayama K, Yabunouchi N, Sadashima T, Tomotsu N, Ishihara N (2007) J Mol Catal A: Chem 273:211–217

    CrossRef  Google Scholar 

  33. Yau WW (2007) Macromol Symp 257:29–45

    CrossRef  Google Scholar 

  34. Nakatani H, Manabe N, Yokota Y, Minami H, Suzuki S, Yamaguchi F, Terano M (2007) Polym Int 56:1152–1158

    CrossRef  Google Scholar 

  35. Albrecht A, Brüll R, Macko T, Sinha P, Pasch H (2008) Macromol Chem Phy 209:1909–1919

    CrossRef  Google Scholar 

  36. Zhu H, Monrabal B, Han CC, Wang D (2008) Macromolecules 41:826–833

    CrossRef  ADS  Google Scholar 

  37. Stéphenne V, Bailly C, Berghmans H, Daoust D, Godard P (2008) Polym Int 57:1265–1274

    CrossRef  Google Scholar 

  38. Tochácek J, Jancár J, Kalfus J, Zborilová P, Burán Z (2008) Polym Degrad Stab 93:770–775

    CrossRef  Google Scholar 

  39. Amer I, van Reenen A (2009) Macromol Symp 282:33–40

    CrossRef  Google Scholar 

  40. Anantawaraskul S, Bongsontia W, Soares JBP (2009) Macromol Symp 282:167–174

    CrossRef  Google Scholar 

  41. Vadlamudi M, Subramanian G, Shanbhag S, Alamo RG, Varma-Nai M, Fiscus DM, Brown GM, Lu C, Ruff CJ (2009) Macromol Symp 282:1–13

