Skip to main content

Impedimetric Aptamer-Based Biosensors: Applications

  • Chapter
  • First Online:
Aptamers in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 174))

Abstract

Impedimetric aptamer-based biosensors show high potential for handheld devices and point-of-care tests. In this review, we report on recent advances in aptamer-based impedimetric biosensors for applications in biotechnology. We detail on analytes relevant in medical and environmental biotechnology as well as food control, for which aptamer-based impedimetric biosensors were developed. The reviewed biosensors are examined for their performance, including sensitivity, selectivity, response time, and real sample validation. Additionally, the benefits and challenges of impedimetric aptasensors are summarized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jo H, Kim SK, Youn H, Lee H, Lee K, Jeong J, Mok J, Kim SH, Park HS, Ban C (2016) A highly sensitive and selective impedimetric aptasensor for interleukin-17 receptor A. Biosens Bioelectron 81:80–86. https://doi.org/10.1016/j.bios.2016.02.050

    Article  CAS  PubMed  Google Scholar 

  2. Ocaña C, del Valle M (2014) Signal amplification for thrombin impedimetric aptasensor: sandwich protocol and use of gold-streptavidin nanoparticles. Biosens Bioelectron 54:408–414. https://doi.org/10.1016/j.bios.2013.10.068

    Article  CAS  PubMed  Google Scholar 

  3. Qi H, Shangguan L, Li C, Li X, Gao Q, Zhang C (2013) Sensitive and antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample. Biosens Bioelectron 39(1):324–328. https://doi.org/10.1016/j.bios.2012.07.040

    Article  CAS  PubMed  Google Scholar 

  4. Snyderman R (2012) Personalized health care: from theory to practice. Biotechnol J 7(8):973–979. https://doi.org/10.1002/biot.201100297

    Article  CAS  PubMed  Google Scholar 

  5. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease application to clinical and public health practice – a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 107(3):499–511. https://doi.org/10.1161/01.Cir.0000052939.59093.45

    Article  PubMed  Google Scholar 

  6. Qureshi A, Gurbuz Y, Kallempudi S, Niazi JH (2010) Label-free RNA aptamer-based capacitive biosensor for the detection of C-reactive protein. Phys Chem Chem Phys 12(32):9176–9182. https://doi.org/10.1039/c004133e

    Article  CAS  PubMed  Google Scholar 

  7. Piccoli J, Hein R, El-Sagheer AH, Brown T, Cilli EM, Bueno PR, Davis JJ (2018) Redox capacitive assaying of C-reactive protein at a peptide supported aptamer interface. Anal Chem 90(5):3005–3008. https://doi.org/10.1021/acs.analchem.7b05374

    Article  CAS  PubMed  Google Scholar 

  8. Aray A, Chiavaioli F, Arjmand M, Trono C, Tombelli S, Giannetti A, Cennamo N, Soltanolkotabi M, Zeni L, Baldini F (2016) SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. J Biophotonics 9(10):1077–1084. https://doi.org/10.1002/jbio.201500315

    Article  CAS  PubMed  Google Scholar 

  9. Bryan T, Luo XL, Bueno PR, Davis JJ (2013) An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens Bioelectron 39(1):94–98. https://doi.org/10.1016/j.bios.2012.06.051

    Article  CAS  PubMed  Google Scholar 

  10. Bing X, Wang G (2017) Label free C-reactive protein detection based on an electrochemical sensor for clinical application. Int J Electrochem Sci 12(7):6304–6314

    Article  CAS  Google Scholar 

  11. Wu B, Jiang R, Wang Q, Huang J, Yang XH, Wang KM, Li WS, Chen ND, Li Q (2016) Detection of C-reactive protein using nanoparticle- enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun 52(17):3568–3571. https://doi.org/10.1039/c5cc10486f

    Article  CAS  Google Scholar 

  12. Zubiate P, Zamarreno CR, Sanchez R, Matias IR, Arregui FJ (2017) High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices. Biosens Bioelectron 93:176–181. https://doi.org/10.1016/j.bios.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  13. Vasilescu A, Wang Q, Li MS, Boukherroub R, Szunerits S (2016) Aptamer-based electrochemical sensing of lysozyme. Chemosensors 4(2):20. https://doi.org/10.3390/chemosensors4020010

    Article  CAS  Google Scholar 

  14. Peng Y, Zhang D, Li Y, Qi H, Gao Q, Zhang C (2009) Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Biosens Bioelectron 25(1):94–99. https://doi.org/10.1016/j.bios.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  15. Xia Y, Gan S, Xu Q, Qiu X, Gao P, Huang S (2013) A three-way junction aptasensor for lysozyme detection. Biosens Bioelectron 39(1):250–254. https://doi.org/10.1016/j.bios.2012.07.053

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Zhang S, He L, Peng D, Yan F, Wang M, Zhao J, Zhang H, Fang S (2015) Feasible electrochemical biosensor based on plasma polymerization-assisted composite of polyacrylic acid and hollow TiO2 spheres for sensitively detecting lysozyme. Biosens Bioelectron 74:384–390. https://doi.org/10.1016/j.bios.2015.06.062

  17. Chen ZB, Li LD, Zhao HT, Guo L, Mu XJ (2011) Electrochemical impedance spectroscopy detection of lysozyme based on electrodeposited gold nanoparticles. Talanta 83(5):1501–1506. https://doi.org/10.1016/j.talanta.2010.11.042

    Article  CAS  PubMed  Google Scholar 

  18. Khan NI, Maddaus AG, Song E (2018) A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors 8(1):7. https://doi.org/10.3390/bios8010007

    Article  CAS  PubMed Central  Google Scholar 

  19. Dong YP, Wang J, Peng Y, Zhu JJ (2017) A novel aptasensor for lysozyme based on electrogenerated chemiluminescence resonance energy transfer between luminol and silicon quantum dots. Biosens Bioelectron 94:530–535. https://doi.org/10.1016/j.bios.2017.03.044

