Automated Measurement and Monitoring of Bioprocesses: Key Elements of the M3C Strategy

Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 132)

Abstract

The state-of-routine monitoring items established in the bioprocess industry as well as some important state-of-the-art methods are briefly described and the potential pitfalls discussed. Among those are physical and chemical variables such as temperature, pressure, weight, volume, mass and volumetric flow rates, pH, redox potential, gas partial pressures in the liquid and molar fractions in the gas phase, infrared spectral analysis of the liquid phase, and calorimetry over an entire reactor. Classical as well as new optical versions are addressed. Biomass and bio-activity monitoring (as opposed to “measurement”) via turbidity, permittivity, in situ microscopy, and fluorescence are critically analyzed. Some new(er) instrumental analytical tools, interfaced to bioprocesses, are explained. Among those are chromatographic methods, mass spectrometry, flow and sequential injection analyses, field flow fractionation, capillary electrophoresis, and flow cytometry. This chapter surveys the principles of monitoring rather than compiling instruments.

Graphical Abstract

Keywords

Bio-activity Biomass Chemical variables Physical variables Products Substrates 

References

  1. 1.
    Sonnleitner B (2000) Instrumentation of biotechnological processes. Adv Biochem Eng/Biotechnol 66:1–64CrossRefGoogle Scholar
  2. 2.
    Schuegerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85(2):149–173CrossRefGoogle Scholar
  3. 3.
    Carloni A, Turner APF (2011) Bioprocess monitoring. Encycl Ind Biotechnol 2:766–783Google Scholar
  4. 4.
    Junker BH, Wang HY (2006) Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng 95(2):226–261CrossRefGoogle Scholar
  5. 5.
    Duennebier G, Tups H (2007) FDA PAT Initiative—Eine Anwendersicht zu technischen Möglichkeiten und aktueller industrieller Umsetzung. Chem Ing Tech 79(12):2019–2028CrossRefGoogle Scholar
  6. 6.
    Clementschitsch F, Bayer K (2006) Improvement of bioprocess monitoring: development of novel concepts. Microb Cell Fact 5:19CrossRefGoogle Scholar
  7. 7.
    Julien C, Whitford W (2007) Bioreactor monitoring, modeling, and simulation. BioProc Int 5(1):10–17Google Scholar
  8. 8.
    Glassey J, Gernaey KV, Clemens C, Schulz TW, Oliveira R, Striedner G, Mandenius CF (2011) Process analytical technology (PAT) for biopharmaceuticals. Biotechnol J 6:369–377CrossRefGoogle Scholar
  9. 9.
    Vojinovic V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring. Part I: in situ sensors. Sens Actuator B 114(2):1083–1091Google Scholar
  10. 10.
    Olsson L, Schulze U, Nielsen J (1998) On-line bioprocess monitoring—an academic discipline or an industrial tool? Trends Anal Chem 17(2):88–95CrossRefGoogle Scholar
  11. 11.
    Kell DB, Sonnleitner B (1995) GMP—good modelling practice. Trends Biotechnol 13:481–492CrossRefGoogle Scholar
  12. 12.
    Cimander C, Bachinger T, Mandenius CF (2003) Integration of distributed multi-analyzer monitoring and control in bioprocessing based on a real-time expert system. J Biotechnol 103(3):237–248CrossRefGoogle Scholar
  13. 13.
    Cimander C, Mandenius CF (2002) Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling. J Chem Technol Biotechnol 77(10):1157–1168CrossRefGoogle Scholar
  14. 14.
    Harms P, Kostov Y, Rao G (2002) Bioprocess monitoring. Curr Opin Biotechnol 13(2):124–127CrossRefGoogle Scholar
  15. 15.
    Badugu R, Kostov Y, Rao G, Tolosa L (2008) Development and application of an excitation ratio metric optical pH sensor for bioprocess monitoring. Biotechnol Prog 24(6):1393–1401CrossRefGoogle Scholar
  16. 16.
    Kermis HR, Kostov Y, Harms P, Rao G (2002) Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application. Biotechnol Prog 18(5):1047–1053CrossRefGoogle Scholar
  17. 17.
    Schenk J, Marison IW, von Stockar U (2008) pH prediction and control in bioprocesses using mid-infrared spectroscopy. Biotechnol Bioeng 100(1):82–93CrossRefGoogle Scholar
  18. 18.