    CrossRef  Google Scholar 

  42. Zhang Z (2009) Macromol Symp 282:111–127

    CrossRef  Google Scholar 

  43. Sun F, Fu Z, Xu J, Deng Q, Fan Z (2009) Int J Polym Anal Charact 14:437–453

    CrossRef  Google Scholar 

  44. Soo Ko Y, Jeon JK, Yim JH, Park YK (2009) Macromol Res 17:296–300

    CrossRef  Google Scholar 

  45. de Goede E, Mallon P, Pasch H (2010) Macromol Mater Eng 295:366–373

    CrossRef  Google Scholar 

  46. Hasan ATMK, Fang Y, Liu B, Terano M (2010) Polymer 51:3627–3635

    CrossRef  Google Scholar 

  47. Kuhlman RL, Klosin J (2010) Macromolecules 43:7903–7904

    CrossRef  Google Scholar 

  48. Jørgensen JK, Larsen Å, Helland I (2010) e-polymers 143

    Google Scholar 

  49. Harding GW, van Reenen AJ (2011) Eur Polym J 47:70–77

    CrossRef  Google Scholar 

  50. Monrabal B (1994) J Appl Polym Sci 52:491–499

    CrossRef  Google Scholar 

  51. Soares JBP, Anantawaraskul S (2005) J Polym Sci Part B: Polym Phys 43:1557–1570

    CrossRef  ADS  Google Scholar 

  52. Gemoets F, Hagen H (2005) Macromol Theory Simul 14:158–163

    CrossRef  Google Scholar 

  53. Weiser MS, Mülhaupt R (2006) Macromol Symp 236:111–116

    Google Scholar 

  54. Wet-Roos DDE, Toit ADU, Joubert DJ (2006) J Polym Sci Part A: Polym Chem 44:6847–6856

    CrossRef  ADS  Google Scholar 

  55. Weiser MS, Thomann Y, Heinz LC, Pasch H, Mülhaupt R (2006) Polymer 47:4505–4512

    CrossRef  Google Scholar 

  56. Monrabal B, Takeshi Shiono KN, Minoru T (2006) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 35–42

    Google Scholar 

  57. Anantawaraskul S, Soares JBP, Jirachaithorn P, Limtrakul J (2006) J Polym Sci Part B: Polym Phys 44:2749–2759

    CrossRef  ADS  Google Scholar 

  58. Luruli N, Heinz LC, Grumel V, Brüll R, Pasch H, Raubenheimer HG (2006) Polymer 47:56–66

    CrossRef  Google Scholar 

  59. Van Grieken R, Carrero A, Suarez I, Paredes B (2007) Macromol Symp 259:243–252

    CrossRef  Google Scholar 

  60. Anantawaraskul S, Jirachaithorn P, Soares JBP, Limtrakul J (2007) J Polym Sci Part B: Polym Phys 45:1010–1017

    CrossRef  ADS  Google Scholar 

  61. Kissin YV, Fruitwala HA (2007) J Appl Polym Sci 106:3872–3883

    CrossRef  Google Scholar 

  62. Islam MA, Hussein IA, Atiqullah M (2007) Eur Polym J 43:599–610

    CrossRef  Google Scholar 

  63. Anantawaraskul S, Soares JBP, Jirachaithorn P (2007) Macromol Symp 257:94–102

    CrossRef  Google Scholar 

  64. Macko T, Schulze U, Brüll R, Albrecht A, Pasch H, Fónagy T, Häussler L, Iván B (2008) Macromol Chem Phys 209:404–409

    CrossRef  Google Scholar 

  65. Kissin YV, Brandolini AJ, Garlick JL (2008) J Polym Sci Part A: Polym Chem 46:5315–5329

    CrossRef  ADS  Google Scholar 

  66. Anantawaraskul S, Somnukguandee P, Soares JBP, Limtrakul J (2009) J Polym Sci Part B: Polym Phys 47:866–876

    CrossRef  ADS  Google Scholar 

  67. Xia W, Taniike T, Terano M, Fujitani T, Liu B, Soares JBP (2009) Macromol Symp 285:74–80

    CrossRef  Google Scholar 

  68. Anantawaraskul S, Somnukguande P, Soares JBP (2009) Macromol Symp 282:205–215

    CrossRef  Google Scholar 

  69. Alghyamah AA, Soares JBP (2009) Macromol Rapid Comm 30:384–393

    CrossRef  Google Scholar 

  70. Alghyamah AA, Soares JBP (2009) Macromol Symp 285:81–89

    CrossRef  Google Scholar 

  71. Anantawaraskul S, Chokputtanawuttilerd N (2009) Macromol Symp 282:150–156

    CrossRef  Google Scholar 

  72. Macko T, Bruell R, Brinkmann C, Pasch H (2009) J Autom Meth Manag Chem No. 357026

    Google Scholar 

