Skip to main content
Log in

Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a Salmonella biosensor that was obtained by electrochemical immobilization of a nanocomposite consisting of reduced graphene oxide (rGO) and carboxy-modified multi-walled carbon nanotubes (MWCNTs) directly on the surface of a glassy carbon electrode (GCE). An amino-modified aptamer specific for Salmonella was covalently bound to the rGO-MWCNT composite via amide bonds. The morphology of the rGO-MWCNT nanocomposite was characterized by transmission electron microscopy and scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to monitor all steps during assembly. When exposed to samples containing Salmonella, the anti-Salmonella aptamer on the electrode captures its target. Hence, electron transfer is blocked, and this results in a large increase in impedance. Salmonella can be quantified by this aptasensor, typically operated at a working voltage of 0.2 V (vs. Ag/AgCl), in the range from 75 to 7.5 × 105 cfu⋅mL−1 and detection limit of 25 cfu⋅mL−1 (at an S/N of 3). The method is perceived to have a wide scope in that other bacteria may be detected by analogy to this approach and with very low limits of detection by applying respective analyte-specific aptamers.

The schematic view of the GCE surface modification and the detection of Salmonella

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daum LT, Barnes WJ, McAvin JC, Neidert MS, Cooper LA, Huff WB, Gaul L, Riggins WS, Morris S, Salmen A, Lohman KL (2002) Real-Time PCR detection of salmonella in suspect foods from a gastroenteritis outbreak in Kerr County, Texas. J Clin Microbiol 40(8):3050–3052

    Article  CAS  Google Scholar 

  2. Bakthavathsalam P, Rajendran VK, Saran U, Chatterjee S, Jaffar Ali BM (2013) Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella. Microchim Acta 180(13–14):1241–1248

    Article  CAS  Google Scholar 

  3. Oh BK, Lee W, Kim YK, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. J Biotechnol 111(1):1–8

    Article  CAS  Google Scholar 

  4. Lee KM, Runyon M, Herrman TJ, Phillips R, Hsieh J (2015) Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control 47:264–276

    Article  Google Scholar 

  5. Ohtsuka K, Yanagawa K, Takatori K, Hara-Kudo Y (2005) Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl Environ Microbiol 71(11):6730–6735

    Article  CAS  Google Scholar 

  6. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178(1–2):7–28

    Article  CAS  Google Scholar 

  7. Jain S, Chattopadhyay S, Jackeray R, Abid CK, Kohli GS, Singh H (2012) Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced-ELISA. Biosens Bioelectron 31(1):37–43

    Article  CAS  Google Scholar 

  8. Cheung PY, Kam KM (2012) Salmonella in food surveillance: PCR, immunoassays, and other rapid detection and quantification methods. Food Res Int 45(2):802–808

    Article  CAS  Google Scholar 

  9. González-Escalona N, Brown EW, Zhang G (2012) Development and evaluation of a multiplex real-time PCR (qPCR) assay targeting ttrRSBCA locus and invA gene for accurate detection of Salmonella spp. in fresh produce and eggs. Food Res Int 48(1):202–208

    Article  CAS  Google Scholar 

  10. Malorny B, Paccassoni E, Fach P, Bunge C, Martin A, Helmuth R (2004) Diagnostic real-time PCR for detection of Salmonella in food. Appl Environ Microbiol 70(12):7046–7052

    Article  CAS  Google Scholar 

  11. Wang Z, Xu H, Wu J, Ye J, Yang Z (2011) Sensitive detection of Salmonella with fluorescent bioconjugated nanoparticles probe. Food Chem 125(2):779–784

    Article  CAS  Google Scholar 

  12. Xu S (2012) Electromechanical biosensors for pathogen detection. Microchim Acta 178(3–4):245–260

    Article  CAS  Google Scholar 

  13. Ellington AD, Szostak JW, Green R (1990) In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature 346:818–822

    Article  CAS  Google Scholar 

  14. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  15. Fang Z, Wu W, Lu X, Zeng L (2014) Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 56:192–197