    Kjaergaard L (1977) The redox potential: its use and control in biotechnology. Adv Biochem Eng 7:131–150CrossRefGoogle Scholar
  19. 19.
    Funke M, Diederichs S, Kensy F, Mueller C, Buechs J (2009) The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 103(6):1118–1128CrossRefGoogle Scholar
  20. 20.
    Henes B, Sonnleitner B (2007) Controlled fed-batch by tracking the maximal culture capacity. J Biotechnol 132(2):118–126CrossRefGoogle Scholar
  21. 21.
    Lam H, Kostov Y (2009) Optical instrumentation for bioprocess monitoring. Adv Biochem Eng/Biotechnol 116:1–28Google Scholar
  22. 22.
    Ge X, Kostov Y, Rao G (2005) Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnol Bioeng 89(3):329–334CrossRefGoogle Scholar
  23. 23.
    Granstedt F (2005) Modelling of an electroacoustic gas sensor. Sens Actuat B 104(2):308–311CrossRefGoogle Scholar
  24. 24.
    Custer TG, Wagner WP, Kato S, Bierbaum VM, Fall R (2003) Potential of on-line CIMS for bioprocess monitoring. Biotechnol Prog 19(4):1355–1364CrossRefGoogle Scholar
  25. 25.
    Pollard D, Christensen J (2010) Vent gas analysis. Encycl Ind Biotechnol 7:4759–4773Google Scholar
  26. 26.
    Madrid RE, Felice CJ (2005) Microbial biomass estimation. Crit Rev Biotechnol 25(3):97–112CrossRefGoogle Scholar
  27. 27.
    Ansorge S, Esteban G, Schmid G (2010) On-line monitoring of responses to nutrient feed additions by multi-frequency permittivity measurements in fed-batch cultivations of CHO cells. Cytotechnology 62(2):121–132CrossRefGoogle Scholar
  28. 28.
    Sarrafzadeh MH, Belloy L, Esteban G, Navarro JM, Ghommidh C (2005) Dielectric monitoring of growth and sporulation of Bacillus thuringiensis. Biotechnol Lett 27(7):511–517CrossRefGoogle Scholar
  29. 29.
    Sarrafzadeh MH, Guiraud JP, Lagneau C, Gaven B, Carron A, Navarro JM (2005) Growth, sporulation, delta-endotoxins synthesis, and toxicity during culture of Bacillus thuringiensis H14. Curr Microbiol 51(2):75–81CrossRefGoogle Scholar
  30. 30.
    Maskow T, Roellich A, Fetzer I, Ackermann JU, Harms H (2008) On-line monitoring of lipid storage in yeasts using impedance spectroscopy. J Biotechnol 135(1):64–70CrossRefGoogle Scholar
  31. 31.
    Markx GH, Davey CL, Kell DB (1991) The permittistat: a novel type of turbidostat. J Gen Microbiol 137:735–743Google Scholar
  32. 32.
    Bluma A, Hoepfner T, Lindner P, Rehbock C, Beutel S, Riechers D, Hitzmann B, Scheper T (2010) In-situ imaging sensors for bioprocess monitoring: state of the art. Anal Bioanal Chem 398(6):2429–2438CrossRefGoogle Scholar
  33. 33.
    Hoepfner T, Bluma A, Rudolph G, Lindner P, Scheper T (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioproc Biosys Eng 33(2):247–256CrossRefGoogle Scholar
  34. 34.
    Rudolph G, Brueckerhoff T, Bluma A, Korb G, Scheper T (2007) Optische Inline-Messverfahren zur Zellzahl- und Zellgroessenbestimmung in der Bioprozesstechnik. Chem Ing Tech 79(1–2):42–51CrossRefGoogle Scholar
  35. 35.
    Ulber R, Frerichs JG, Beutel S (2003) Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376(3):342–348Google Scholar
  36. 36.
    Prediger A, Bluma A, Hoepfner T, Lindner P, Beutel S, Mueller J, Hilterhaus L, Liese A, Scheper T (2011) In-situ-Mikroskopie zur Online-Ueberwachung von Enzymtraegern und Zweiphasenprozessen. Chem Ing Tech 83(6):884–887CrossRefGoogle Scholar
  37. 37.
    Zhao R, Natarajan A, Srienc F (1999) A flow injection flow cytometry system for on-line monitoring of bioreactors. Biotechnol Bioeng 62(5):609–617CrossRefGoogle Scholar
  38. 38.
