Skip to main content

Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid

  • Chapter
  • First Online:
Biotechnology of Food and Feed Additives

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 143))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Funk C (1912) The etiology of the deficiency diseases. Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. J State Med (London) 20:341–368

    Google Scholar 

  2. Zhou J, Du G, Chen J (2012) Metabolic Engineering of microorganisms for vitamin C production. In: Wang X, Chen J, Quinn P (eds) Reprogramming microbial metabolic pathways. Springer, Netherlands, pp 241–259

    Google Scholar 

  3. Bremus C, Herrmann U, Bringer-Meyer S, Sahm H (2006) The use of microorganisms in l-ascorbic acid production. J Biotechnol 124:196–205. doi:10.1016/j.jbiotec.2006.01.010

    Google Scholar 

  4. Hancock R (2009) Recent patents on vitamin C: opportunities for crop improvement and single-step biological manufacture. Recent Pat Food Nutr Agric 1:39–49

    Article  CAS  Google Scholar 

  5. Bhatt A (2010) Evolution of clinical research: a history before and beyond James Lind. Perspect Clin Res 1:6–10

    Google Scholar 

  6. Zetterström R (2006) C. Eijkman (1858–1930) and Sir F.G. Hopkins (1861–1947): the dawn of vitamins and other essential nutritional growth factors. Acta Paediatr 95:1331–1333. doi:10.1080/08035250600960036

    Article  Google Scholar 

  7. Piro A, Tagarelli G, Lagonia P, Tagarelli A, Quattrone A (2010) Casimir Funk: his discovery of the vitamins and their deficiency disorders. Ann Nutr Metab 57:85–88

    Article  CAS  Google Scholar 

  8. Svirbely J, Szent-Györgyi A (1932) The chemical nature of vitamin C. Biochem J 26:865–870

    CAS  Google Scholar 

  9. King C, Waugh W (1932) The chemical nature of vitamin C. Science 75:357–358

    Article  CAS  Google Scholar 

  10. Jukes TH (1988) The identification of vitamin C, a historical summary. J Nutr 118:1290–1293

    CAS  Google Scholar 

  11. Herbert RW, Hirst EL, Percival EGV, Reynolds RJW, Smith F (1933) The constitution of ascorbic acid. J Chem Soc 299:1270–1290

    Google Scholar 

  12. Ault RG, Baird DK, Carrington HC, Haworth WN, Herbert R, Hirst EL, Percival EGV, Smith F, Stacey M (1933) Synthesis of d- and of l-ascorbic acid and of analogous substances. J Chem Soc (Resumed) 332:1419–1423

    Google Scholar 

  13. Reichstein T, Grüssner A (1934) Eine ergiebige Synthese der l-Ascorbinsäure (C-Vitamin). Helv Chim Acta 17:311–328. doi:10.1002/hlca.19340170136

    Article  CAS  Google Scholar 

  14. Mandl J, Szarka A, Bánhegyi G (2009) Vitamin C: update on physiology and pharmacology. Br J Pharmacol 157:1097–1110. doi:10.1111/j.1476-5381.2009.00282.x

    Article  CAS  Google Scholar 

  15. Valpuesta V, Botella MA (2004) Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577. doi:10.1016/j.tplants.2004.10.002

  16. Horowitz HH, Doerschuk AP, King CG (1952) The origin of l-ascorbic acid in the albino rat. J Biol Chem 199:193–198

    CAS  Google Scholar 

  17. Kondo Y, Inai Y, Sato Y, Handa S, Kubo S, Shimokado K, Goto S, Nishikimi M, Maruyama N, Ishigami A (2006) Senescence marker protein 30 functions as gluconolactonase in l-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci 103:5723–5728. doi:10.1073/pnas.0511225103

    Article  CAS  Google Scholar 

  18. Linster CL, Van Schaftingen E (2007) Vitamin C: biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22. doi:10.1111/j.1742-4658.2006.05607.x

    Article  CAS  Google Scholar 

  19. Loewus FA (1963) Tracer studies on ascorbic acid formation in plants. Phytochemistry 2:109–128. doi:10.1016/S0031-9422(00)82971-4