    Article  CAS  PubMed  Google Scholar 

  20. Krenzlin H, Lorenz V, Danckwardt S, Kempski O, Alessandri B (2016) The importance of thrombin in cerebral injury and disease. Int J Mol Sci 17(1):84. https://doi.org/10.3390/ijms17010084

    Article  CAS  PubMed Central  Google Scholar 

  21. Deng CY, Chen JH, Nie LH, Nie Z, Yao SZ (2009) Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Anal Chem 81(24):9972–9978. https://doi.org/10.1021/ac901727z

    Article  CAS  PubMed  Google Scholar 

  22. Lu L, Li J, Kang T, Cheng S (2015) Bi-functionalized aptasensor for ultrasensitive detection of thrombin. Talanta 138:273–278. https://doi.org/10.1016/j.talanta.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  23. Heydari-Bafrooei E, Amini M, Ardakani MH (2016) An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Biosens Bioelectron 85:828–836. https://doi.org/10.1016/j.bios.2016.06.012

  24. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567. https://doi.org/10.1038/nri2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tertiş M, Ciui B, Suciu M, Săndulescu R, Cristea C (2017) Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim Acta 258:1208–1218. https://doi.org/10.1016/j.electacta.2017.11.176

    Article  CAS  Google Scholar 

  26. Jo H, Gu H, Jeon W, Youn H, Her J, Kim SK, Lee J, Shin JH, Ban C (2015) Electrochemical Aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal Chem 87(19):9869–9875. https://doi.org/10.1021/acs.analchem.5b02312

    Article  CAS  PubMed  Google Scholar 

  27. Boriani G, Biffi M, Cervi V, Bronzetti G, Magagnoli G, Zannoli R, Branzi A (2000) Evaluation of myocardial injury following repeated internal atrial shocks by monitoring serum cardiac troponin I levels. Chest 118(2):342–347. https://doi.org/10.1378/chest.118.2.342

    Article  CAS  PubMed  Google Scholar 

  28. Wang B, Jing R, Qi HL, Gao Q, Zhang CX (2016) Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin I incorporating gold nanoparticles modified carbon electrode. J Electroanal Chem 781:212–217. https://doi.org/10.1016/j.jelechem.2016.08.005

    Article  CAS  Google Scholar 

  29. Akter R, Jeong B, Lee YM, Choi JS, Rahman MA (2017) Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor. Biosens Bioelectron 91:637–643. https://doi.org/10.1016/j.bios.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  30. Jorgensen P, Chanthap L, Rebueno A, Tsuyuoka R, Bell D (2006) Malaria rapid diagnostic tests in tropical climates: the need for a cool chain. Am J Trop Med Hyg 74(5):750–754. https://doi.org/10.4269/ajtmh.2006.74.750

    Article  PubMed  Google Scholar 

  31. Lee S, Song KM, Jeon W, Jo H, Shim YB, Ban C (2012) A highly sensitive aptasensor towards plasmodium lactate dehydrogenase for the diagnosis of malaria. Biosens Bioelectron 35(1):291–296. https://doi.org/10.1016/j.bios.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  32. Figueroa-Miranda G, Feng L, Shiu SC-C, Dirkzwager RM, Cheung Y-W, Tanner JA, Schöning MJ, Offenhäusser A, Mayer D (2018) Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability. Sensors Actuators B Chem 255:235–243. https://doi.org/10.1016/j.snb.2017.07.117

    Article  CAS  Google Scholar 

  33. Kiilerich-Pedersen K, Daprà J, Cherré S, Rozlosnik N (2013) High sensitivity point-of-care device for direct virus diagnostics. Biosens Bioelectron 49:374–379. https://doi.org/10.1016/j.bios.2013.05.046

    Article  CAS  PubMed  Google Scholar 

  34. Otero C, Penaloza JP, Rodas PI, Fernandez-Ramires R, Velasquez L, Jung JE (2014) Temporal and spatial regulation of cAMP signaling in disease: role of cyclic nucleotide phosphodiesterases. Fundam Clin Pharmacol 28(6):593–607. https://doi.org/10.1111/fcp.12080

    Article  CAS  PubMed  Google Scholar 

  35. Zhao F, Xie Q, Xu M, Wang S, Zhou J, Liu F (2015) RNA aptamer based electrochemical biosensor for sensitive and selective detection of cAMP. Biosens Bioelectron 66:238–243. https://doi.org/10.1016/j.bios.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Feng J, Tan Z, Wang H (2014) Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers. Biosens Bioelectron 60:218–223. https://doi.org/10.1016/j.bios.2014.04.022

    Article  CAS  PubMed  Google Scholar 

  37. Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937. https://doi.org/10.1016/j.biomaterials.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Kashefi-Kheyrabadi L, Mehrgardi MA, Wiechec E, Turner AP, Tiwari A (2014) Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal Chem 86(10):4956–4960. https://doi.org/10.1021/ac500375p

    Article  CAS  PubMed  Google Scholar 

  39. Hashkavayi AB, Raoof JB, Ojani R, Kavoosian S (2017) Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells. Biosens Bioelectron 92:630–637. https://doi.org/10.1016/j.bios.2016.10.042

    Article  CAS  PubMed  Google Scholar 

  40. Shen H, Yang J, Chen Z, Chen X, Wang L, Hu J, Ji F, Xie G, Feng W (2016) A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs. Biosens Bioelectron 81:495–502. https://doi.org/10.1016/j.bios.2016.03.048

    Article  CAS  PubMed  Google Scholar 

  41. Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T (2015) Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol 21(37):10573–10583. https://doi.org/10.3748/wjg.v21.i37.10573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laboria N, Fragoso A, Kemmner W, Latta D, Nilsson O, Botero ML, Drese K, O’Sullivan CK (2010) Amperometric immunosensor for carcinoembryonic antigen in colon cancer samples based on monolayers of dendritic bipodal scaffolds. Anal Chem 82(5):1712–1719. https://doi.org/10.1021/ac902162e

