Skip to main content

Advertisement

Log in

Methods developed for SELEX

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

SELEX (systematic evolution of ligands by exponential enrichment) is a process that involves the progressive purification from a combinatorial library of nucleic acid ligands with a high affinity for a particular target by repeated rounds of partitioning and amplification. With the development of aptamer technology over the last decade, various modified SELEX processes have arisen that allow various aptamers to be developed against a wide variety of molecules, irrespective of the target size. In the present review, the separation methods used in such SELEX processes are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marshall KA, Ellington AD (2000) Methods Enzymol 318:193–214

    CAS  Google Scholar 

  2. Gold L (1995) J Biol Chem 270:13581–13584

    CAS  Google Scholar 

  3. Uphoff KW, Bell SD, Ellington AD (1996) Curr Opin Struct Biol 6:281–288

    CAS  Google Scholar 

  4. Famulok M, Szostak JW (1992) Angew Chem Int Ed Engl 31:979–988

    Google Scholar 

  5. Ellington AD, Szostak JW (1990) Nature 346:818–822

    CAS  Google Scholar 

  6. Tuerk C, Gold L (1990) Science 249:505–510

    CAS  Google Scholar 

  7. Dobbelstein M, Shenk T (1995) J Virol 69:8027–8034

    CAS  Google Scholar 

  8. Conrad RC, Giver L, Tian Y, Ellington AD (1996) Methods Enzymol 267:336–367

    Article  CAS  Google Scholar 

  9. Zhang F, Anderson D (1998) J Biol Chem 273:2947–2953

    CAS  Google Scholar 

  10. Bruno JG, Kiel JL (2002) Biotechniques 32:178–180

    CAS  Google Scholar 

  11. Nimjee SM, Rusconi CP, Sullenger BA (2005) Ann Rev Med 56:555–583

    CAS  Google Scholar 

  12. Pestourie C, Tavitian B, Duconge F (2005) Biochimie 87:921–930

    CAS  Google Scholar 

  13. Gopinath SCB, Misono T, Kawasaki K, Mizuno T, Imai M, Odagiri T, Kumar PKR (2006) J Gen Virol 87:479–487

    CAS  Google Scholar 

  14. Gopinath SCB, Yuriko S, Kazunori K, Kumar PKR (2006) J Biochem 139:837–846

    CAS  Google Scholar 

  15. Berezovski M, Musheev M, Drabovich A, Krylov S (2006) J Am Chem Soc 128:1410–1411

    CAS  Google Scholar 

  16. Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR Jr, Adamis PA (2006) Nature Rev 5:123–132

    CAS  Google Scholar 

  17. Gopinath SCB, Misono T, Kumar PKR (2006) Crit Rev Anal Chem (in press)

  18. Kramer FR, Mills DR, Cole PE, Nishihara T, Spiegelman S (1974) J Mol Biol 89:719–736

    CAS  Google Scholar 

  19. Ellington AD (1994) Curr Biol 4:427–429

    CAS  Google Scholar 

  20. Kinzler KW, Vogelstein B (1989) Nucleic Acids Res 17:3645–3653

    CAS  Google Scholar 

  21. Kumar PKR, Machida K, Urvil PT, Kakiuchi N, Vishnuvardhan D, Shimotohno K, Taira K, Nishikawa S (1997) Virol 237:270–282