    Google Scholar 

  20. Isherwood FA, Chen YT, Mapson LW (1953) Synthesis of l-ascorbic acid in plants and animals. Nature 171:348–349

    Article  CAS  Google Scholar 

  21. Smirnoff N, Wheeler G (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  Google Scholar 

  22. Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1040–1042

    Google Scholar 

  23. Baroja-Mazo A, Valle Pd, Rúa J, de Cima S, Busto F, de Arriaga D, Smirnoff N (2005) Characterisation and biosynthesis of d-erythroascorbic acid in Phycomyces blakesleeanus. Fungal Genetics Biol 42:390–402. doi:10.1016/j.fgb.2005.01.005

  24. Bertrand G (1896) Preparation biochimique du sorbose. C R Acad Sci 122:900–903

    CAS  Google Scholar 

  25. Bertrand G (1898) Recherches sur la production biochimique du sorbose. Ann Inst Pasteur (Paris) 12:385–399

    Google Scholar 

  26. Bertrand G (1904) Etude biochimique de la bacterie du sorbose. Ann Chim Phys 3:181–288

    CAS  Google Scholar 

  27. Gillis M, Kersters K, Gossele F, Swings J, De Ley J, MacKenzie A, Bousfield I (1983) Rediscovery of Bertrand’s sorbose bacterium (Acetobacter aceti subsp. xylinum): proposal to designate NCIB 11664 in place of NCIB 4112 (ATCC 23767) as the type strain of Acetobacter aceti subsp. xylinum. Int J Syst Evol Microbiol 33:122–124

    Google Scholar 

  28. Crawford T, Crawford S (1980) Synthesis of l-ascorbic acid. Adv Carbohydr Chem Biochem 37:79–155

    Article  CAS  Google Scholar 

  29. Dalmer O, Heyns K (1936) Process for the production of keto gulonic acid from sorbose. US 2190377

    Google Scholar 

  30. Tadamitsu K (1983) Process for the preparation of 2-keto-l-gulonic acid. US 4599446

    Google Scholar 

  31. Bronnimann C, Bodnar Z, Hug P, Mallat T, Baiker A (1994) Direct oxidation of l-sorbose to 2-keto-l-gulonic acid with molecular oxygen on platinum- and palladium-based catalysts. J Catal 150:199–211. doi:10.1006/jcat.1994.1336

    Google Scholar 

  32. Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Google Scholar 

  33. Hann RM, Tilden EB, Hudson CS (1938) The oxidation of sugar alcohols by Acetobacter suboxydans. J Am Chem Soc 60:1201–1203. doi:10.1021/ja01272a058

    Article  CAS  Google Scholar 

  34. Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 66:57–64

    Article  CAS  Google Scholar 

  35. Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966. doi:10.1128/aem.69.4.1959- 1966.2003

    Article  CAS  Google Scholar 

  36. Salusjärvi T, Povelainen M, Hvorslev N, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Neustroev KN, Kalkkinen N, Miasnikov AN (2004) Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 65:306–314. doi:10.1007/s00253-004-1594-6

    Article  Google Scholar 

  37. Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270

    Article  CAS  Google Scholar 

  38. Shinjoh M, Tomiyama N, Miyazaki T, Hoshino T (2002) Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound d-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem 66:2314–2322

    Article  CAS  Google Scholar 

  39. Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T (2003) Membrane-bound d-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochimica et Biophysica Acta (BBA) Proteins and Proteomics 1647:278–288. doi:10.1016/S1570-9639(03)00071-2

  40. Shinagawa E, Matsushita K, Adachi O, Ameyama M (1982) Purification and characterization of d-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric Biol Chem 46:135–141

    Article  CAS  Google Scholar 

  41. Choi E-S, Lee E-H, Rhee S-K (1995) Purification of a membrane-bound sorbitol dehydrogenase from Gluconobacter suboxydans. FEMS Microbiol Lett 125:45–49. doi:10.1111/j.1574-6968.1995.tb07333.x

    Article  CAS  Google Scholar 

  42. Isono M, Nakanishi I, Sasajima K, Motizuki K, Kanzaki T, Okazaki H, Yoshino H (1968) 2-keto-l-gulonic acid fermentation. Part I. Paper chromatographic characterization of metabolic products from sorbitol and l-sorbose by various bacteria. Agric Biol Chem 35:424–431

    Article  Google Scholar 

  43. Okazaki H, Kanzaki T, Doi M, Nara K, Motizuki K (1968) 2-keto-l-gulonic acid fermentation. Part II. Identification of metabolic products from sorbitol. Agric Biol Chem 32:1250–1255