    Article  CAS  PubMed  Google Scholar 

  43. Shekari Z, Zare HR, Falahati A (2017) Developing an impedimetric aptasensor for selective label–free detection of CEA as a cancer biomarker based on gold nanoparticles loaded in functionalized mesoporous silica films. J Electrochem Soc 164(13):B739–B745. https://doi.org/10.1149/2.1991713jes

    Article  CAS  Google Scholar 

  44. Wang W, Ge L, Sun X, Hou T, Li F (2015) Graphene-assisted label-free homogeneous electrochemical biosensing strategy based on aptamer-switched bidirectional DNA polymerization. ACS Appl Mater Interfaces 7(51):28566–28575. https://doi.org/10.1021/acsami.5b09932

    Article  CAS  PubMed  Google Scholar 

  45. Guo C, Su F, Song Y, Hu B, Wang M, He L, Peng D, Zhang Z (2017) Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen. ACS Appl Mater Interfaces 9(47):41188–41199. https://doi.org/10.1021/acsami.7b14952

    Article  CAS  PubMed  Google Scholar 

  46. Wang K, He MQ, Zhai FH, He RH, Yu YL (2017) A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta 166:87–92. https://doi.org/10.1016/j.talanta.2017.01.052

    Article  CAS  PubMed  Google Scholar 

  47. Zhou F, Yuan L, Wang H, Li D, Chen H (2011) Gold nanoparticle layer: a promising platform for ultra-sensitive cancer detection. Langmuir 27:2155–2158. https://doi.org/10.1021/la1049937

    Article  CAS  PubMed  Google Scholar 

  48. Qureshi A, Gurbuz Y, Niazi JH (2015) Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sensors Actuators B Chem 209:645–651. https://doi.org/10.1016/j.snb.2014.12.040

    Article  CAS  Google Scholar 

  49. Tabrizi MA, Shamsipur M, Farzin L (2015) A high sensitive electrochemical aptasensor for the determination of VEGF(165) in serum of lung cancer patient. Biosens Bioelectron 74:764–769. https://doi.org/10.1016/j.bios.2015.07.032

    Article  CAS  Google Scholar 

  50. Salven P, Perhoniemi V, Tykkä H, Mäenpää H, Joensuu H (1999) Serum VEGF levels in women with a benign breast tumor or breast cancer. Breast Cancer Res Treat 53(2):161–166

    Article  CAS  Google Scholar 

  51. Liu C, Liu X, Qin Y, Deng C, Xiang J (2016) A simple regenerable electrochemical aptasensor for the parallel and continuous detection of biomarkers. RSC Adv 6(63):58469–58476. https://doi.org/10.1039/C6RA09284E

    Article  CAS  Google Scholar 

  52. Teke M, Sayikli C, Canbaz C, Sezgintürk MK (2014) A novel biosensing system using biological receptor for analysis of vascular endothelial growth factor. Int J Pept Res Ther 20(2):221–230. https://doi.org/10.1007/s10989-013-9386-4

    Article  CAS  Google Scholar 

  53. Pan LH, Kuo SH, Lin TY, Lin CW, Fang PY, Yang HW (2017) An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosens Bioelectron 89:598–605. https://doi.org/10.1016/j.bios.2016.01.077

    Article  CAS  PubMed  Google Scholar 

  54. Da HM, Liu HY, Zheng YN, Yuan R, Chai YQ (2018) A highly sensitive VEGF(165) photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks. Biosens Bioelectron 101:213–218. https://doi.org/10.1016/j.bios.2017.10.032

    Article  CAS  PubMed  Google Scholar 

  55. Achard C, Surendran A, Wedge ME, Ungerechts G, Bell J, Ilkow CS (2018) Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 31:17–24. https://doi.org/10.1016/j.ebiom.2018.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  56. Labib M, Zamay AS, Muharemagic D, Chechik A, Bell JC, Berezovski MV (2012) Electrochemical sensing of aptamer-facilitated virus immunoshielding. Anal Chem 84(3):1677–1686. https://doi.org/10.1021/ac202978r

    Article  CAS  PubMed  Google Scholar 

  57. Scudder J, Ye JY (2018) Limulus amoebocyte lysate test via an open-microcavity optical biosensor. J Biomed Opt 23(2):6. https://doi.org/10.1117/1.Jbo.23.2.027001

    Article  Google Scholar 

  58. Su W, Kim SE, Cho M, Nam JD, Choe WS, Lee Y (2013) Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles. Innate Immun 19(4):388–397. https://doi.org/10.1177/1753425912465099

    Article  CAS  PubMed  Google Scholar 

  59. Posha B, Nambiar SR, Sandhyarani N (2018) Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide. Biosens Bioelectron 101:199–205. https://doi.org/10.1016/j.bios.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  60. Kim SE, Su W, Cho M, Lee Y, Choe WS (2012) Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem 424(1):12–20. https://doi.org/10.1016/j.ab.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  61. Zandieh M, Hosseini SN, Vossoughi M, Khatami M, Abbasian S, Moshaii A (2018) Label-free and simple detection of endotoxins using a sensitive LSPR biosensor based on silver nanocolumns. Anal Biochem 548:96–101. https://doi.org/10.1016/j.ab.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  62. Walter JG, Heilkenbrinker A, Austerjost J, Timur S, Stahl F, Scheper T (2012) Aptasensors for small molecule detection. ZNaturforsch(B) 67(10):976–986. https://doi.org/10.5560/znb.2012-0147

    Article  CAS  Google Scholar 

  63. Roushani M, Shahdost-Fard F (2018) Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite. Microchim Acta 185(4):8. https://doi.org/10.1007/s00604-018-2709-6

