Skip to main content
Log in

Separation of particles in aqueous suspensions by thermal field-flow fractionation. Measurement of thermal diffusion coefficients

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Thermal field-flow fractionation, which for over two decades has been focused on the separation and characterization of polymers in nonaqueous solutions, is shown here to be capable of separating various latex and silica particles in aqueous suspensions. Both submicron (down to 30 nm diameter) and micron sized particles are separable by normal and steric modes of thermal FFF, respectively. The selectivity is intermediate between that of sedimentation FFF and flow FFF. For normal mode operation, resolution, speed, and size range are flexibly controlled by adjustments in the field strength and flowrate. The thermal diffusion phenomenon underlying separation is investigated and thermal diffusion coefficients are obtained from the thermal FFF data. Thermal diffusivity differs somewhat among different types of latex particles but is stronger for all latexes than for silica particles. The implications for compositional as well as size analysis are discussed. The behavior of particles and polymers in a strong temperature gradient are compared and shown to differ in several significant respects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Giddings, Sep. Sci.1, 123 (1966).

    Google Scholar 

  2. J. C. Giddings, K. D. Caldwell, in “Physical Methods of Chemistry”, Vol. 3B,B. W. Rossiter, J. F. Hamilton, eds., John Wiley, New York, 1989, p. 867.

    Google Scholar 

  3. J. C. Giddings, Chem. Eng. News66 (Oct. 10), 34 (1988).

    Google Scholar 

  4. J. C. Giddings, J. Chromatogr.470, 327 (1989).

    Google Scholar 

  5. J. C. Giddings, J. Chromatogr.125, 3 (1976).

    Google Scholar 

  6. H. K. Jones, K. Phelan, M. N. Myers, J. C. Giddings, J. Colloid Interface Sci.120, 14 (1987).

    Google Scholar 

  7. H. K. Jones, J. C. Giddings, Anal. Chem.61, 741 (1989).

    Google Scholar 

  8. J. C. Giddings, G. Kariaskakis, K. D. Caldwell, Sep. Sci. Technol.16, 607 (1981).

    Google Scholar 

  9. J. J. Kirkland, W. W. Yau, Anal. Chem.55, 2165 (1983).

    Google Scholar 

  10. K. D. Caldwell, H. K. Jones, J. C. Giddings, Colloids Surf.18, 123 (1986).

    Google Scholar 

  11. S. K. Ratanathanawongs, J. C. Giddings, in “Particle Size Distribution II: Assessment and Characterization”,T. Provder, ed., ACS Symp. Series No. 472, American Chemical Society, Washington, DC, 1991, chap. 15.

    Google Scholar 

  12. G. Liu, J. C. Giddings, Anal. Chem.63, 296 (1991).

    Google Scholar 

  13. P. S. Epstein, Z. Phys.54, 537 (1929).

    Google Scholar 

  14. M. M. R. Williams, J. Colloid Interface Sci.122, 110 (1988).

    Google Scholar 

  15. F. S. Gaeta, Phys. Rev.182, 289 (1969).

    Google Scholar 

  16. H. A. Dwyer, AEC Tech. Rep. 107-ME-F, Feb. 1966.

  17. H. J. V. Tyrell, “Diffusion and Heat Flow in Liquids”, Butterworths, London, 1961.

    Google Scholar 

  18. R. J. Bearman, J. G. Kirkwood, M. Fixman, Advanc. Chem. Phys.1, 1 (1958).

    Google Scholar 

  19. A. H. Emery, H. G. Drickamer, J. Chem. Phys.23, 2252 (1955).

    Google Scholar 

  20. J. S. Ham, J. Appl. Phys.31, 1853 (1960).

    Google Scholar 

  21. J. C. Giddings, M. E. Hovingh, G. H. Thompson, J. Phys. Chem.74, 4291 (1970).

    Google Scholar 

  22. J. C. Giddings, K. D. Caldwell, M. N. Myers, Macromolecules,9, 106 (1976).

    Google Scholar 

  23. J. C. Gunderson, J. C. Giddings, Macromolecules,19, 2618 (1986).

    Google Scholar 

  24. M. E. Schimpf, J. C. Giddings, Macromolecules,20, 1561 (1987).

    Google Scholar 

  25. M. E. Schimpf, J. C. Giddings, J. Polym. Sci.: Polym. Phys. Ed.27, 1317 (1989).

    Google Scholar 

  26. M. E. Schimpf, J. C. Giddings, J. Polym. Sci.: Part B: Polym. Phys.28, 2673 (1990).

    Google Scholar 

  27. K.-C. Song, E.-K. Kim, I.-J. Chung, Korean J. of Chem. Eng.3, 171 (1986).

    Google Scholar 

  28. M. Martin, R. Reynaud, Anal. Chem.52, 2293 (1980).

    Google Scholar 

  29. M. N. Myers, K. D. Caldwell, J. C. Giddings, Sep. Sci.9, 47 (1974).

    Google Scholar 

  30. J. J. Gunderson, K. D. Caldwell, J. C. Giddings, Sep. Sci. Technol.19, 667 (1984).

    Google Scholar 

  31. H. K. Jones, B. N. Barman, J. C. Giddings, J. Chromatogr.455, 1 (1988).

    Google Scholar 

  32. M. E. Schimpf, M. N. Myers, J. C. Giddings, J. Appl. Polym. Sci.33, 117 (1987).

    Google Scholar 

  33. J. C. Giddings, M. H. Moon, P. S. Williams, M. C. Myers, Anal. Chem.63, 1366 (1991).

    Google Scholar 

  34. J. C. Giddings, Sep. Sci. Technol.19, 831 (1984).

    Google Scholar 

  35. J. J. Kirkland, W. W. Yau, J. Chromatogr.353, 95 (1986).

    Google Scholar 

  36. S. L. Brimhall, M. N. Myers, K. D. Caldwell, J. C. Giddings, J. Polym. Sci.: Polym. Phys. Ed.23, 2445 (1985).

    Google Scholar 

  37. J. C. Giddings, L. K. Smith, M. N. Myers, Anal. Chem.48, 1587 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deicated to Professor Leslie S. Ettre on the occasion of this 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Giddings, J.C. Separation of particles in aqueous suspensions by thermal field-flow fractionation. Measurement of thermal diffusion coefficients. Chromatographia 34, 483–492 (1992). https://doi.org/10.1007/BF02290241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02290241

Key Words

Navigation