    Google Scholar 

  44. Okazaki H, Kanzaki T, Sasajima K, Terada Y (1969) 2-keto-l-gulonic acid fermentation. Part III. Evaluation of the pathway of sorbitol metabolism in Gluconobacter melanogenus. Agric Biol Chem 33:207–211

    Article  CAS  Google Scholar 

  45. Kanzaki T, Okazaki H (1970) 2-keto-L-gulonic acid fermentation. Part IV. L-sorbose metabolism in Pseudomonas aeruginosa. Agric Biol Chem 34:432–436

    Article  CAS  Google Scholar 

  46. Tsukada Y, Perlman D (1972) The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation. Biotechnol Bioeng 14:799–810. doi:10.1002/bit.260140509

    Article  CAS  Google Scholar 

  47. Tsukada Y, Perlman D (1972) The fermentation of l-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of l-sorbose to 2-keto-l-gulonic acid. Biotechnol Bioeng 14:811–818. doi:10.1002/bit.260140510

    Article  CAS  Google Scholar 

  48. Tsukada Y, Perlman D (1972) The fermentation of L-sorbose by Gluconobacter melanogenus. III. Investigation of the metabolic pathway from sorbose to 2-keto-L-gulonic acid. Biotechnol Bioeng 14:1035–1038. doi:10.1002/bit.260140612

    Article  CAS  Google Scholar 

  49. Makover S, Ramsey G, Vane F, Witt C, Wright R (1975) New mechanisms for the biosynthesis and metabolism of 2-keto-l-gulonic acid in bacteria. Biotechnol Bioeng 17:1485–1514

    Article  CAS  Google Scholar 

  50. Köpper S, Freimund S (2003) The composition of keto aldoses in aqueous solution as determined by NMR spectroscopy. Helv Chim Acta 86:827–843. doi:10.1002/hlca.200390083

    Article  Google Scholar 

  51. Kitamura I, Perlman D (1975) Metabolism of l-sorbose by enzymes from Gluconobacter melanogenus IFO 3293. Eur J Appl Microbiol 2:1–7. doi:10.1007/bf01385440

    Article  CAS  Google Scholar 

  52. Hoshino T, Sugisawa T, Tazoe M, Shinjoh M, Fujiwara A (1990) Metabolic pathway for 2-keto-l-gulonic acid formation in Gluconobacter melanogenus IFO 3293. Agric Biol Chem 54:1211–1218

    Article  CAS  Google Scholar 

  53. Sugisawa T, Hoshino T, Nomura S, Fujiwara A (1991) Isolation and characterization of membrane-bound l-sorbose dehydrogenase from Gluconobacter melanogenus UV10. Agric Biol Chem 55:363–370

    Article  CAS  Google Scholar 

  54. Sugisawa T, Hoshino T, Masuda S, Nomura S, Setoguchi Y, Tazoe M, Shinjoh M, Someha S, Fujiwara A (1990) Microbial production of 2-keto-l-gulonic acid from l-sorbose and d-sorbitol by Gluconobacter melanogenus. Agric Biol Chem 54:1201–1209

    Article  CAS  Google Scholar 

  55. Hoshino T, Sugisawa T, Fujiwara A (1991) Isolation and characterization of NAD(P)-dependent l-sorbosone dehydrogenase from Gluconobacter melanogenus UV10. Agric Biol Chem 55:665–670

    Article  CAS  Google Scholar 

  56. Manning R, Kahn M (1987) Biosynthesis of 2 keto-l-gulonic acid. US 5082785

    Google Scholar 

  57. Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning of genes coding for l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460

    CAS  Google Scholar 

  58. Huang H (1960) Preparation of 2-keto-l-gulonic acid. US 3043749

    Google Scholar 

  59. Tengerdy R (1961) Redox potential changes in the 2-keto-l-gulonic acid fermentation—I. Correlation between redox potential and dissolved-oxygen concentration. J Biochem Microbiol Technol Eng 3:241–253

    Article  CAS  Google Scholar 

  60. Motizuki K, Kanzaki T, Okazaki H, Yoshino H, Nara K, Isono M, Nakanishi I, Sasajima K (1962) Method for producing 2-keto-l-gulonic acid. US 3234105