    Article  CAS  Google Scholar 

  64. Roushani M, Shandost-fard F (2017) Ultra-sensitive detection of ibuprofen (IBP) by electrochemical aptasensor using the dendrimer-quantum dot (Den-QD) bioconjugate as an immobilization platform with special features. Mater Sci Eng C Mater Biol Appl 75:1091–1096. https://doi.org/10.1016/j.msec.2017.03.023

    Article  CAS  PubMed  Google Scholar 

  65. Alsirawan MB, Mohammad M, Al-kasmi B, Alhareth K, El-Hammadi M (2013) Development and validation of a simple HPLC method for the determination of ibuprofen sticking onto punch faces. Int J Pharm Pharm Sci 5(Suppl 4):227–231

    CAS  Google Scholar 

  66. Stephenson JB, Flater ML, Bain LT (2016) Analysis of Valproic acid, salicylic acid and ibuprofen in whole blood by GC-MS. J Anal Toxicol 40(8):649–652. https://doi.org/10.1093/jat/bkw079

    Article  CAS  PubMed  Google Scholar 

  67. Liang G, Man Y, Jin X, Pan L, Liu X (2016) Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Anal Chim Acta 936:222–228. https://doi.org/10.1016/j.aca.2016.06.056

    Article  CAS  PubMed  Google Scholar 

  68. Pilehvar S, Dierckx T, Blust R, Breugelmans T, De Wael K (2014) An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol. Sensors 14(7):12059–12069. https://doi.org/10.3390/s140712059

    Article  CAS  PubMed  Google Scholar 

  69. Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D (2018) An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 410(5):1453–1462. https://doi.org/10.1007/s00216-017-0786-8

    Article  CAS  PubMed  Google Scholar 

  70. Erdem A, Karadeniz H, Caliskan A (2011) Dendrimer modified graphite sensors for detection of anticancer drug Daunorubicin by voltammetry and electrochemical impedance spectroscopy. Analyst 136(5):1041–1045. https://doi.org/10.1039/c0an00357c

    Article  CAS  PubMed  Google Scholar 

  71. Zhu B, Alsager OA, Kumar S, Hodgkiss JM, Travas-Sejdic J (2015) Label-free electrochemical aptasensor for femtomolar detection of 17beta-estradiol. Biosens Bioelectron 70:398–403. https://doi.org/10.1016/j.bios.2015.03.050

    Article  CAS  PubMed  Google Scholar 

  72. Lin Z, Chen L, Zhang G, Liu Q, Qiu B, Cai Z, Chen G (2012) Label-free aptamer-based electrochemical impedance biosensor for 17beta-estradiol. Analyst 137(4):819–822. https://doi.org/10.1039/c1an15856b

    Article  CAS  PubMed  Google Scholar 

  73. Contreras Jiménez G, Eissa S, Ng A, Alhadrami H, Zourob M, Siaj M (2015) Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal Chem 87(2):1075–1082. https://doi.org/10.1021/ac503639s

    Article  CAS  PubMed  Google Scholar 

  74. Commission Regulation (EC) No 181/2003 (2003) 2003/181/EC: commission decision of 13 March 2003 amending decision 2002/657/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin

    Google Scholar 

  75. Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Muñoz-Pascual F-X, Bratov A (2018) Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sensors Actuators B Chem 255:2988–2995. https://doi.org/10.1016/j.snb.2017.09.121

    Article  CAS  Google Scholar 

  76. Eissa S, Siaj M, Zourob M (2015) Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron 69:148–154. https://doi.org/10.1016/j.bios.2015.01.055

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Z, Chen H, Ma L, Liu D, Wang Z (2015) A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocomposites. Analyst 140(16):5570–5577. https://doi.org/10.1039/c5an00704f

    Article  CAS  PubMed  Google Scholar 

  78. Lin Z, Huang H, Xu Y, Gao X, Qiu B, Chen X, Chen G (2013) Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor. Talanta 103:371–374. https://doi.org/10.1016/j.talanta.2012.10.081

    Article  CAS  PubMed  Google Scholar 

  79. Madianos L, Tsekenis G, Skotadis E, Patsiouras L, Tsoukalas D (2018) A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosens Bioelectron 101:268–274. https://doi.org/10.1016/j.bios.2017.10.034

    Article  CAS  PubMed  Google Scholar 

  80. Azadbakht A, Roushani M, Abbasi AR, Derikvand Z (2016) A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels. Anal Biochem 512:58–69. https://doi.org/10.1016/j.ab.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  81. Kazane I, Gorgy K, Gondran C, Spinelli N, Zazoua A, Defrancq E, Cosnier S (2016) Highly sensitive bisphenol-A electrochemical aptasensor based on poly(Pyrrole-Nitrilotriacetic acid)-aptamer film. Anal Chem 88(14):7268–7273. https://doi.org/10.1021/acs.analchem.6b01574

    Article  CAS  PubMed  Google Scholar 

  82. Ma Y, Liu J, Li H (2017) Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A. Biosens Bioelectron 92:21–25. https://doi.org/10.1016/j.bios.2017.01.041

    Article  CAS  PubMed  Google Scholar 

  83. Flewelling LJ, Naar JP, Abbott JP, Baden DG, Barros NB, Bossart GD, Bottein M-YD, Hammond DG, Haubold EM, Heil CA, Henry MS, Jacocks HM, Leighfield TA, Pierce RH, Pitchford TD, Rommel SA, Scott PS, Steidinger KA, Truby EW, Van Dolah FM, Landsberg JH (2005) Red tides and marine mammal mortalities. Nature 435:755. https://doi.org/10.1038/nature435755a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang D, Tang J, Su B, Chen G (2011) Gold nanoparticles-decorated amine-terminated poly(amidoamine) dendrimer for sensitive electrochemical immunoassay of brevetoxins in food samples. Biosens Bioelectron 26(5):2090–2096. https://doi.org/10.1016/j.bios.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  85. Bazin E, Huet S, Jarry G, Hégarat LL, Munday JS, Humpage AR, Fessard V (2012) Cytotoxic and genotoxic effects of cylindrospermopsin in mice treated by gavage or intraperitoneal injection. Environ Toxicol 27(5):277–284. https://doi.org/10.1002/tox.20640