  73. Fischlschweiger M, Aust N, Oberaigner ER, Kock C (2010) Macromol Chem Phys 211:383–392

    CrossRef  Google Scholar 

  74. Gao F, Xia X, Mao B (2011) J Appl Polym Sci 120:36–42

    CrossRef  Google Scholar 

  75. Monrabal B, del Hierro P (2011) Anal Bioanal Chem 399:1557–1561

    CrossRef  Google Scholar 

  76. Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Macromol Symp 257:71–79

    CrossRef  Google Scholar 

  77. Monrabal B, Romero L, Mayo N, Sancho-Tello J (2009) Macromol Symp 282:14–24

    CrossRef  Google Scholar 

  78. Hermel-Davidock T, Cong R, Mehmet D (2010) Polymer Preprints 51:95–96

    Google Scholar 

  79. Suriya K, Anantawaraskul S, Soares JBP (2011) J Polym Sci Part B: Polym Phys 49:678–684

    CrossRef  ADS  Google Scholar 

  80. Pasch H, Trathnigg B (1997) HPLC of polymers. Springer, Berlin

    Google Scholar 

  81. Rao B, Balke ST, Mourey TH, Schunk TC (1996) J Chromatogr A 755:27–35

    CrossRef  Google Scholar 

  82. Ying Q, Xie P, Liu Y, Qian R (1986) J Liq Chromatogr 9:1233–1243

    CrossRef  Google Scholar 

  83. Ibhadon AO (1991) J Appl Polym Sci 42:1887–1890

    CrossRef  Google Scholar 

  84. Ying Q, Ye M (1985) Macromol Chem Rapid Comm 6:105–110

    CrossRef  Google Scholar 

  85. Parth M, Aust N, Lederer K (2003) Int J Polym Anal Charact 8:175–186

    CrossRef  Google Scholar 

  86. Mes EPC, De Jonge H, Klein T, Welz RR, Gillespie DT (2007) J Chromatogr A 1154:319–330

    CrossRef  Google Scholar 

  87. Pasti L, Melucci D, Contado C, Dondi F, Mingozzi I (2002) J Sep Sci 25:691–702

    CrossRef  Google Scholar 

  88. Sun T, Brant P, Chance RR, Graessley WW (2001) Macromolecules 34:6812–6820

    CrossRef  ADS  Google Scholar 

  89. Barth HG, Carlin FJ Jr (1984) J Liq Chromatogr 7:1717–1738

    CrossRef  Google Scholar 

  90. Pasch H (2000) Adv Polym Sci 150:1–66

    CrossRef  Google Scholar 

  91. Pang S, Rudin A (1992) Polymer 33:1949–1952

    CrossRef  Google Scholar 

  92. Wintermantel M, Antonietti M, Schmidt M (1993) J Appl Polym Sci Appl Polym Symp 52:91

    CrossRef  Google Scholar 

  93. Degoulet C, Nicolai T, Durand D, Busnel JP (1995) Macromolecules 28:6819–6824

    CrossRef  ADS  Google Scholar 

  94. Jackson C, Chen YJ, Mays JW (1996) J Appl Polym Sci 61:865–874

    CrossRef  Google Scholar 

  95. Yau WW, Arora KS (1994) Polym Mater Sci Eng 69:210

    Google Scholar 

  96. Jackson C, Barth HG (1994) Trends Polym Sci 2:203–207

    Google Scholar 

  97. Yau WW (1990) Chemtracts-Macromol Chem 1:1–36

    Google Scholar 

  98. Hellgeth JW, Taylor LT (1987) Anal Chem 59:295–300

    Google Scholar 

  99. Wang CP, Sparks DT, Williams SS, Isenhour TL (1984) Anal Chem 56:1268–1272

    CrossRef  Google Scholar 

  100. Johnson CC, Taylor LT (1984) Anal Chem 56:2642–2647

    CrossRef  Google Scholar 

  101. Sabo M, Gross J, Wang JS, Rosenberg IE (1985) Anal Chem 57:1822–1826

    CrossRef  Google Scholar 

  102. Kok SJ, Wold AS, Hankemeier T, Schoenmakers PJ (2003) J Chromatogr A 1017:83–96

    CrossRef  Google Scholar 

  103. Housaki T, Satoh K, Nishikida K, Morimoto M (1988) Makromol Chem Rapid Comm 9:525–528

    CrossRef  Google Scholar 

  104. Nishikida K, Housaki T, Morimoto M, Kinoshita T (1990) J Chromatogr A 517:209–217

    CrossRef  Google Scholar 

  105. Markovich RP, Hazlitt LG, Smith-Courtney L (1993) Chromatography of polymers. In: Provder T (ed) Characterization by SEC and FFF. ACS Symposium Series, vol 521. American Chemical Society, Washington, DC