    Abu-Absi NR, Zamamiri A, Kacmar J, Balogh SJ, Srienc F (2003) Automated flow cytometry for acquisition of time-dependent population data. Cytometry Part A 51(A):87–96Google Scholar
  39. 39.
    Sitton G, Srienc F (2008) Mammalian cell culture scale-up and fed-batch control using automated flow cytometry. J Biotechnol 135(2):174–180CrossRefGoogle Scholar
  40. 40.
    Sitton G, Srienc F (2008) Growth dynamics of mammalian cells monitored with automated cell cycle staining and flow cytometry. Cytometry Part A 73(A):538–545Google Scholar
  41. 41.
    Birou B, Marison IW, von Stockar U (1987) Calorimetric investigation of aerobic fermentations. Biotechnol Bioeng 30(5):650–660CrossRefGoogle Scholar
  42. 42.
    von Stockar U, Birou B (1989) The heat generated by yeast cultures with a mixed metabolism in the transition between respiration and fermentation. Biotechnol Bioeng 34(1):86–101CrossRefGoogle Scholar
  43. 43.
    Schubert T, Breuer U, Harms H, Maskow T (2007) Calorimetric bioprocess monitoring by small modifications to a standard bench-scale bioreactor. J Biotechnol 130(1):24–31CrossRefGoogle Scholar
  44. 44.
    Sivaprakasam S, Schuler MM, Hama A, Hughes KM, Marison IW (2011) Biocalorimetry as a process analytical technology process analyser; robust in-line monitoring and control of aerobic fed-batch cultures of crabtree-negative yeast cells. J Therm Anal Calorim 104(1):75–85CrossRefGoogle Scholar
  45. 45.
    Voisard D, Pugeaud P, Kumar AR, Jenny K, Jayaraman K, Marison IW, von Stockar U (2002) Development of a large-scale biocalorimeter to monitor and control bioprocesses. Biotechnol Bioeng 80(2):125–138CrossRefGoogle Scholar
  46. 46.
    von Stockar U, Marison IW (1989) The use of calorimetry in biotechnology. Adv Biochem Eng/Biotechnol 40:93–136CrossRefGoogle Scholar
  47. 47.
    Dabros M, Amrhein M, Bonvin D, Marison IW, von Stockar U (2009) Data reconciliation of concentration estimates from mid-infrared and dielectric spectral measurements for improved on-line monitoring of bioprocesses. Biotechnol Prog 25(2):578–588CrossRefGoogle Scholar
  48. 48.
    Staerk E, Hitzmann B, Schuegerl K, Scheper T, Fuchs C, Koester D, Maerkl H (2002) A useful tool for non-invasive bioprocess monitoring. Adv Biochem Eng/Biotechnol 74:21–38CrossRefGoogle Scholar
  49. 49.
    Anton F, Lindemann C, Hitzmann B, Reardon KF, Scheper T (2010) Fluorescence techniques for bioprocess monitoring. Encycl Ind Biotechnol 4:2482–2491Google Scholar
  50. 50.
    Reischer H, Schotola I, Striedner G, Poetschacher F, Bayer K (2004) Evaluation of the GFP signal and its aptitude for novel on-line monitoring strategies of recombinant fermentation processes. J Biotechnol 108(2):115–125CrossRefGoogle Scholar
  51. 51.
    Broger T, Odermatt RP, Ledergerber P, Sonnleitner B (2009) Exploiting fluorescent reporter molecules for process analytical technology (PAT). Chimia 63(3):171–173CrossRefGoogle Scholar
  52. 52.
    Skibsted E, Lindemann C, Roca C, Olsson L (2001) On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. J Biotechnol 88(1):47–57CrossRefGoogle Scholar
  53. 53.
    Haack MB, Eliasson A, Olsson L (2004) On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J Biotechnol 114(1–2):199–208CrossRefGoogle Scholar
  54. 54.
    Harbeck C, Hitzmann B, Lindemann C, Sosnitza P, Faurie R, Scheper T (2001) Verwendung der 2D-Fluoreszenzspektroskopie zur On-line-Ueberwachung der chromatographischen Melasseentzuckerung. Chem Ing Tech 73(7):861–864CrossRefGoogle Scholar
  55. 55.