    Article  CAS  PubMed  Google Scholar 

  86. Eaglesham GK, Norris RL, Shaw GR, Smith MJ, Chiswell RK, Davis BC, Neville GR, Seawright AA, Moore MR (1999) Use of HPLC-MS/MS to monitor cylindrospermopsin, a blue–green algal toxin, for public health purposes. Environ Toxicol 14(1):151–154. https://doi.org/10.1002/(SICI)1522-7278(199902)14:1<151::AID-TOX19>3.0.CO;2-D

    Article  CAS  Google Scholar 

  87. Guzmán-Guillén R, Prieto AI, González AG, Soria-Díaz ME, Cameán AM (2012) Cylindrospermopsin determination in water by LC-MS/MS: optimization and validation of the method and application to real samples. Environ Toxicol Chem 31(10):2233–2238. https://doi.org/10.1002/etc.1954

    Article  CAS  PubMed  Google Scholar 

  88. Seccia S, Fidente P, Barbini DA, Morrica P (2005) Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal Chim Acta 553(1):21–26. https://doi.org/10.1016/j.aca.2005.08.006

    Article  CAS  Google Scholar 

  89. Verdian A (2018) Apta-nanosensors for detection and quantitative determination of acetamiprid – A pesticide residue in food and environment. Talanta 176:456–464. https://doi.org/10.1016/j.talanta.2017.08.070

    Article  CAS  PubMed  Google Scholar 

  90. Tanner G, Czerwenka C (2011) LC-MS/MS analysis of neonicotinoid insecticides in honey: methodology and residue findings in Austrian honeys. J Agric Food Chem 59(23):12271–12277. https://doi.org/10.1021/jf202775m

    Article  CAS  PubMed  Google Scholar 

  91. Dujaković N, Grujić S, Radišić M, Vasiljević T, Laušević M (2010) Determination of pesticides in surface and ground waters by liquid chromatography–electrospray–tandem mass spectrometry. Anal Chim Acta 678(1):63–72. https://doi.org/10.1016/j.aca.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  92. Zhang B, Pan X, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection. Talanta 75(4):1055–1060. https://doi.org/10.1016/j.talanta.2008.01.032

    Article  CAS  PubMed  Google Scholar 

  93. Mateu-Sánchez M, Moreno M, Arrebola FJ, Martínez Vidal JL (2003) Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal Sci 19(5):701–704. https://doi.org/10.2116/analsci.19.701

    Article  PubMed  Google Scholar 

  94. Wanatabe S, Ito S, Kamata Y, Omoda N, Yamazaki T, Munakata H, Kaneko T, Yuasa Y (2001) Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal Chim Acta 427(2):211–219. https://doi.org/10.1016/S0003-2670(00)01126-0

    Article  CAS  Google Scholar 

  95. Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18. https://doi.org/10.1016/j.bios.2012.11.033

    Article  CAS  PubMed  Google Scholar 

  96. Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129. https://doi.org/10.1016/j.bios.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  97. Jiang D, Du X, Liu Q, Zhou L, Dai L, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140(18):6404–6411. https://doi.org/10.1039/c5an01084e

    Article  CAS  PubMed  Google Scholar 

  98. Wang W, Yang X, Gu Y-X, Ding C-F, Wan J (2015) Preparation and properties of bisphenol A sensor based on multiwalled carbon nanotubes/Li4Ti5O12-modified electrode. Ionics 21(3):885–893. https://doi.org/10.1007/s11581-014-1217-x

  99. Commission Regulation (EU) No 10/2011 (2011) Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food

    Google Scholar 

  100. Ghoshal G (2018) Chapter 2 – biotechnology in food processing and preservation: an overview. In: Holban AM, Grumezescu AM (eds) Advances in biotechnology for food industry. Academic Press, Cambridge, pp 27–54. https://doi.org/10.1016/B978-0-12-811443-8.00002-5

    Chapter  Google Scholar 

  101. Kuchenmüller T, Hird S, Stein C, Kramarz P, Nanda A, Havelaar AH (2009) Estimating the global burden of foodborne diseases – a collaborative effort. Eur Secur 14(18):19195. https://doi.org/10.2807/ese.14.18.19195-en

    Article  Google Scholar 

  102. Frisvad JC, Thrane U, Samson RA, Pitt JI (2006) Important mycotoxins and the fungi which produce them. In: Advances in food mycology. Springer, Boston, pp 3–31

    Chapter  Google Scholar 

  103. Vidal JC, Bonel L, Ezquerra A, Hernández S, Bertolín JR, Cubel C, Castillo JR (2013) Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens Bioelectron 49:146–158. https://doi.org/10.1016/j.bios.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  104. Prabhakar N, Matharu Z, Malhotra BD (2011) Polyaniline Langmuir-Blodgett film based aptasensor for ochratoxin A detection. Biosens Bioelectron 26(10):4006–4011. https://doi.org/10.1016/j.bios.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  105. Castillo G, Lamberti I, Mosiello L, Hianik T (2012) Impedimetric DNA Aptasensor for sensitive detection of Ochratoxin A in food. Electroanalysis 24(3):512–520. https://doi.org/10.1002/elan.201100485

    Article  CAS  Google Scholar 

  106. Evtugyn G, Porfireva A, Sitdikov R, Evtugyn V, Stoikov I, Antipin I, Hianik T (2013) Electrochemical APTASENSOR for the determination of Ochratoxin A at the Au electrode modified with Ag nanoparticles decorated with macrocyclic ligand. Electroanalysis 25(8):1847–1854. https://doi.org/10.1002/elan.201300164

    Article  CAS  Google Scholar 

  107. Hayat A, Sassolas A, Marty JL, Radi AE (2013) Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta 103:14–19. https://doi.org/10.1016/j.talanta.2012.09.048