    Google Scholar 

  106. Dhenin V, Rose LJ (2000) Polymer Preprints 41:285

    Google Scholar 

  107. DesLauriers PJ, Battiste DR (1995) ANTEC-SPE 53:3639

    Google Scholar 

  108. DesLauriers PJ, Rohlfing DC, Hsieh ET (2002) Polymer 43:159–170

    CrossRef  Google Scholar 

  109. DesLauriers PJ (2005) Measuring compositional heterogeneity in polyolefins using SEC/FTIR spectroscopy. In: Striegel A (ed) Multiple detection in size exclusion chromatography. ACS Symposium Series, vol 893. American Chemical Society, Washington, DC

    Google Scholar 

  110. Piel C, Albrecht A, Neubauer C, Klampfl CW, Reussner J (2001) Anal Bioanal Chem 400:2607–2613

    CrossRef  Google Scholar 

  111. Wheeler LM, Willis JN (1993) Appl Spectrosc 47:1128–1130

    CrossRef  ADS  Google Scholar 

  112. Willis JN, Dwyer JL, Liu MX (1995) Proc. Int. GPC Symp., Lake Buena Vista, p 345

    Google Scholar 

  113. Willis JN, Dwyer JL, Wheeler LM (1993) Polym Mat Sci 69:120–121

    Google Scholar 

  114. Polymer Standards Service (Mainz, Germany) webpage: www.polymer.de

  115. Pasch H (2001) Macromol Symp 165:91–98

    CrossRef  Google Scholar 

  116. Tackx P, Bremmers S (1997) Proc. ISPAC-10, Toronto, 42

    Google Scholar 

  117. Albrecht A, Bruell R, Macko T, Malz F, Pasch H (2009) Macromol Chem Phys 210:1319–1330

    CrossRef  Google Scholar 

  118. Albrecht A, Bruell R, Macko T, Sinha P, Pasch H (2008) Macromol Chem Phys 209:1909–1919

    CrossRef  Google Scholar 

  119. Heinz LC, Graef S, Macko T, Bruell R, Balk S, Keul H, Pasch H (2005) e-polymers 54

    Google Scholar 

  120. Macko T, Schulze U, Bruell R, Albrecht A, Pasch H, Fonagy T, Haeussler L, Ivan B (2008) Macromol Chem Phys 209:404–409

    CrossRef  Google Scholar 

  121. Verdurmen-Noel L, Baldo L, Bremmers S (2001) Polymer 42:5523–5529

    CrossRef  Google Scholar 

  122. de Goede S, Bruell R, Pasch H, Marshall N (2003) Macromol Symp 193:35–44

    CrossRef  Google Scholar 

  123. de Goede S, Bruell R, Pasch H, Marshall N (2004) e-polymers 012

    Google Scholar 

  124. de Goede E, Mallon P, Pasch H (2010) Macromol Mat Eng 295:366–373

    CrossRef  Google Scholar 

  125. de Goede E, Mallon P, Pasch H (2012) Macromol Mat Eng 297:26–38

    CrossRef  Google Scholar 

  126. de Goede E, Mallon P, Rode K, Pasch H (2011) Macromol Mat Eng 296:1018–1027

    CrossRef  Google Scholar 

  127. Graef S, Bruell R, Pasch H, Wahner UM (2003) e-polymers 005

    Google Scholar 

  128. Luruli N, Pipers T, Bruell R, Grumel V, Pasch H, Mathot VBF (2007) J Polym Sci Polym Phys 45:2956–2965

    CrossRef  Google Scholar 

  129. Kearney T, Dwyer JL (2008) Am Lab 40:8–9

    Google Scholar 

  130. Hiller W, Pasch H, Macko T, Hoffmann M, Ganz J, Spraul M, Braumann U, Streck R, Mason J, Van Damme F (2006) J Magn Res 183:290–302

    CrossRef  ADS  Google Scholar 

  131. Zhou Z, Kuemmerle R, Stevens JC, Redwine D, He Y, Qiu X, Cong R, Klosin J, Montanez N, Roof G (2009) J Magn Res 200:328–333

