Skip to main content

When Is an In Silico Representation a Digital Twin? A Biopharmaceutical Industry Approach to the Digital Twin Concept

  • Chapter
  • First Online:
Digital Twins

Abstract

Digital twins (DTs) are expected to render process development and life-cycle management much more cost-effective and time-efficient. A DT definition, a brief retrospect on their history and expectations for their deployment in today’s business environment, and a detailed financial assessment of their attractive economic benefits are provided in this chapter. The argument that restrictive guidelines set forth by regulatory agencies would hinder the adoption of DTs in the (bio)pharmaceutical industry is revisited, concluding that those companies who collaborate with the agencies to further their technical capabilities will gain significant competitive advantage. The analyzed process development examples show high methodological readiness levels but low systematic adoption of technology. Given the technical feasibilities, financial opportunities, and regulatory encouragement, concerns regarding intellectual property and data sharing, though required to be taken into account, will at best delay an industry-wide adoption of DTs. In conclusion, it is expected that a strategic investment in DTs now will gain an advantage over competition that will be difficult to overcome by late adopters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dessoy S, Varsakelis C (2019) Digital twin for a vaccine process. In: Paper presented at the PDA Europe, Munich, Germany, 3-4 Sept

    Google Scholar 

  2. Grieves M (2019) Virtually intelligent product systems: digital and physical twins. Complex Syst Eng Theor Pract:175–200. https://doi.org/10.2514/5.9781624105654.0175.0200

  3. Rosen R, von Wichert G, Lo G, Bettenhausen KD (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC-Papers Online 48(3):567–572. https://doi.org/10.1016/j.ifacol.2015.06.141

    Article  Google Scholar 

  4. Cimino C, Negri E, Fumagalli L (2019) Review of digital twin applications in manufacturing. Comput Ind 113:103130. https://doi.org/10.1016/j.compind.2019.103130

    Article  Google Scholar 

  5. Boeing. https://www.boeing.com/history/products/777.page

  6. Wasserman S (2018) SAE to create standards for IoT, Big Data and the digital twin in the aerospace industry. https://www.engineering.com/IOT/ArticleID/16278/SAE-to-Create-Standards-for-IoT-Big-Data-and-the-Digital-Twin-in-the-Aerospace-Industry.aspx

  7. Varsakelis C, Dessoy S, von Stosch M, Pysik A (2019) Show me the money! Process modeling in pharma from the investor’s point of view. PRO 7(9). https://doi.org/10.3390/pr7090596

  8. Zobel-Roos S, Schmidt A, Mestmäcker F, Mouellef M, Huter M, Uhlenbrock L, Kornecki M, Lohmann L, Ditz R, Strube J (2019) Accelerating biologics manufacturing by modeling or: is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? PRO 7(2). https://doi.org/10.3390/pr7020094

  9. Plotkin S, Robinson JM, Cunningham G, Iqbal R, Larsen S (2017) The complexity and cost of vaccine manufacturing - an overview. Vaccine 35(33):4064–4071. https://doi.org/10.1016/j.vaccine.2017.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  Google Scholar 

  11. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 9(3):203–214. https://doi.org/10.1038/nrd3078

    Article  CAS  PubMed  Google Scholar 

  12. Mestre-Ferrandiz J, Sussex J, Towse A (2012) The R&D cost of a new medicine. Office Health Econ

    Google Scholar 

  13. Moore TJ, Zhang H, Anderson G, Alexander GC (2018) Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration, 2015-2016. JAMA Intern Med 178(11):1451–1457. https://doi.org/10.1001/jamainternmed.2018.3931

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martin L, Hutchens M, Hawkins C, Radnov A (2017) How much do clinical trials cost? Nat Rev Drug Discov 16(6):381–382. https://doi.org/10.1038/nrd.2017.70

    Article  CAS  PubMed  Google Scholar 

  15. Basu P, Joglekar G, Rai S, Suresh P, Vernon J (2008) Analysis of manufacturing costs in pharmaceutical companies. J Pharm Innov 3(1):30–40. https://doi.org/10.1007/s12247-008-9024-4

    Article  Google Scholar 

  16. Gyurjyan G, Thaker S, Westhues K, Zwaanstra C (2017) Rethinking pharma productivity. Pharm Med Prod

    Google Scholar 

  17. Bunnak P, Allmendinger R, Ramasamy SV, Lettieri P, Titchener-Hooker NJ (2016) Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs. Biotechnol Prog 32(5):1324–1335. https://doi.org/10.1002/btpr.2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macher J, Nickerson J (2006) Pharmaceutical manufacturing research project: final benchmarking report. In: Georgetown University working paper