    Article  CAS  PubMed  Google Scholar 

  108. Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 87(10):5167–5172. https://doi.org/10.1021/acs.analchem.5b00890

    Article  CAS  PubMed  Google Scholar 

  109. Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty JL, Korri-Youssoufi H (2016) Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal Chim Acta 920:37–46. https://doi.org/10.1016/j.aca.2016.03.038

    Article  CAS  PubMed  Google Scholar 

  110. Wei M, Zhang W (2017) A novel impedimetric aptasensor based on AuNPs–carboxylic porous carbon for the ultrasensitive detection of ochratoxin A. RSC Adv 7(46):28655–28660. https://doi.org/10.1039/c7ra04209d

    Article  CAS  Google Scholar 

  111. Simão EP, Cao-Milán R, Costa-Pedro G, De Melo CP, Cao R, Oliveira MDL, Andrade CAS (2017) Simple and fast picomolar detection of ochratoxin A using a reusable label free aptasensor built with a layer-by-layer procedure. Electroanalysis 29(10):2268–2275. https://doi.org/10.1002/elan.201700290

    Article  CAS  Google Scholar 

  112. Castillo G, Spinella K, Poturnayová A, Šnejdárková M, Mosiello L, Hianik T (2015) Detection of aflatoxin B 1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 52:9–18. https://doi.org/10.1016/j.foodcont.2014.12.008

    Article  CAS  Google Scholar 

  113. Li Q, Lu Z, Tan X, Xiao X, Wang P, Wu L, Shao K, Yin W, Han H (2017) Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens Bioelectron 97:59–64. https://doi.org/10.1016/j.bios.2017.05.031

    Article  CAS  PubMed  Google Scholar 

  114. Istamboulié G, Paniel N, Zara L, Reguillo Granados L, Barthelmebs L, Noguer T (2016) Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta 146:464–469. https://doi.org/10.1016/j.talanta.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  115. Chen X, Huang Y, Ma X, Jia F, Guo X, Wang Z (2015) Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Microchim Acta 182(9–10):1709–1714. https://doi.org/10.1007/s00604-015-1492-x

    Article  CAS  Google Scholar 

  116. Commission Regulation (EU) No 165/2010 (2010) Commission Regulation (EU) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins

    Google Scholar 

  117. Karapetis S, Nikolelis D, Hianik T (2018) Label-free and redox markers-based electrochemical aptasensors for aflatoxin M1 detection. Sensors 18(12):4218. https://doi.org/10.3390/s18124218

    Article  CAS  Google Scholar 

  118. Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J (2016) Ochratoxin A: 50 years of research. Toxins 8(7):191. https://doi.org/10.3390/toxins8070191

    Article  CAS  PubMed Central  Google Scholar 

  119. Amézqueta S, González-Peñas E, Murillo M, López de Cerain A (2004) Validation of a high-performance liquid chromatography analytical method for ochratoxin A quantification in cocoa beans. Food Addit Contam 21(11):1096–1106. https://doi.org/10.1080/02652030400019422

    Article  CAS  PubMed  Google Scholar 

  120. Yoo SM, Lee SY (2016) Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol 34(1):7–25. https://doi.org/10.1016/j.tibtech.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  121. Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S (2018) Electrochemical methodologies for the detection of pathogens. ACS Sensors 3(6):1069–1086. https://doi.org/10.1021/acssensors.8b00239

    Article  CAS  PubMed  Google Scholar 

  122. Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28(1):1–12. https://doi.org/10.1016/j.bios.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  123. Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li B (2016) Aptamer-based technologies in foodborne pathogen detection. Front Microbiol 7:1426–1426. https://doi.org/10.3389/fmicb.2016.01426

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kant K, Shahbazi M-A, Dave VP, Ngo TA, Chidambara VA, Than LQ, Bang DD, Wolff A (2018) Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol Adv 36(4):1003–1024. https://doi.org/10.1016/j.biotechadv.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  125. Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA, Zamay TN, Berezovski MV (2012) Aptamer-based viability impedimetric sensor for bacteria. Anal Chem 84(21):8966–8969. https://doi.org/10.1021/ac302902s

    Article  CAS  PubMed  Google Scholar 

  126. Jia F, Duan N, Wu S, Dai R, Wang Z, Li X (2015) Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim Acta 183(1):337–344. https://doi.org/10.1007/s00604-015-1649-7

    Article  CAS  Google Scholar 

  127. Bagheryan Z, Raoof JB, Golabi M, Turner APF, Beni V (2016) Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosens Bioelectron 80:566–573. https://doi.org/10.1016/j.bios.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  128. Sheikhzadeh E, Chamsaz M, Turner APF, Jager EWH, Beni V (2016) Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens Bioelectron 80:194–200. https://doi.org/10.1016/j.bios.2016.01.057

    Article  CAS  PubMed  Google Scholar 

  129. Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 98:94–98. https://doi.org/10.1016/j.mimet.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  130. Ranjbar S, Shahrokhian S, Nurmohammadi F (2018) Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium. Sensors Actuators B Chem 255:1536–1544. https://doi.org/10.1016/j.snb.2017.08.160

    Article  CAS  Google Scholar 

  131. Salam F, Tothill IE (2009) Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosens Bioelectron 24(8):2630–2636. https://doi.org/10.1016/j.bios.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  132. Ozalp VC, Bayramoglu G, Kavruk M, Keskin BB, Oktem HA, Arica MY (2014) Pathogen detection by core-shell type aptamer-magnetic preconcentration coupled to real-time PCR. Anal Biochem 447:119–125. https://doi.org/10.1016/j.ab.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  133. Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA, Zamay TN, Berezovski MV (2012) Aptamer-based impedimetric sensor for bacterial typing. Anal Chem 84(19):8114–8117. https://doi.org/10.1021/ac302217u