    CrossRef  ADS  Google Scholar 

  132. Zhou Z, Stevens JC, Klosin J, Kuemmerle R, Qiu X, Redwine D, Cong R, Taha A, Winniford B, Chauvel P, Montanez N (2009) Macromolecules 42:2291–2292

    CrossRef  ADS  Google Scholar 

  133. Cong R, de Groot AW, Parrott A, Yau W, Hazlitt L, Brown R, Miller MD, Zhou Z (2011) Macromolecules 44:3062–3072

    CrossRef  ADS  Google Scholar 

  134. Berek D (2000) Prog Polym Sci 25:873–908

    CrossRef  Google Scholar 

  135. Chang T (2003) Adv Polym Sci 163:1–60

    CrossRef  Google Scholar 

  136. Macko T, Pasch H, Kazakevich YV, Fadeev AY (2003) J Chromatogr A 988:69–76

    CrossRef  Google Scholar 

  137. Macko T, Pasch H, Denayer JF (2003) J Chromatogr A 1002:55–62

    CrossRef  Google Scholar 

  138. Macko T, Bruell R, Pasch H (2003) Chromatographia 57:S39–S43

    CrossRef  Google Scholar 

  139. Macko T, Denayer JF, Pasch H, Baron GV (2003) J Sep Sci 26:1569–1574

    CrossRef  Google Scholar 

  140. Macko T, Denayer JF, Pasch H, Pan L, Li J, Raphael A (2004) Chromatographia 59:461–467

    Google Scholar 

  141. Macko T, Pasch H, Denayer JF (2005) J Sep Sci 28:59–64

    CrossRef  Google Scholar 

  142. Wang X, Rusa CC, Hunt MA, Tonelli AE, Macko T, Pasch H (2005) Macromolecules 38:12040

    Google Scholar 

  143. Macko T, Bruell R, Zhu Y, Wang Y (2010) J Sep Sci 33:3446–3454

    CrossRef  Google Scholar 

  144. Macko T, Bruell R, Brinkmann C, Pasch H (2009) J Autom Meth Manag Chem ID 357026 (electronic journal)

    Google Scholar 

  145. Macko T, Pasch H, Bruell R (2006) J Chromatogr A 1115:81–87

    CrossRef  Google Scholar 

  146. Macko T, Pasch H, Milonjic SK, Hiller W (2006) Chromatographia 64:183–190

    CrossRef  Google Scholar 

  147. Heinz LC, Macko T, Williams A, O’Donohue S, Pasch H (2006) The column (electronic journal), Feb 13–19

    Google Scholar 

  148. Macko T, Hunkeler D (2003) Adv Polym Sci 163:61–136

    Google Scholar 

  149. Heinz LC, Macko T, Pasch H, Weiser MS, Mülhaupt R (2006) Int J Polym Anal Charact 11:47–55

    CrossRef  Google Scholar 

  150. Heinz LC, Graef S, Macko T, Brüll R, Balk S, Keul H, Pasch H (2005) e-polymers 054

    Google Scholar 

  151. Lehtinen A, Paukkeri R (1994) Macromol Chem Phys 195:1539–1556

    CrossRef  Google Scholar 

  152. Heinz LC, Pasch H (2005) Polymer 46:12040–12045

    CrossRef  Google Scholar 

  153. Albrecht A, Heinz LC, Lilge D, Pasch H (2007) Macromol Symp 257:46–55

    CrossRef  Google Scholar 

  154. Dolle V, Albrecht A, Brüll R, Macko T (2011) Macromol Chem Phys 212:959–970

    CrossRef  Google Scholar 

  155. Albrecht A, Brüll R, Macko T, Pasch H (2007) Macromolecules 40:5545–5551

    CrossRef  ADS  Google Scholar 

  156. Pasch H, Albrecht A, Bruell R, Macko T, Hiller W (2009) Macromol Symp 282:71–80

    CrossRef  Google Scholar 