    Google Scholar 

  61. Krajewski V, Simić P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376. doi:10.1128/aem.03022-09

    Article  CAS  Google Scholar 

  62. Yin G, Tao Z, Yu L, Wang D, Dan J, Yan Z, Ning W, Wang C, Wang S, Jiang H, Zhang D, Feng X, Zhao Q, Wei W (1980) Studies on the production of vitamin C precursor 2-keto-l-gulonic acid from l-sorbose by fermentation. I. isolation screening and identification of 2-keto-l-gulonic acid producing bacteria. Acta Microbiologica Sinica 20:246–251

    CAS  Google Scholar 

  63. Yan Z, Tao Z, Yu L, Yin G, Ning W, Wang C, Wang S, Jiang H, Yu J, Wang M, Yu X (1981) Studies on production of vitamin C precursor 2-keto-l-gulonic acid from l-sorbose by fermentation. II. Conditions for submerged fermentation of 2-keto-l-gulonic acid. Acta Mycrobiologica Sinica 21:185–191

    Google Scholar 

  64. Ning W, Tao Z, Wang C, Wang S, Yan Z, Yin G (1987) Fermentation process for producing 2-keto-l-gulonic acid. EP 0278447B1

    Google Scholar 

  65. Urbance J, Bratina B, Stoddard S, Schmidt T (2001) Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070

    Article  CAS  Google Scholar 

  66. Anonymus (2001) Notification list. Int J Syst Evol Microbiol 51:1231–1233

    Google Scholar 

  67. Xiong X, Han S, Wang J, Jiang Z, Chen W, Jia N, Wei H, Cheng H, Yang Y, Zhu B, You S, He J, Hou W, Chen M, Yu C, Jiao Y, Zhang W (2011) Complete genome sequence of the bacterium Ketogulonicigenium vulgare Y25. J Bacteriol 193:315–316

    Article  CAS  Google Scholar 

  68. Liu L, Li Y, Zhang J, Zhou Z, Liu J, Li X, Zhou J, Du G, Wang L, Chen J (2011) Complete genome sequence of the industrial strain Ketogulonicigenium vulgare WSH-001. J Bacteriol 193:6108–6109

    Article  CAS  Google Scholar 

  69. Stoddard S, Liaw H, Eddington J, Yang Y (1996) Bacterial strains and use thereof in fermentation processes for 2-keto-l-gulonic acid protection. EP0939831 B1

    Google Scholar 

  70. Asakura A, Hoshino T (1999) Isolation and characterization of a new quinoprotein dehydrogenase, l-sorbose/l-sorbosone dehydrogenase. Biosci Biotechnol Biochem 63:46–53

    Article  CAS  Google Scholar 

  71. Asakura A, Hoshino T, Ojima S, Shinjo M, Tomiyama N (1996) Alcohol/aldehyde dehydrogenase. US 6730503 B1

    Google Scholar 

  72. Hao A, Jia Q, Wu H, Zhou H, Geng W, Gao W, Zhao J, He J (2008) Isolation and characteristics research of l-sorbose dehydrogenase in Ketogulonigenium sp. WB0104. Ind Microbiol 38:10–14

    Google Scholar 

  73. Hao A, Jia Q, Wu H, Zhou H, Geng W, Gao W, Zhao J, He J (2006) l-sorbinose dehydrogenase and its coding gene and uses. CN 101085987 B

    Google Scholar 

  74. Zhan W, Jiao Y, Yuan H, Xie L (2003) A new l-sorbose dehydrogenase gene and the protein it encoded. CN 1521181

    Google Scholar 

  75. Ma Q, Zhou J, Zhang W, Meng X, Sun J, Yuan Y (2011) Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS ONE 6:e26108. doi:10.1371/journal.pone.0026108

  76. Takagi Y, Sugisawa T, Hoshino T (2009) Continuous 2-keto-l-gulonic acid fermentation from l-sorbose by Ketogulonigenium vulgare DSM 4025. Appl Microbiol Biotechnol 82:1049–1056. doi:10.1007/s00253-008-1822-6

    Article  CAS  Google Scholar 

  77. Takagi Y, Sugisawa T, Hoshino T (2010) Continuous 2-keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia. Appl Microbiol Biotechnol 86:469–480. doi:10.1007/s00253-009-2312-1