    CAS  Google Scholar 

  22. Yamamoto R, Murakami K, Taira K, Kumar PKR (1998) Gene Ther Mol Biol 1:451–466

    Google Scholar 

  23. Cox JC, Ellington AD (2001) Bioorg Med Chem 9:2525–2531

    CAS  Google Scholar 

  24. Mendonsa SD, Bowser MT (2004) Anal Chem 76:5387–5392

    CAS  Google Scholar 

  25. Misono TS, Kumar PKR (2005) Anal Biochem 342:312–317

    CAS  Google Scholar 

  26. Pristoupil TI, Kramlova M (1968) J Chromatogr 32:769–770

    CAS  Google Scholar 

  27. Carey J, Cameron V, de Haseth PL, Uhlenbeck OC (1983) Biochem 22:2601–2610

    CAS  Google Scholar 

  28. Tracy RB, Kowalczykowshi C (1996) Genes Dev 10:1890–1903

    CAS  Google Scholar 

  29. Guo P (2005) J Nanosci Nanotechnol 5:1964–1982

    CAS  Google Scholar 

  30. Gal SW, Amontov S, Urvil PT, Vishnuvardhan D, Nishikawa F, Kumar PKR, Nishikawa S (1998) Eur J Biochem 252:553–562

    CAS  Google Scholar 

  31. Fukuda K, Vishnuvardhan D, Sekiya S, Hwang J, Kakiuchi N, Taira K, Shimotohno K, Kumar PKR, Nishikawa S (2000) Eur J Biochem 267:3685–3694

    CAS  Google Scholar 

  32. Gopinath SCB, Kawasaki K, Kumar PKR (2005) Nucleic Acids Symp Ser 49:85

    Google Scholar 

  33. Kumar PKR, Gopinath SCB, Misono T, Kawasaki K (2004) Japanese patent JP2004-293679

  34. Rhodes A, Deakin A, Spaull J, Coomber B, Aitken A, Life P, Rees S (2000) J Biol Chem 275:28555–28561

    CAS  Google Scholar 

  35. Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, Winnacker E (1997) J Virol 71:8790–8797

    CAS  Google Scholar 

  36. Kim SJ, Kim MY, Lee JH, You JC, Jeong S (2002) Biochem Biophy Res Comm 291:925–931

    CAS  Google Scholar 

  37. Lochrie MA, Waugh S, Pratt DG Jr, Clever J, Parslow G, Polisky B (1997) Nucleic Acids Res 24:2902–2910

    Google Scholar 

  38. Bryant KF, Cox JC, Wang H, Hogle JM, Ellington AD, Coen DM (2005) Nucleic Acids Res 33:6090–6100

    CAS  Google Scholar 

  39. Stoltenburg R, Reinemann C, Strehlitz B (2005) Anal Bioanal Chem 383:83–91

    CAS  Google Scholar 

  40. Ciesiolka J, Gorski J, Yarus M (1995) RNA 1:538–550

    CAS  Google Scholar 

  41. Nieuwlandt D, Wecker M, Gold L (1995) Biochem 34:5651–5659

    CAS  Google Scholar 

  42. Li Y, Geyer R, Sen D (1996) Biochem 35:6911–6922

    CAS  Google Scholar 

  43. Yang A, Goldstein IJ, Mei H, Engelke DR (1998) Proc Natl Acad Sci USA 95:5462–5467

    CAS  Google Scholar 

  44. Holeman LA, Robinson SL, Szostak JW, Wilson C (1998) Fold Des 3:423–431

    CAS  Google Scholar 

  45. Bruno JG, Kiel JL (1999) Biosens Bioelectron 14:457–464

    CAS  Google Scholar 

  46. Tok JB, Cho J, Rando RR (2000) Nuleic Acids Res 28:2902–2910

    CAS  Google Scholar 

  47. Saito H, Kourouklis D, Suga H (2001) EMBO J 20:1797–1806

    CAS  Google Scholar 

  48. Pellé R, Murphy N (1993) Nucleic Acid Res 21:2453–2458

    Google Scholar 

  49. Jensen KB, Atkinson BL, Willis MC, Koch TH, Gold L (1995) Proc Natl Acad Sci USA 92:12220–12223

    CAS  Google Scholar 

  50. Smith D, Kirschenheuter GP, Charlton J, Guidot DM, Repine JE (1995) Chem Biol 2:741–750

    CAS  Google Scholar 

  51. Yao W, Adelman K, Bruenn JA (1997) J Virol 71:2157–2162

    CAS  Google Scholar 

  52. Goodman SD, Veltenm NJ, Gao Q, Robinson S, Segall AM (1999) J Bateriol 181:3246–3255

    CAS  Google Scholar 

  53. Pollock R, Treisman R (1990) Nucleic Acids Res 18:6197–6204

    CAS  Google Scholar 

  54. Rieger A, Nassal M (1995) Nucleic Acids Res 23:3909–3915

    CAS  Google Scholar 

  55. Tsai DE, Harper DS, Keene JD (1991) Nucleic Acids Res 19:4931–4936

    CAS  Google Scholar 

  56. Yang X, Li X, Prow TW, Reece LM, Bassett SE, Luxon BA, Herzog NK, Aronson J, Shope RE, Leary JF, Gonestein DG (2003) Nucleic Acids Res 31:e54