    Google Scholar 

  19. Garvin DA (1988) Managing quality: the strategic and competitive edge. Free Press

    Google Scholar 

  20. Macher J (2011) Business case for quality. In: Pharmaceutical quality system (ICH 10) Conference, Brussels, Belgium

    Google Scholar 

  21. Ayd S (2017) Managing the cost of non-compliance. Pharm Technol 41(11):54–57

    Google Scholar 

  22. Cullen PJ, O'Donnell CP, Fagan CC (2014) Benefits and challenges of adopting PAT for the food industry. In: O’Donnell C, Cullen P (eds) Process analytical technology for the food industry. Food engineering series. Springer, New York

    Google Scholar 

  23. Food and Drug Administration USA (2004) Guidance for industry: PAT, a framework for innovative pharmaceutical development, manufacturing, and quality assurance. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research

    Google Scholar 

  24. Rosencrance S (2019) FDA’s structured knowledge (KASA) initiative. In: QRM summit, Ericeira, Portugal

    Google Scholar 

  25. Anderson M, Cassell G, Freir M, Goldman L, Honig P, Kushner F, McLellan M, McNeil B, Philbert M, Psaty B, Russell A, Sigal E (2015) Mission possible: how FDA can move at the speed of science

    Google Scholar 

  26. Su Q, Ganesh S, Moreno M, Bommireddy Y, Gonzalez M, Reklaitis GV, Nagy ZK (2019) A perspective on quality-by-control (QbC) in pharmaceutical continuous manufacturing. Comput Chem Eng 125:216–231. https://doi.org/10.1016/j.compchemeng.2019.03.001

    Article  CAS  Google Scholar 

  27. Sommeregger W, Sissolak B, Kandra K, von Stosch M, Mayer M, Striedner G (2017) Quality by control: towards model predictive control of mammalian cell culture bioprocesses. Biotechnol J 12(7):1600546. https://doi.org/10.1002/biot.201600546

    Article  CAS  Google Scholar 

  28. Rantanen J, Khinast J (2015) The future of pharmaceutical manufacturing sciences. J Pharm Sci 104(11):3612–3638. https://doi.org/10.1002/jps.24594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Velugula-Yellela SR, Kohnhorst C, Powers DN, Trunfio N, Faustino A, Angart P, Berilla E, Faison T, Agarabi C (2018) Use of high-throughput automated microbioreactor system for production of model IgG1 in CHO cells. J Vis Exp 139:58231. https://doi.org/10.3791/58231

    Article  Google Scholar 

  30. Bareither R, Bargh N, Oakeshott R, Watts K, Pollard D (2013) Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study. Biotechnol Bioeng 110(12):3126–3138. https://doi.org/10.1002/bit.24978

    Article  CAS  PubMed  Google Scholar 

  31. Manahan M, Nelson M, Cacciatore JJ, Weng J, Xu S, Pollard J (2019) Scale-down model qualification of ambr® 250 high-throughput mini-bioreactor system for two commercial-scale mAb processes. Biotechnol Prog 35(6):e2870. https://doi.org/10.1002/btpr.2870

    Article  CAS  PubMed  Google Scholar 

  32. Sadowski MI, Grant C, Fell TS (2016) Harnessing QbD, programming languages, and automation for reproducible biology. Trends Biotechnol 34(3):214–227. https://doi.org/10.1016/j.tibtech.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  33. Karlberg M, von Stosch M, Glassey J (2018) Exploiting mAb structure characteristics for a directed QbD implementation in early process development. Crit Rev Biotechnol 38(6):957–970. https://doi.org/10.1080/07388551.2017.1421899

    Article  PubMed  Google Scholar 

  34. Narayanan H, Luna MF, von Stosch M, Cruz Bournazou MN, Polotti G, Morbidelli M, Butté A, Sokolov M (2020) Bioprocessing in the digital age: the role of process models. Biotechnol J 15(1):1900172. https://doi.org/10.1002/biot.201900172

    Article  CAS  Google Scholar 

  35. Patterson EA, Whelan MP (2017) A framework to establish credibility of computational models in biology. Prog Biophys Mol Biol 129:13–19. https://doi.org/10.1016/j.pbiomolbio.2016.08.007