    Article  CAS  Google Scholar 

  16. Florea A, Taleat Z, Cristea C, Mazloum-Ardakani M, Săndulescu R (2013) Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes. Electrochem Commun 33:127–130

    Article  CAS  Google Scholar 

  17. Wu J, Chu H, Mei Z, Deng Y, Xue F, Zheng L, Chen W (2012) Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Anal Chim Acta 753:27–31

    Article  CAS  Google Scholar 

  18. Zhang XY, Zhou LY, Luo HQ, Li NB (2013) A sensitive and label-free impedimetric biosensor based on an adjunct probe. Anal Chim Acta 776:11–16

    Article  CAS  Google Scholar 

  19. Peng K, Zhao H, Wu X, Yuan Y, Yuan R (2012) Ultrasensitive aptasensor based on graphene-3,4,9,10-perylenetetracarboxylic dianhydride as platform and functionalized hollow PtCo nanochains as enhancers. Sens Actuators B 169:88–95

    Article  CAS  Google Scholar 

  20. Sun W, Wang X, Lu Y, Gong S, Qi X, Lei B, Sun Z, Li G (2015) Electrochemical deoxyribonucleic acid biosensor based on electrodeposited graphene and nickel oxide nanoparticle modified electrode for the detection of salmonella enteritidis gene sequence. Mater Sci Eng C Mater Biol Appl 49:34–39

    Article  CAS  Google Scholar 

  21. Ananthi A, Kumar SS, Phani KL (2015) Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid. Electrochim Acta 151:584–590

    Article  CAS  Google Scholar 

  22. Wang B, Ji X, Zhao H, Wang N, Li X, Ni R, Liu Y (2014) An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Biosens Bioelectron 55:113–119

    Article  CAS  Google Scholar 

  23. Liu J, Wang X, Wang T, Li D, Xi F, Wang J, Wang E (2014) Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor. ACS Appl Mater Interfaces 6(22):19997–20002

    Article  CAS  Google Scholar 

  24. Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  25. Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TM, Jaykus LA, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23(1):20–28

    Article  CAS  Google Scholar 

  26. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179(1–2):1–16

    Article  CAS  Google Scholar 

  27. Li J, Feng H, Feng Y, Liu J, Liu Y, Jiang J, Qian D (2014) A glassy carbon electrode modified with β-cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene. Microchim Acta 181(11–12):1369–1377

    Article  CAS  Google Scholar 

  28. Yang L (2008) Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74(5):1621–1629

    Article  CAS  Google Scholar 

  29. Shabani A, Marquette CA, Mandeville R, Lawrence MF (2013) Magnetically-assisted impedimetric detection of bacteria using phage-modified carbon microarrays. Talanta 116:1047–1053

    Article  CAS  Google Scholar 

  30. Chen M, Lin Y, Gu C, Wang J (2013) Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry. Talanta 104:53–57

    Article  CAS  Google Scholar 

  31. Yuan JL, Tao Z, Yu Y, Ma XY, Xia Y, Wang L, Wang ZP (2014) A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control 37:188–192

    Article  CAS  Google Scholar 

  32. Wu W, Li J, Pan D, Li J, Song S, Rong M, Li Z, Gao J, Lu J (2014) Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium. ACS Appl Mater Interfaces 6(19):16974–16981

    Article  CAS  Google Scholar 

  33. Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchimica Acta 181(5–6):647–653

    Article  CAS  Google Scholar 

  34. Ozalp VC, Bayramoglu G, Kavruk M, Keskin BB, Oktem HA, Arica MY (2014) Pathogen detection by core-shell type aptamer-magnetic preconcentration coupled to real-time PCR. Anal Biochem 447:119–125

    Article  CAS  Google Scholar 

  35. Wu W, Li M, Wang Y (2012) Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res Lett 7:658–665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National S&T Support Program of China (2012BAK08B01, 2012BAD28B02), NSFC (21375049), the China Agriculture Research System Poultry-related Science and Technology Innovation Team of Peking (CARS-PSTP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhouping Wang or Xingmin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, F., Duan, N., Wu, S. et al. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim Acta 183, 337–344 (2016). https://doi.org/10.1007/s00604-015-1649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1649-7

Keywords

Navigation