    Google Scholar 

  57. Rhie A, Kirby L, Sayer N, Wellesley R, Disterer P, Sylvester I, Gill A, Hope J, Williams J, Tahiri-Alaoui A (2003) J Biol Chem 278:39697–39705

    CAS  Google Scholar 

  58. Homann M, Göringer U (1999) Nucleic Acids Res 27:2006–2014

    CAS  Google Scholar 

  59. Park S, Myszka DG, Yu M, Litter SJ, Laird-Offringa IA (2000) Mol Cell Biol 20:4765–4772

    CAS  Google Scholar 

  60. Katsamba PS, Myszka DG, Laird-Offringa IA (2001) J Biol Chem 276:21476–21481

    CAS  Google Scholar 

  61. Schier R, Marks JD (1996) Hum Antibod Hybridomas 7:97–105

    CAS  Google Scholar 

  62. Khati M, Schuman M, Ibrahim J, Sattentau Q, Gordon S, James W (2003) J Virol 77:12692–12698

    CAS  Google Scholar 

  63. Pileuf F, Andreola M, Dausse E, Michel J, Moreau S, Yamada H, Gaidamkov SA, Crouch RJ, Toulme J, Cazenave C (2003) Nucleic Acids Res 31:5776–5788

    Google Scholar 

  64. Blank M, Weinschenk T, Priemer M, Schluesener H (2001) J Biol Chem 276:16464–16468

    CAS  Google Scholar 

  65. Schou C, Heegaard NH (2006) Electrophoresis 27:44–59

    CAS  Google Scholar 

  66. Mendonsa SD, Bowser MT (2005) J Am Chem Soc 127:9382–9383

    CAS  Google Scholar 

  67. Drabovich A, Berezovski M, Krylov SN (2005) J Am Chem Soc 127:11224–11225

    CAS  Google Scholar 

  68. Cox JC, Rudolph P, Ellington AD (1998) Biotechnol Prog 14:845–850

    CAS  Google Scholar 

  69. Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Nucleic Acids Res 33:e45

    Google Scholar 

  70. Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Nucleic Acids Res 30:e108