    Article  PubMed  Google Scholar 

  36. Thacker BH, Doebling SW, Hemez FM, Anderson MC, Pepin JE, Rodriguez EA (2004) Concepts of model verification and validation. United States

    Google Scholar 

  37. O’Connor T (2019) Perspective on the validation of computational models for establishing control strategies. In: 4th FDA/PQRI conference on advancing product quality breakout summaries, Rockville, Maryland

    Google Scholar 

  38. Chatterjee S (2019) Implementing models in pharmaceutical manufacturing: FDA perspective. In: IFPAC 2019 annual meeting - international foundation process analytical chemistry, Bethesda, Maryland

    Google Scholar 

  39. Madurawe R (2019) A regulatory perspective on advanced control strategies: including process analytic technologies and artificial intelligence. In: ISPE annual meeting and Expo, Las Vegas, Nevada

    Google Scholar 

  40. Guerra A, von Stosch M, Glassey J (2019) Toward biotherapeutic product real-time quality monitoring. Crit Rev Biotechnol 39(3):289–305. https://doi.org/10.1080/07388551.2018.1524362

    Article  CAS  PubMed  Google Scholar 

  41. Jenzsch M, Bell C, Buziol S, Kepert F, Wegele H, Hakemeyer C (2018) Trends in process analytical technology: present state in bioprocessing. In: Kiss B, Gottschalk U, Pohlscheidt M (eds) New bioprocessing strategies: development and manufacturing of recombinant antibodies and proteins. Springer, Cham, pp 211–252. https://doi.org/10.1007/10_2017_18

    Chapter  Google Scholar 

  42. Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z (2014) The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 192:323–338. https://doi.org/10.1016/j.jbiotec.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  43. von Stosch M, Hamelink J-M, Oliveira R (2016) Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study. Bioprocess Biosyst Eng 39(5):773–784. https://doi.org/10.1007/s00449-016-1557-1

    Article  CAS  Google Scholar 

  44. Simutis R, Lübbert A (2017) Hybrid approach to state estimation for bioprocess control. Bioengineering 4(1). https://doi.org/10.3390/bioengineering4010021

  45. O'Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161(5):971–987. https://doi.org/10.1016/j.cell.2015.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh D, Lercher MJ (2020) Network reduction methods for genome-scale metabolic models. Cell Mol Life Sci 77(3):481–488. https://doi.org/10.1007/s00018-019-03383-z

    Article  CAS  PubMed  Google Scholar 

  47. Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov 17(2):97–113. https://doi.org/10.1038/nrd.2017.232

    Article  CAS  PubMed  Google Scholar 

  48. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival Jr B, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401. https://doi.org/10.1016/j.cell.2012.05.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Szigeti B, Roth YD, Sekar JAP, Goldberg AP, Pochiraju SC, Karr JR (2018) A blueprint for human whole-cell modeling. Curr Opin Syst Biol 7:8–15. https://doi.org/10.1016/j.coisb.2017.10.005

    Article  PubMed  Google Scholar 

  50. Carrera J, Covert MW (2015) Why build whole-cell models? Trends Cell Biol 25(12):719–722. https://doi.org/10.1016/j.tcb.2015.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  51. Feig M, Sugita Y (2019) Whole-cell models and simulations in molecular detail. Annu Rev Cell Dev Biol 35(1):191–211. https://doi.org/10.1146/annurev-cellbio-100617-062542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  53. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, KRM S, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The Cancer genome atlas pan-Cancer analysis project. Nat Genet 45(10):1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  Google Scholar 

  54. Richelle A, Von Stosch M (2020) From big data to precise understanding: the quest for meaningful information. BioProcess Int. https://bioprocessintl.com/manufacturing/information-technology/systems-biology-tools-for-big-data-in-the-biopharmaceutical-industry/

Download references

Competing Interests

All authors are or were, at the time of the study and the writing of this chapter, employees of the GSK group of companies. R.P., C.V., A.R., N.G., J.P., and S.D. report ownership of shares and/or restricted shares in GSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz von Stosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Portela, R.M.C. et al. (2020). When Is an In Silico Representation a Digital Twin? A Biopharmaceutical Industry Approach to the Digital Twin Concept. In: Herwig, C., Pörtner, R., Möller, J. (eds) Digital Twins. Advances in Biochemical Engineering/Biotechnology, vol 176. Springer, Cham. https://doi.org/10.1007/10_2020_138

Download citation

Publish with us

Policies and ethics