    Derfus GE, Abramzon D, Tung M, Chang D, Kiss R, Amanullah A (2009) Cell culture monitoring via an auto-sampler and an integrated multi-functional off-line analyzer. Biotechnol Prog 26(1):284–292Google Scholar
  56. 56.
    Martens S, Borchert SO, Faber BW, Cornelissen G, Luttmann R (2011) Fully automated production of potential malaria vaccines with Pichia pastoris in integrated processing. Eng Life Sci 11(4):429–435CrossRefGoogle Scholar
  57. 57.
    Gastrock G, Lemke K, Metze J (2001) Sampling and monitoring in bioprocessing using microtechniques. J Biotechnol 82(2):123–135Google Scholar
  58. 58.
    Broger T, Odermatt RP, Huber P, Sonnleitner B (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154:240–247CrossRefGoogle Scholar
  59. 59.
    Hewitt CJ, Nebe-von-Caron G (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng/Biotechnol 89:197–223CrossRefGoogle Scholar
  60. 60.
    Straeuber H, Mueller S (2010) Viability states of bacteria—specific mechanisms of selected probes. Cytometry Part A 77(7):623–634CrossRefGoogle Scholar
  61. 61.
    Mueller S, Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587Google Scholar
  62. 62.
    Lopes da Silva T, Piekova L, Mileu J, Roseiro JC (2009) A comparative study using the dual staining flow cytometric protocol applied to Lactobacillus rhamnosus and Bacillus licheniformis batch cultures. Enzyme Microb Technol 45(2):134–138CrossRefGoogle Scholar
  63. 63.
    Freimark D, Jerome V, Freitag R (2010) A GFP-based method facilitates clonal selection of transfected CHO cells. Biotechnol J 5(1):24–31CrossRefGoogle Scholar
  64. 64.
    Muench T, Sonnleitner B, Fiechter A (1992) New insights into the synchronization mechanism with forced synchronous cultures of Saccharomyces cerevisiae. J Biotechnol 24:299–314CrossRefGoogle Scholar
  65. 65.
    Fritsch M, Starruss J, Loesche A, Mueller S, Bley T (2005) Cell cycle synchronization of Cupriavidus necator by continuous phasing measured via flow cytometry. Biotechnol Bioeng 92(5):635–642CrossRefGoogle Scholar
  66. 66.
    Marx A, Hewitt CJ, Grewal R, Scheer S, Vandre K, Pfefferle W, Kossmann B, Ottersbach P, Beimfohr C, Snaidr J, Auge C, Reuss M (2003) Anwendungen der Zytometrie in der Biotechnologie. Chem Ing Tech 75(5):608–614CrossRefGoogle Scholar
  67. 67.
    Diaz M, Herrero M, Garcia LA, Quiros C (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48(3):385–407CrossRefGoogle Scholar
  68. 68.
    Langwost B, Kresbach GM, Scheper T, Ehrat M, Widmer HM (1995) Field-flow fractionation—an analytical tool for many applications. Eur Congr Biotechnol 7 (Nice, F: poster)Google Scholar
  69. 69.
    Hawe A, Friess W, Sutter M, Jiskoot W (2008) Online fluorescent dye detection method for the characterization of immunoglobulin G aggregation by size exclusion chromatography and asymmetrical flow field flow fractionation. Anal Biochem 378(2):115–122CrossRefGoogle Scholar
  70. 70.
    Baker KN, Rendall MH, Patel A, Boyd P, Hoare M, Freedman RB, James DC (2002) Rapid monitoring of recombinant protein products: a comparison of current technologies. Trends Biotechnol 20(4):149–156CrossRefGoogle Scholar
  71. 71.
    Cha HJ, Dalal NG, Bentley WE (2004) In vivo monitoring of intracellular expression of human interleukin-2 using green fluorescent protein fusion partner in Pichia pastoris. Biotechnol Lett 26(14):1157–1162CrossRefGoogle Scholar
  72. 72.
    Kaiser C, Pototzki T, Ellert A, Luttmann R (2008) Applications of PAT—process analytical technology in recombinant protein processes with Escherichia coli. Eng Life Sci 8(2):132–138CrossRefGoogle Scholar
  73. 73.
    Peckham GD, Bugos RC, Su WW (2006) Purification of GFP fusion proteins from transgenic plant cell cultures. Protein Expr Purif 49(2):183–189CrossRefGoogle Scholar
  74. 74.