    Google Scholar 

  71. Hybarger G, Bynum J, Williams RF, Valdes JJ, Chambers JP (2006) Anal Bioanal Chem 384:191–198

    CAS  Google Scholar 

  72. Bartel DP, Zapp ML, Green MR, Szostak JW (1991) Cell 67:529–536

    CAS  Google Scholar 

  73. Tuerk C, Macdougal S, Gold L (1992) Proc Natl Acad Sci USA 89:6988–6992

    CAS  Google Scholar 

  74. Schneider D, Tuerk C, Gold L (1992) J Mol Biol 228:862–869

    CAS  Google Scholar 

  75. Giver L, Bartel D, Zapp M, Pawul A, Green M, Ellington AD (1993) Nucleic Acids Res 21:5509–5516

    CAS  Google Scholar 

  76. Chen H, Gold L (1994) Biochem 33:8746–8756

    CAS  Google Scholar 

  77. Conrad R, Keranen LM, Ellington AD, Newton AC (1994) J Biol Chem 269:32051–32054

    CAS  Google Scholar 

  78. Kubik MF, Stephens AW, Schneider D, Marlar R, Tasset D (1994) Nucleic Acids Res 22:2619–2626

    CAS  Google Scholar 

  79. Jellink D, Green LS, Bell C, Janji N (1994) Biochem 33:10450–10456

    Google Scholar 

  80. Allen P, Worland S, Gold L (1995) Virol 209:327–336

    CAS  Google Scholar 

  81. Pan W, Craven RC, Qiu D, Wilson CB, Wills JW, Golovine S, Wang J (1995) Proc Natl Acad Sci USA 92:11509–11513

    CAS  Google Scholar 

  82. Wiegand TW, Williams BP, Dreskin SC, Jouvin M, Kinet J, Tasset D (1996) J Immunol 157:221–230

    CAS  Google Scholar 

  83. Klug SJ, Hüttenhofer A, Kromayer M, Famulok M (1997) Proc Natl Acad Sci USA 94:6676–6681

    CAS  Google Scholar 

  84. Pagratis NC, Bell C, Chang Y, Jennings S, Fitzwater T, Jellinek D, Dang C (1997) Nature Biotechnol 15:68–73

    CAS  Google Scholar 

  85. Kubik MF, Bell C, Fitzwater T, Watson SR, Tasset DM (1997) J Immunol 159:259–267

    CAS  Google Scholar 

  86. Berglund JA, Charpentier B, Rosbash M (1997) Nucleic Acids Res 25:1042–1049

    CAS  Google Scholar 

  87. Urvil PT, Kakiuchi N, Zhou D, Shimotohno K, Kumar PKR, Nishikawa S (1997) Eur J Biochem 248:130–138

    CAS  Google Scholar 

  88. Houser-Scott F, Ansel-Mckinney P, Cai J, Gehrke L (1997) J Virol 71:2310–2319

    CAS  Google Scholar 

  89. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janji N (1998) J Biol Chem 273:2056–20567

    Google Scholar 

  90. Bridonneau P, Chang Y, O’Connell D, Gill SC, Snyder DW, Johnson L, Goodson T, Herron DK, Parma DH (1998) J Med Chem 41:778–786

    CAS  Google Scholar 

  91. Baskerville S, Zapp M, Ellington AD (1999) J Virol 73:4962–4971

    CAS  Google Scholar 

  92. Hirao I, Madin K, Endo Y, Yokoyama S, Ellington AD (2000) J Biol Chem 275:4943–4948

    CAS  Google Scholar 

  93. Hesselberth JR, Miller D, Robertus J, Ellington AD (2000) J Biol Chem 275:4937–4942

    CAS  Google Scholar 

  94. Rusconi CP, Yeh A, Lyerly HK, Lawson JH, Sullenger BA (2000) Thromb Haemost 84:841–848

    CAS  Google Scholar 

  95. Kawakami J, Imanaka H, Yokota Y, Sugimoto N (2000) J Inorg Biochem 82:197–206

    CAS  Google Scholar 

  96. Shtatland T, Gill SC, Javornik BE, Johansson HE, Singer BS, Uhlenbeck OC, Zichi DA, Gold L (2000) Nucleic Acids Res 28:e93

    CAS  Google Scholar 

  97. Brunel C, Ehresmann B, Ehresmann C, McKeown M (2001) Bioorganic Med Chem 9:2533–2541

    CAS  Google Scholar 

  98. Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) Nature 419:90–94

    CAS  Google Scholar 

  99. Chen CB, Chernis GA, Hoang VQ, Landgraf R (2003) Proc Natl Acad Sci USA 100:9226–9231

    CAS  Google Scholar 

  100. White RR, Shan S, Rusconi CP, Shetty G, Dewhirst MW, Kontos KD, Sullenger BA (2003) Proc Natl Acad Sci USA 100:5028–5033

    CAS  Google Scholar 

  101. Nishikawa F, Funaji K, Fukuda K, Nishikawa S (2004) Oligonucleotides 14:114–129

    CAS  Google Scholar 

  102. Kumarevel TS, Gopinath SCB, Nishikawa S, Mizuno H, Kumar PKR (2004) Nucleic Acids Res 32:3904–3912

    CAS  Google Scholar 

  103. Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PKR, Nishikawa S (2006) J Biochem 139:383–390

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subash Chandra Bose Gopinath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopinath, S.C.B. Methods developed for SELEX. Anal Bioanal Chem 387, 171–182 (2007). https://doi.org/10.1007/s00216-006-0826-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0826-2

Keywords

Navigation