    Article  CAS  Google Scholar 

  78. Hoshino T, Ojima S, Sugisawa T (1991) Fermentation process for producing 2-keto-l-gulonic acid. EP0518136B1

    Google Scholar 

  79. Gao Y, Yuan Y-J (2011) Comprehensive quality evaluation of corn steep liquor in 2-keto-l-gulonic acid fermentation. J Agric Food Chem 59:9845–9853. doi:10.1021/jf201792u

    Article  CAS  Google Scholar 

  80. Zhang J, Zhou J, Liu J, Chen K, Liu L, Chen J (2011) Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Biores Technol 102:4807–4814. doi:10.1016/j.biortech.2010.10.124

  81. Leduc S, Troostembergh JC, Lebeault JM (2004) Folate requirements of the 2-keto-l-gulonic acid-producing strain Ketogulonigenium vulgare LMP P-20356 in l-sorbose/CSL medium. Appl Microbiol Biotechnol 65:163–167. doi:10.1007/s00253-004-1562-1

    Article  CAS  Google Scholar 

  82. Cai L, Yuan M-Q, Li Z-J, Chen J-C, Chen G-Q (2012) Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-l-gulonic acid. J Biotechnol 157:320–325. doi:10.1016/j.jbiotec.2011.12.004

    Google Scholar 

  83. Zou W, Liu L, Zhang J, Yang H, Zhou M, Hua Q, Chen J (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161:42–48. doi:10.1016/j.jbiotec.2012.05.015

    Google Scholar 

  84. Ma Q, Zhang W, Zhang L, Qiao B, Pan C, Yi H, Wang L, Yuan YJ (2012) Proteomic analysis of Ketogulonicigenium vulgare under glutathione reveals high demand for thiamin transport and antioxidant protection. PLoS ONE 7:e32156

    Article  CAS  Google Scholar 

  85. Liu L, Chen K, Zhang J, Liu J, Chen J (2011) Gelatin enhances 2-keto-l-gulonic acid production based on Ketogulonigenium vulgare genome annotation. J Biotechnol 156:182–187. doi:10.1016/j.jbiotec.2011.08.007

    Google Scholar 

  86. Lv S, Zhao S, Yang Y, Zhang Z, Chen H (2011) Research progress on Vc precursor of 2-KGA production through mixed fermentation from l-sorbose. Biotechnol Bull 5:50–54

    Google Scholar 

  87. Yi H, Zhang H, Zhu W, Zeng Y (2003) Progresses of vitamin C productive technology. China Food Addit 6:76–81

    Google Scholar 

  88. Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, Yu Z (2004) Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam. J Appl Microbiol 96:1317–1323

    Article  CAS  Google Scholar 

  89. Song Q, He J, Ren S, Ye Q, Guo X, Cheng C, Yin G (1997) Production of vitamin C precursor-2-l-keto-gulonic acid from l-sorbose by a novel bacterial component system of SCB329 SCB933. III.The characteristics and control of 2-keto-l-gulonic fermentation. Ind Microbiol 27:6–10

    Google Scholar 

  90. Hoshino T, Kiyasu T, Shinjoh M (2001) Enzymatic process for the manufacture of l-ascorbic acid and d-erythorbic acid. US 2005019878

    Google Scholar 

  91. Asakura A, Hoshino T, Kiyasu T, Shinjoh M (1999) Manufacture of l-ascorbic acid and d-erythorbic acid. EP1026257 B1

    Google Scholar 

  92. Sugisawa T, Ojima S, Matzinger P, Hoshino T (1995) Isolation and characterization of a new vitamin C producing enzyme (l-gulono-γ-lactone dehydrogenase) of bacterial origin. Biosci Biotechnol Biochem 59:190–196

    Article  CAS  Google Scholar 

  93. Sugisawa T, Miyazaki T, Hoshino T (2005) Microbial production of l-ascorbic acid from d-sorbitol, l-sorbose, l-gulose, and l-sorbosone by Ketogulonicigenium vulgare DSM 4025. Microbiol Ferment Technol Commun 69:659–662

    CAS  Google Scholar 

  94. Berry A, Lee C, Mayer A, Shinjoh M (2003) Microbial production of l-ascorbic acid. EP2348113

    Google Scholar 

  95. Loewus M, Bedgar D, Saito K, Loewus F (1990) Conversion of l-sorbosone to l-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. Plant Physiol 94:1492–1495

    Article  CAS  Google Scholar 

  96. Miyazaki T, Sugisawa T, Hoshino T (2006) Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of l-sorbosone to l-ascorbic acid. Appl Environ Microbiol 72:1487–1495. doi:10.1128/aem.72.2.1487-1495.2006