    Article  CAS  PubMed  Google Scholar 

  134. Dua P, Ren S, Lee SW, Kim JK, Shin HS, Jeong OC, Kim S, Lee DK (2016) Cell-SELEX based identification of an RNA aptamer for Escherichia coli and its use in various detection formats. Mol Cells 39(11):807–813. https://doi.org/10.14348/molcells.2016.0167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Burrs SL, Bhargava M, Sidhu R, Kiernan-Lewis J, Gomes C, Claussen JC, McLamore ES (2016) A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens Bioelectron 85:479–487. https://doi.org/10.1016/j.bios.2016.05.037

    Article  CAS  PubMed  Google Scholar 

  136. Yao L, Wang L, Huang F, Cai G, Xi X, Lin J (2018) A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157:H7. Sensors Actuators B Chem 259:1013–1021. https://doi.org/10.1016/j.snb.2017.12.110

    Article  CAS  Google Scholar 

  137. Vanegas DC, Rong Y, Schwalb N, Hills KD, Gomes C, McLamore ES (2015) Rapid detection of listeria spp. using an internalin A aptasensor based on carbon-metal nanohybrid structures. In: Proceedings of SPIE – smart biomedical and physiological sensor technology XIISPIE Sensing Technology + Applications. SPIE, Baltimore. https://doi.org/10.1117/12.2177441

    Chapter  Google Scholar 

  138. Sidhu R, Rong Y, Vanegas DC, Claussen J, McLamore ES, Gomes C (2016) Impedance biosensor for the rapid detection of listeria spp. based on aptamer functionalized Pt-interdigitated microelectrodes array. In: Cullum BM, Kiehl D, McLamore ES (eds) Proceedings of SPIE – smart biomedical and physiological sensor technology XIIISPIE Commercial + Scientific Sensing and Imaging. SPIE, Baltimore. https://doi.org/10.1117/12.2223443

    Chapter  Google Scholar 

  139. Jia F, Duan N, Wu S, Ma X, Xia Y, Wang Z, Wei X (2014) Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181(9–10):967–974. https://doi.org/10.1007/s00604-014-1195-8

    Article  CAS  Google Scholar 

  140. Reich P, Stoltenburg R, Strehlitz B, Frense D, Beckmann D (2017) Development of an impedimetric aptasensor for the detection of Staphylococcus aureus. Int J Mol Sci 18(11):2484. https://doi.org/10.3390/ijms18112484

    Article  CAS  PubMed Central  Google Scholar 

  141. Xiong X, Shi X, Liu Y, Lu L, You J (2018) An aptamer-based electrochemical biosensor for simple and sensitive detection of staphylococcal enterotoxin B in milk. Anal Methods 10(3):365–370. https://doi.org/10.1039/c7ay02452e

    Article  CAS  Google Scholar 

  142. Commission Regulation (EC) No 2073/2005 (2005) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs

    Google Scholar 

  143. Lee YJ, Han SR, Maeng J-S, Cho Y-J, Lee S-W (2012) In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem Biophys Res Commun 417(1):414–420. https://doi.org/10.1016/j.bbrc.2011.11.130

    Article  CAS  PubMed  Google Scholar 

  144. Rubab M, Shahbaz HM, Olaimat AN, Oh D-H (2018) Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens Bioelectron 105:49–57. https://doi.org/10.1016/j.bios.2018.01.023

    Article  CAS  PubMed  Google Scholar 

  145. Evenson ML, Ward Hinds M, Bernstein RS, Bergdoll MS (1988) Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int J Food Microbiol 7(4):311–316. https://doi.org/10.1016/0168-1605(88)90057-8

    Article  CAS  PubMed  Google Scholar 

  146. Benvidi A, Banaei M, Tezerjani MD, Molahosseini H, Jahanbani S (2017) Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers. Mikrochim Acta 185(1):50. https://doi.org/10.1007/s00604-017-2589-1

    Article  CAS  PubMed  Google Scholar 

  147. Yang ZH, Zhuo Y, Yuan R, Chai YQ (2017) Amplified impedimetric aptasensor combining target-induced DNA hydrogel formation with pH-stimulated signal amplification for the heparanase assay. Nanoscale 9(7):2556–2562. https://doi.org/10.1039/c6nr08353f

    Article  CAS  PubMed  Google Scholar 

  148. He L, Zhang S, Ji H, Wang M, Peng D, Yan F, Fang S, Zhang H, Jia C, Zhang Z (2016) Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosens Bioelectron 79:553–560. https://doi.org/10.1016/j.bios.2015.12.095

    Article  CAS  PubMed  Google Scholar 

  149. Jahanbani S, Benvidi A (2016) Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosens Bioelectron 85:553–562. https://doi.org/10.1016/j.bios.2016.05.052

    Article  CAS  PubMed  Google Scholar 

  150. Jarczewska M, Kékedy-Nagy L, Nielsen JS, Campos R, Kjems J, Malinowska E, Ferapontova EE (2015) Electroanalysis of pM-levels of urokinase plasminogen activator in serum by phosphorothioated RNA aptamer. Analyst 140(11):3794–3802. https://doi.org/10.1039/c4an02354d

    Article  CAS  PubMed  Google Scholar 

  151. Chen Z, Chen L, Ma H, Zhou T, Li X (2013) Aptamer biosensor for label-free impedance spectroscopy detection of potassium ion based on DNA G-quadruplex conformation. Biosens Bioelectron 48:108–112. https://doi.org/10.1016/j.bios.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  152. Shi P, Zhang Y, Yu Z, Zhang S (2017) Label-free electrochemical detection of ATP based on amino-functionalized metal-organic framework. Sci Rep 7(1):6500. https://doi.org/10.1038/s41598-017-06858-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gopinath SC (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182. https://doi.org/10.1007/s00216-006-0826-2