  157. Gilbert MT, Knox JH, Kaur B (1982) Chromatographia 16:138–146

    CrossRef  Google Scholar 

  158. Macko T, Pasch H, Wang Y (2009) Macromol Symp 282:93–100

    CrossRef  Google Scholar 

  159. Macko T, Pasch H (2009) Macromolecules 42:6063–6067

    CrossRef  ADS  Google Scholar 

  160. Macko T, Brüll R, Wang Y (2009) Polym Prepr (Am Chem Soc Div Polym Chem) 50:228–229

    Google Scholar 

  161. Macko T, Brüll R, Alamo RG, Stadler FJ, Losio S (2011) Anal Bioanal Chem 399:1547–1556

    CrossRef  Google Scholar 

  162. Macko T, Brüll R, Alamo RG, Thomann Y, Grumel V (2009) Polymer 50:5443–5448

    CrossRef  Google Scholar 

  163. Macko T, Brüll R, Wang Y, Thomann Y (2009) Column (electronic journal) 4:15–19

    Google Scholar 

  164. Macko T, Brüll R, Wang Y, Coto B, Suarez I (2011) J App Polym Sci 122:3211–3217

    CrossRef  Google Scholar 

  165. Macko T, Cutillo F, Bussico V, Brüll R (2010) Macromol Symp 298:182–190

    CrossRef  Google Scholar 

  166. Chitta R, Macko T, Brüll R, van Doremaele G, Heinz LC (2011) J Polym Sci Part A: Polym Chem 49:1840–1846

    CrossRef  ADS  Google Scholar 

  167. Ginsburg A, Macko T, Dolle V, Bruell R (2011) Eur Polym J 47:319–329

    CrossRef  Google Scholar 

  168. Miller MD, deGroot AW, Lyons JW, Van Damme FA, Winniford BL (2011) J Appl Polym Sci 123:1238–1244

    CrossRef  Google Scholar 

  169. Macko T, paper in preparation

    Google Scholar 

  170. Lipatov YS, Sergeeva LM (1974) Adsorption of polymers. Wiley, New York

    Google Scholar 

  171. Lochmüller CH, Moebus MA, Liu QC, Jung C, Elomaa M (1996) J Chromatogr Sci 34:69–76

    Google Scholar 

  172. Lee HC, Chang T (1996) Polymer 37:S747–S749

    Google Scholar 

  173. Pasch H (2004) Characterization of polymer heterogeneity by 2D-LC. In: Striegel AM (ed) multiple detection in size-exclusion chromatography. ACS Symposium Series, vol 893. American Chemical Society, Washington, DC

    Google Scholar 

  174. Rittig F, Pasch H (2008) Multidimensional liquid chromatography in industrial applications. In: Cohen S, Schure M (eds) Multidimensional liquid chromatography: theory and applications in industrial chemistry and life sciences. Wiley, New York

    Google Scholar 

  175. Raust JA, Houillot L, Charleux B, Moire C, Farcet C, Pasch H (2010) Macromolecules 43:8755–8765

    CrossRef  ADS  Google Scholar 

  176. Mass V, Bellas V, Pasch H (2008) Macromol Chem Phys 209:2026–2039

    CrossRef  Google Scholar 

  177. Ginsburg A, Macko T, Dolle V, Bruell R (2010) J Chromatogr A 1217:6867–6874

    CrossRef  Google Scholar 

  178. Roy A, Miller MD, Meunier DM, de Groot AW, Winniford WL, van Damme FA, Pell RJ, Lyons JW (2010) Macromolecules 43:3710–3720

    CrossRef  ADS  Google Scholar 

  179. Lee D, Miller MD, Meunier DM, Lyons JW, Bonner JM, Pell RJ, Li Pi Chan C, Huang T (2011) J Chromatogr A 1218:7173–7179