    Article  CAS  Google Scholar 

  97. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505. doi:10.1021/cr068069y

    Article  CAS  Google Scholar 

  98. Beardmore-Gray M, Anthony C (1986) The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain. J Gen Microbiol 132:1257–1268. doi:10.1099/00221287-132-5-1257

    CAS  Google Scholar 

  99. Cleton-Jansen A, Goosen N, Vink K, van de Putte P (1989) Cloning of the genes encoding the two different glucose dehydrogenases from Acinetobacter calcoaceticus. Antonie Van Leeuwenhoek 56:73–79

    Article  CAS  Google Scholar 

  100. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotech 23:195–200. doi:http://www.nature.com/nbt/journal/v23/n2/suppinfo/nbt1062_S1.html

    Google Scholar 

  101. Hölscher T, Weinert-Sepalage D, Görisch H (2007) Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153:499–506. doi:10.1099/mic.0.2006/002196-0

    Article  Google Scholar 

  102. Dunning JW, Fulmer EI, Guymon JF, Underkofler LA (1938) The growth and chemical action of Acetobacter suboxydans upon l-inositol. Science (New York, N.Y.) 87:72

    Article  CAS  Google Scholar 

  103. Kluyver A, Boezaardt A (1939) Note on the biochemical preparation of inosose. Rec Trav Chim Pays-Bas 58:956–958

    CAS  Google Scholar 

  104. Posternak T (1941) Recherches dans la série des cyclites V. Sur un inosose préparé par voie biochimique. Helv Chim Acta 24:1045–1058. doi:10.1002/hlca.194102401127

    Article  CAS  Google Scholar 

  105. Carter H, Belinskey C, Clark R, Flynn E, Lytle B, McCasland G, Robbins M (1948) Oxidation of inositol by Acetobacter suboxydans. J Biol Chem 174:415–426

    CAS  Google Scholar 

  106. Chargaff E, Magasanik B (1946) Oxidation of stereoisomers of the inositol group by Acetobacter suboxydans. J Biol Chem 165:379–380

    CAS  Google Scholar 

  107. Magasanik B, Chargaff E (1948) The stereochemistry of an enzymatic reaction; the oxidation of 1-, d-, and epi-inositol by Acetobacter suboxydans. J Biol Chem 174:173–188

    CAS  Google Scholar 

  108. Magasanik B, Chargaff E (1948) The oxidation of d-quercitol by Acetobacter suboxydans. J Biol Chem 175:939–943

    CAS  Google Scholar 

  109. Magasanik B, Franzl RE, Chargaff E (1952) The stereochemical specificity of the oxidation of cyclitols by Acetobacter suboxydans. J Am Chem Soc 74:2618–2621. doi:10.1021/ja01130a045

    Article  CAS  Google Scholar 

  110. Anderson L, Takeda R, Angyal S, McHugh D (1958) Cyclitol oxidation by Acetobacter suboxydans. II. Additional cyclitols and the “Third Specificity Rule”. Arch Biochem Biophys 78:518–531

    Article  CAS  Google Scholar 

  111. Criddle W, Fry J, Keaney M (1974) Myo-inositol dehydrogenase(s) from Acetomonas oxydans. Optimization of conditions for solubilization of membrane-bound enzyme. Biochem J 137:449–452

    CAS  Google Scholar 

  112. Criddle W, Fry J, Keaney M, Lucas C, Tovey J (1977) Myo-inositol dehydrogenase(s) from Acetomonas oxydans. Mol Cell Biochem 16:3–8

    Article  CAS  Google Scholar 

  113. Wissler J, Freivogel K, Wiesner W (1995) Cyclitol. WO9704101

    Google Scholar 

  114. Yagi J, Yamashita T, Kato A, Takaki Y, Sakai H (1967) Studies on erythorbic acid production by fermentation. Part I. Erythorbic acid-producing strain and cultural condition. Agric Biol Chem 31:340–345