    Article  CAS  PubMed  Google Scholar 

  154. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403. https://doi.org/10.1016/j.bioeng.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  155. Wehbe M, Labib M, Muharemagic D, Zamay AS, Berezovski MV (2015) Switchable aptamers for biosensing and bioseparation of viruses (SwAps-V). Biosens Bioelectron 67:280–286. https://doi.org/10.1016/j.bios.2014.08.033

    Article  CAS  PubMed  Google Scholar 

  156. Radi AE, O’Sullivan CK (2006) Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun 32:3432–3434. https://doi.org/10.1039/b606804a

    Article  CAS  Google Scholar 

  157. Zhang Z, Yang W, Wang J, Yang C, Yang F, Yang X (2009) A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer. Talanta 78(4–5):1240–1245. https://doi.org/10.1016/j.talanta.2009.01.034

    Article  CAS  PubMed  Google Scholar 

  158. Su W, Lin M, Lee H, Cho M, Choe WS, Lee Y (2012) Determination of endotoxin through an aptamer-based impedance biosensor. Biosens Bioelectron 32(1):32–36. https://doi.org/10.1016/j.bios.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  159. Xu H, Gorgy K, Gondran C, Le Goff A, Spinelli N, Lopez C, Defrancq E, Cosnier S (2013) Label-free impedimetric thrombin sensor based on poly(pyrrole-nitrilotriacetic acid)-aptamer film. Biosens Bioelectron 41:90–95. https://doi.org/10.1016/j.bios.2012.07.044

    Article  CAS  PubMed  Google Scholar 

  160. Tran DT, Vermeeren V, Grieten L, Wenmackers S, Wagner P, Pollet J, Janssen KP, Michiels L, Lammertyn J (2011) Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE. Biosens Bioelectron 26(6):2987–2993. https://doi.org/10.1016/j.bios.2010.11.053

    Article  CAS  PubMed  Google Scholar 

  161. Du Y, Li B, Wei H, Wang Y, Wang E (2008) Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Anal Chem 80(13):5110–5117. https://doi.org/10.1021/ac800303c

    Article  CAS  PubMed  Google Scholar 

  162. Yurkovetsky ZR, Linkov FY, Malehorn DE, Lokshin AE (2006) Multiple biomarker panels for early detection of ovarian cancer. Future Oncol 2(6):733–741. https://doi.org/10.2217/14796694.2.6.733

    Article  CAS  PubMed  Google Scholar 

  163. Komarova E, Reber K, Aldissi M, Bogomolova A (2010) New multispecific array as a tool for electrochemical impedance spectroscopy-based biosensing. Biosens Bioelectron 25(6):1389–1394. https://doi.org/10.1016/j.bios.2009.10.034

    Article  CAS  PubMed  Google Scholar 

  164. Lee J, Cho S, Lee J, Ryu H, Park J, Lim S, Oh B, Lee C, Huang W, Busnaina A, Lee H (2013) Wafer-scale nanowell array patterning based electrochemical impedimetric immunosensor. J Biotechnol 168(4):584–588. https://doi.org/10.1016/j.jbiotec.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  165. Periyakaruppan A, Arumugam PU, Meyyappan M, Koehne JE (2011) Detection of ricin using a carbon nanofiber based biosensor. Biosens Bioelectron 28(1):428–433. https://doi.org/10.1016/j.bios.2011.07.061

    Article  CAS  PubMed  Google Scholar 

  166. Qureshi A, Gurbuz Y, Niazi JH (2010) Label-free detection of cardiac biomarker using aptamer based capacitive biosensor. Procedia Eng 5:828–830. https://doi.org/10.1016/j.proeng.2010.09.236

    Article  CAS  Google Scholar 

  167. Lim T, Lee SY, Yang J, Hwang SY, Ahn Y (2016) Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. Biochip J 11(2):109–115. https://doi.org/10.1007/s13206-016-1203-7

    Article  CAS  Google Scholar 

  168. Lum J, Wang R, Hargis B, Tung S, Bottje W, Lu H, Li Y (2015) An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors 15(8):18565–18578. https://doi.org/10.3390/s150818565

    Article  CAS  PubMed  Google Scholar 

  169. Wang Y, Ye Z, Ping J, Jing S, Ying Y (2014) Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection. Biosens Bioelectron 59:106–111. https://doi.org/10.1016/j.bios.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  170. Zubtsov DA, Ivanov SM, Rubina AY, Dementieva EI, Chechetkin VR, Zasedatelev AS (2006) Effect of mixing on reaction–diffusion kinetics for protein hydrogel-based microchips. J Biotechnol 122(1):16–27. https://doi.org/10.1016/j.jbiotec.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  171. Feng S, Chen C, Wang W, Que L (2018) An aptamer nanopore-enabled microsensor for detection of theophylline. Biosens Bioelectron 105:36–41. https://doi.org/10.1016/j.bios.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  172. Liao W, Cui XT (2007) Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF. Biosens Bioelectron 23(2):218–224. https://doi.org/10.1016/j.bios.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  173. Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12(4):448–456. https://doi.org/10.1016/j.cbpa.2008.06.028

    Article  CAS  PubMed  Google Scholar 

  174. The Eyetech Study Group (2003) Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 110(5):979–986. https://doi.org/10.1016/S0161-6420(03)00085-X

    Article  Google Scholar 

  175. González-Fernández E, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2011) Impedimetric aptasensor for tobramycin detection in human serum. Biosens Bioelectron 26(5):2354–2360. https://doi.org/10.1016/j.bios.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  176. Rowe AA, Miller EA, Plaxco KW (2010) Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal Chem 82(17):7090–7095. https://doi.org/10.1021/ac101491d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank SciGraphics (contact@scigraphics.de) for contributing the illustrations for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Reich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Preuß, JA., Reich, P., Bahner, N., Bahnemann, J. (2020). Impedimetric Aptamer-Based Biosensors: Applications. In: Urmann, K., Walter, JG. (eds) Aptamers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 174. Springer, Cham. https://doi.org/10.1007/10_2020_125

Download citation

Publish with us

Policies and ethics