    Zhuang R, Zhang Y, Zhang R, Song C, Yang K, Yang A, Jin B (2008) Purification of GFP fusion proteins with high purity and yield by monoclonal antibody-coupled affinity column chromatography. Protein Expr Purif 59(1):138–143CrossRefGoogle Scholar
  75. 75.
    Ruzicka J, Hansen EH (1981) Flow injection analysis. Wiley, New YorkGoogle Scholar
  76. 76.
    Rehbock C, Beutel S, Brueckerhoff T, Hitzmann B, Riechers D, Rudolph G, Stahl F, Scheper T, Friehs K (2008) Bioprozessanalytik. Chem Ing Tech 80(3):267–286CrossRefGoogle Scholar
  77. 77.
    Endres C, Haake C, Landgrebe D, Beutel S, Stahl F, Hitzmann B, Scheper T, Friehs K (2009) Moderne Bioprozessanalytik—eine kurze Uebersicht. Biospektrum 15(6):662–664Google Scholar
  78. 78.
    Vojinovic V, Cabral JMS, Fonseca L (2007) Ex situ bioprocess monitoring techniques. Chem Ind Chem Eng Q 13(2):103–116CrossRefGoogle Scholar
  79. 79.
    Almeida C (2004) Flow injection analysis system for on-line cutinase activity assay. Anal Chim Acta 502(1):115–124CrossRefGoogle Scholar
  80. 80.
    Bracewell D, Gill A, Hoare M (2002) An in-line flow injection optical biosensor for real-time bioprocess monitoring. Food Bioprod Proc 80(2):71–77CrossRefGoogle Scholar
  81. 81.
    Haouz A, Stieg S (2002) Continuous monitoring of d-glucose and L-lactate by flow injection analysis. Enzyme Microb Technol 30(1):129–133CrossRefGoogle Scholar
  82. 82.
    Nandakumar MP, Palsson E, Gustavsson PE, Larsson PO, Mattiasson B (2000) Superporous agarose monoliths as mini-reactors in flow injection systems. On-line monitoring of metabolites and intracellular enzymes in microbial cultivation processes. Bioseparation 9(4):193–202Google Scholar
  83. 83.
    Horstkotte B, Arnau C, Valero F, Elsholz O, Cerda V (2008) Monitoring of sorbitol in Pichia pastoris cultivation applying sequential injection analysis. Biochem Eng J 42(1):77–83CrossRefGoogle Scholar
  84. 84.
    Sohn OJ, Kim CK, Rhee JI (2008) Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnol Bioproc Eng 13(6):716–723CrossRefGoogle Scholar
  85. 85.
    Lili W, Jie Q, Zhongce H, Yuguo Z, Wei H (2006) Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Anal Chim Acta 557(1–2):262–266CrossRefGoogle Scholar
  86. 86.
    Fricke J, Pohlmann K, Tatge F, Lang F, Faber B, Luttmann R (2011) A multi-bioreactor system for optimal production of malaria vaccines with Pichia pastoris. Biotechnol J 6(4):437–451CrossRefGoogle Scholar
  87. 87.
    Tohmola N, Ahtinen J, Pitkaenen JP, Parviainen V, Joenvaeaerae S, Hautamaeki M, Lindroos P, Maekinen J, Renkonen R (2011) On-line high performance liquid chromatography measurements of extracellular metabolites in an aerobic batch yeast (Saccharomyces cerevisiae) culture. Biotechnol Bioproc Eng 16(2):264–272CrossRefGoogle Scholar
  88. 88.
    Warth B, Rajkai G, Mandenius CF (2010) Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. J Biotechnol 147(1):37–45CrossRefGoogle Scholar
  89. 89.
    Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17CrossRefGoogle Scholar
  90. 90.
    Plum A, Rehorek A (2005) Strategies for continuous on-line high performance liquid chromatography coupled with diode array detection and electrospray tandem mass spectrometry for process monitoring of sulfonated azo dyes and their intermediates in anaerobic-aerobic bioreactors. J Chrom A 1084(1–2):119–133Google Scholar
  91. 91.
    Buettgenbach S, Michalzik M, Wilke R (2006) New approaches to online bioprocess monitoring. Eng Life Sci 6(5):449–454CrossRefGoogle Scholar
  92. 92.
    Kulp M, Vassiljeva I, Vilu R, Kaljurand M (2002) Monitoring of the degradation of phenols by Rhodococcus bacteria by using micellar electrokinetic chromatography. J Separat Sci 25(15–17):1129–1135CrossRefGoogle Scholar
  93. 93.