    CrossRef  Google Scholar 

  180. Myers MN (1997) J Microcolumn Sep 9:151–162

    CrossRef  Google Scholar 

  181. Giddings JC (1993) Science 260:1456–1466

    CrossRef  ADS  Google Scholar 

  182. Williams SKR, Lee D (2006) J Sep Sci 29:1720–1732

    CrossRef  Google Scholar 

  183. Williams SKR, Benincasa MA (2000) Field-flow fractionation analysis of polymers and rubbers. In: Meyers RA (ed) Encyclopedia of analytical chemistry: instrumentation and applications. Wiley, Chichester, pp 7582–7608

    Google Scholar 

  184. Lee D, Williams SKR (2005) Proc. 56th Pittsburgh conference on analytical chemistry and applied spectroscopy

    Google Scholar 

  185. Schimpf ME, Caldwell KD, Giddings JC (eds) (2000) Field-flow fractionation handbook. Wiley, New York

    Google Scholar 

  186. Janca J (1988) Field-flow fractionation: analysis of macromolecules and particles. In: Chromatographic science series, vol 39. Marcel Dekker, NY

    Google Scholar 

  187. Benincasa MA, Giddings JC (1997) J Microcolumn Sep 9:479–495

    CrossRef  Google Scholar 

  188. Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation. Wiley, Hoboken

    CrossRef  Google Scholar 

  189. Lee H, Williams SKR, Wahl KL, Valentine NB (2003) Anal Chem 75:2746–2752

    CrossRef  Google Scholar 

  190. Giddings JC (1966) Sep Sci 1:123–125

    CrossRef  Google Scholar 

  191. Caldwell KD, Kesner LF, Myers MN, Giddings JC (1972) Science 176:296–298

    CrossRef  ADS  Google Scholar 

  192. Liu G, Giddings JC (1992) Chromatographia 3:483–492

    CrossRef  Google Scholar 

  193. Wahlund KG, Giddings JC (1987) Anal Chem 59:1332–1339

    CrossRef  Google Scholar 

  194. Kirkland JJ, Yau WW, Szoka FC (1982) Science 215:296–298

    CrossRef  ADS  Google Scholar 

  195. Giddings JC, Myers NM, Caldwell KD (1981) J Sep Sci Tech 16:549–575

    CrossRef  Google Scholar 

  196. Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Ratanathanawongs Williams SK (2009) Prog Polym Sci 34:351–368

    CrossRef  Google Scholar 

  197. Miller ME, Giddings JC (1998) J Micro Sep 10:75–78

    CrossRef  Google Scholar 

  198. Gao S, Caldwell D, Myers N, Giddings JC (1985) Macromolecules 18:1272–1277

    CrossRef  ADS  Google Scholar 

  199. Otte T, Macko T, Brüll R, Pasch H (2009) Polymer Preprints 50(2):727

    Google Scholar 

  200. Otte T, Brüll R, Macko T, Klein T, Pasch H (2010) J Chromatogr A 1217:722–730

    CrossRef  Google Scholar 

  201. Otte T, Pasch H, Macko T, Brüll R, Stadler FJ, Kaschta J, Becker F, Buback M (2011) J Chromatogr A 1218:4257–4267

    CrossRef  Google Scholar 

  202. Otte T, Klein T, Brüll R, Macko T, Pasch H (2011) J Chromatogr A 1218:4240–4248

    CrossRef  Google Scholar 

  203. Otte T, Pasch H, Brüll R, Macko T (2011) Macromol Chem Phys 212:401–410

    Google Scholar 

  204. Le Guillou JC, Zinn-Justin J (1977) Phys Rev Lett 39:95–98

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Pasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pasch, H., Malik, M.I., Macko, T. (2012). Recent Advances in High-Temperature Fractionation of Polyolefins. In: Abe, A., Kausch, HH., Möller, M., Pasch, H. (eds) Polymer Composites – Polyolefin Fractionation – Polymeric Peptidomimetics – Collagens. Advances in Polymer Science, vol 251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2012_167

Download citation