    Article  CAS  Google Scholar 

  115. Takahashi T (1969) Erythorbic acid fermentation. Biotechnol Bioeng 11:1157–1171. doi:10.1002/bit.260110611

    Article  CAS  Google Scholar 

  116. Takahashi T, Mitsumoto M, Kayamori H (1960) Production of d-araboascorbic acid by penicillium. Nature 188:411–412

    Article  CAS  Google Scholar 

  117. Takahashi T, Yamashita H, Kato E, Mitsumoto M, Murakawa S (1976) Purification and some properties of d-glucono-γ-lactone dehydrogenase d-erythorbic acid producing enzyme of Penicillium cyaneo-fulvum. Agric Biol Chem 40:121–129

    Google Scholar 

  118. Salusjärvi T, Kalkkinen N, Miasnikov AN (2004) Cloning and characterization of gluconolactone oxidase of Penicillium cyaneo-fulvum ATCC 10431 and evaluation of its use for production of d-erythorbic acid in recombinant Pichia pastoris. Appl Environ Microbiol 70:5503–5510. doi:10.1128/aem.70.9.5503-5510.2004

    Article  Google Scholar 

  119. Murakawa S, Takahashi T (1977) Biosynthesis of a new ascorbic acid analogue by d-gluconolactone dehydrogenase of Penicillium cyaneo-fulvum. Agric Biol Chem 41:2103–2104

    Article  CAS  Google Scholar 

  120. Takahashi T, Mitsumoto M (1963) Transformation and hydrolysis of d-gulono-gamma and delta-lactone. Nature 199:765–767

    Article  CAS  Google Scholar 

  121. Neidelman S, Amon W, Geigert J (1980) Production of 2-keto-d-gluconic acid and hydrogen peroxide. US 4351902

    Google Scholar 

  122. Shao Y, Seib P, Kramer K, Van Galen D (1993) Synthesis and properties of d-erythroascorbic acid and its vitamin C activity in the tobacco hornworm (Manduca sexta). J Agric Food Chem 41:1391–1396

    Article  CAS  Google Scholar 

  123. Kim S-T, Huh W-K, Lee B-H, Kang S-O (1998) d-Arabinose dehydrogenase and its gene from Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology 1429:29–39. doi:10.1016/S0167-4838(98)00217-9

  124. Amako K, Fujita K, Shimohata T, Hasegawa E, Kishimoto R, Goda K (2006) NAD+-specific d-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae. FEBS Lett 580:6428–6434

    Google Scholar 

  125. Huh W-K, Lee B-H, Kim S-T, Kim Y-R, Rhie G-E, Baek Y-W, Hwang C-S, Lee J-S, Kang S-O (1998) d-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol Microbiol 30:895–903. doi:10.1046/j.1365-2958.1998.01133.x

    Article  CAS  Google Scholar 

  126. Hancock R, Galpin J, Viola R (2000) Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiol Lett 186:245–250

    CAS  Google Scholar 

  127. Shimizu K, Nishiyama K, Inoue T, Takano N, Mikata M, Masataka Y, Azuma T, Osawa S (1967) Studies on erythorbic acid production by fermentation. Part II. Erythorbic acid production by Jar Fermentor. Agric Biol Chem 31:346–352

    Article  CAS  Google Scholar 

  128. Sun W-J, Zhou Y-Z, Zhou Q, Cui F-J, Yu S-L, Sun L (2012) Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Biores Technol 110:546–551. doi:10.1016/j.biortech.2012.01.040

    Google Scholar 

  129. Matsushita K, Ameyama M (1982) d-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–154

    Article  CAS  Google Scholar 

  130. Ramakrishnan T, Cambell J (1955) Gluconic dehydrogenase of Pseudomonas aeruginosa. Biochim Biophys Acta 17:122–127

    Article  CAS  Google Scholar 

  131. Matsushita K, Shinagawa E, Ameyama M (1982) d-Gluconate dehydrogenase from bacteria, 2-keto-d-gluconate-yielding, membrane-bound. Methods Enzymol 89:187–193

    Article  CAS  Google Scholar 

  132. Chundawat S, Beckham G, Himmel M, Dale B (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  133. Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

For the preparation of the manuscript Grace Lee has been a great help in retrieving and translating numerous Chinese publications. The critical reading of the manuscript by Tom McClymont, Teruhide Sugisawa, Masako Shinjoh, and Dietmar Laudert is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Hohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pappenberger, G., Hohmann, HP. (2013). Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid. In: Zorn, H., Czermak, P. (eds) Biotechnology of Food and Feed Additives. Advances in Biochemical Engineering/Biotechnology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_243

Download citation

Publish with us

Policies and ethics