    Ehala S, Vassiljeva I, Kuldvee R, Vilu R, Kaljurand M (2001) On-line coupling of a miniaturized bioreactor with capillary electrophoresis, via a membrane interface, for monitoring the production of organic acids by microorganisms. Fresenius J Anal Chem 371(2):168–173CrossRefGoogle Scholar
  94. 94.
    Tahkoniemi H, Helmja K, Menert A, Kaljurand M (2006) Fermentation reactor coupled with capillary electrophoresis for on-line bioprocess monitoring. J Pharm Biomed Anal 41(5):1585–1591CrossRefGoogle Scholar
  95. 95.
    Yang TH, Wittmann C, Heinzle E (2006) Respirometric 13C flux analysis, Part I: design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry. Metabol Eng 8(5):417–431CrossRefGoogle Scholar
  96. 96.
    Yang TH, Wittmann C, Heinzle E (2006) Respirometric 13C flux analysis—Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metabol Eng 8(5):432–446CrossRefGoogle Scholar
  97. 97.
    Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R (2004) Laser mass spectrometry as on-line sensor for industrial process analysis: process control of coffee roasting. Anal Chem 76(5):1386–1402CrossRefGoogle Scholar
  98. 98.
    Biasioli F, Gasperi F, Yeretzian C, Maerk TD (2011) PTR-MS monitoring of VOCs and BVOCs in food science and technology. Trends Anal Chem 30(7):968–977CrossRefGoogle Scholar
  99. 99.
    Feng HT, Wong NSC, Sim LC, Wati L, Ho Y, Lee MM (2010) Rapid characterization of high/low producer CHO cells using matrix-assisted laser desorption/ionization time-of-flight. Rap Comm Mass Spectrom 24:1226–1230CrossRefGoogle Scholar
  100. 100.
    Wiss J, Zilian A (2003) Online spectroscopic investigations (FTIR/Raman) of industrial reactions: synthesis of tributyltin azide and hydrogenation of chloronitrobenzene. Org Process Res Dev 7(6):1059–1066CrossRefGoogle Scholar
  101. 101.
    Wiss J, Laenzlinger M, Wermuth M (2005) Safety improvement of a Grignard reaction using on-line NIR monitoring. Org Process Res Dev 9(2):365–371CrossRefGoogle Scholar
  102. 102.
    Burgbacher J, Wiss J (2008) Industrial applications of online monitoring of drying processes of drug substances using NIR. Org Process Res Dev 12(2):235–242CrossRefGoogle Scholar
  103. 103.
    Vaidyanathan S, White S, Harvey LM, McNeil B (2003) Influence of morphology on the near-infrared spectra of mycelial biomass and its implications in bioprocess monitoring. Biotechnol Bioeng 82(6):715–724CrossRefGoogle Scholar
  104. 104.
    Schenk J, Marison IW, von Stockar U (2007) Simplified Fourier-transform mid-infrared spectroscopy calibration based on a spectra library for the on-line monitoring of bioprocesses. Anal Chim Acta 591(1):132–140CrossRefGoogle Scholar
  105. 105.
    Scarff M, Arnold SA, Harvey LM, McNeil B (2006) Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit Rev Biotechnol 26(1):17–39CrossRefGoogle Scholar
  106. 106.
    Roychoudhury P, Harvey LM, McNeil B (2006) The potential of mid infrared spectroscopy (MIRS) for real time bioprocess monitoring. Anal Chim Acta 571(2):159–166CrossRefGoogle Scholar
  107. 107.
    Rhiel M, Ducommun P, Bolzonella I, Marison I, von Stockar U (2002) Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements. Biotechnol Bioeng 77(2):174–185CrossRefGoogle Scholar
  108. 108.
    Arnold SA, Crowley J, Woods N, Harvey LM, McNeil B (2003) In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol Bioeng 84(1):13–19CrossRefGoogle Scholar
  109. 109.
    Vaidyanathan S, Arnold A, Matheson L, Mohan P, Macaloney G, McNeil B, Harvey LM (2000) Critical evaluation of models developed for monitoring an industrial submerged bioprocess for antibiotic production using near-infrared spectroscopy. Biotechnol Prog 16(6):1098–1105CrossRefGoogle Scholar
  110. 110.
    McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA, Rowland JJ, Kell DB, Goodacre R (2002) Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol Bioeng 78(5):527–538CrossRefGoogle Scholar
  111. 111.
    Lee H (2004) In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vibrat Spectrosc 35(1–2):131–137CrossRefGoogle Scholar
  112. 112.
    Landgrebe D, Haake C, Hoepfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon KF (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 88(1):11–22CrossRefGoogle Scholar
  113. 113.
    Jarute G, Kainz A, Schroll G, Baena JR, Lendl B (2004) On-line determination of the intracellular poly (β-hydroxybutyric acid) content in transformed Escherichia coli and glucose during PHB production using stopped-flow attenuated total reflection FT-IR spectrometry. Anal Chem 76(21):6353–6358CrossRefGoogle Scholar
  114. 114.
    Kansiz M, Gapes JR, McNaughton D, Lendl B, Schuster KC (2001) Mid-infrared spectroscopy coupled to sequential injection analysis for the on-line monitoring of the acetone-butanol fermentation process. Anal Chim Acta 438(1–2):175–186CrossRefGoogle Scholar
  115. 115.
    Bilitewski U (2005) Biosensors for bioprocess monitoring. Compr Anal Chem XLIV:539–578Google Scholar
  116. 116.
    Vojinovic V, Bertin L, Cabral JMS, Fonseca LP (2006) Horseradish peroxidase combined with oxidase enzymes a valuable bioanalytical tool: lactate oxidase—a case study. Eng Life Sci 6(2):181–186CrossRefGoogle Scholar
  117. 117.
    Vojinovic V, Esteves F, Cabral J, Fonseca L (2006) Bienzymatic analytical microreactors for glucose, lactate, ethanol, galactose and L-amino acid monitoring in cell culture media. Anal Chim Acta 565(2):240–249CrossRefGoogle Scholar
  118. 118.
    Katrlik J, Vostiar I, Sefcovicova J, Tkac J, Mastihuba V, Valach M, Stefuca V, Gemeiner P (2007) A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Anal Bioanal Chem 388(1):287–295CrossRefGoogle Scholar
  119. 119.
    Bachinger T, Riese U, Eriksson RK, Mandenius CF (2000) Electronic nose for estimation of product concentration in mammalian cell cultivation. Bioproc Eng 23(6):637–642CrossRefGoogle Scholar
  120. 120.
    Bachinger T, Mandenius CF, Striedner G, Clementschitsch F, Durrschmid E, Cserjan-Puschmann M, Doblhoff-Dier O, Bayer K (2001) Non-invasive detection of the metabolic burden on recombinant microorganisms during fermentation processes. J Chem Technol Biotechnol 76(8):885–889CrossRefGoogle Scholar
  121. 121.
    Clemente JJ, Monteiro SMS, Carrondo MJT, Cunha AE (2008) Predicting sporulation events in a bioreactor using an electronic nose. Biotechnol Bioeng 101(3):545–552CrossRefGoogle Scholar
  122. 122.
    Buczkowska A, Witkowska E, Gorski L, Zamojska A, Szewczyk, Krzysztof W, Wroblewski W, Ciosek P (2010) The monitoring of methane fermentation in sequencing batch bioreactor with flow-through array of miniaturized solid state electrodes. Talanta 81(4–5):1387–1392CrossRefGoogle Scholar
  123. 123.
    Soederstroem C, Rudnitskaya A, Legin A, Krantz-Ruelcker C (2005) Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques. J Biotechnol 119(3):300–308CrossRefGoogle Scholar
  124. 124.
    Schmidt J, Mueller U, Wallimann C, Mathes S, Probst C, Andretta C, Leist C, Graf-Hausner U (2008) Monitoring ATP status in the metabolism of production cell lines. BioProc Int 6:46–54Google Scholar
  125. 125.
    Szmacinski H, Smith DS, Hanson MA, Kostov Y, Lakowicz JR, Rao G (2008) A novel method for monitoring monoclonal antibody production during cell culture. Biotechnol Bioeng 100(3):448–457CrossRefGoogle Scholar
  126. 126.
    Becker T, Hitzmann B, Muffler K, Poertner R, Reardon KF, Stahl F, Ulber R (2007) Future aspects of bioprocess monitoring. Adv Biochem Eng/Biotechnol 105:249–293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Chemistry and Biological Chemistry (ICBC)Zurich University of Applied Sciences (ZHAW)WaedenswilSwitzerland

Personalised recommendations