Skip to main content

Large-scale regional variation in diatom-water chemistry relationships: rivers of the eastern United States

  • Chapter
Advances in Algal Biology: A Commemoration of the Work of Rex Lowe

Part of the book series: Developments in Hydrobiology ((DIHY,volume 185))

  • 565 Accesses

Abstract

We analyzed diatom and water chemistry data collected by The Academy of Natural Sciences from 47 rivers throughout the eastern United States to address several ecological questions. How does the composition of diatom assemblages vary over large regional scales? What are the most important environmental factors affecting assemblage composition and how does their influence vary among regions and with spatial scale? How do distributions and autecological characteristics of individual taxa vary spatially? What are the implications of answers to these questions for use of diatoms as water quality indicators? Data for 186 samples at 116 sites were collected from 1951 to 1991 onmoderate- to large-sized rivers ranging fromMaine to Texas as part of Academy monitoring and survey programs, most initiated and implemented by Dr. Ruth Patrick. Several sites were highly impaired by point and non-point source pollution. Diatomassemblages grouped into four main categories, based on multivariate analyses. Group membership correlated equally well with intermediate-scale geographic regions and water chemistry: (1) Northeastern US rivers with lower alkalinity and hardness, and pH 6.5–7.8; (2) Primarily dilute coastal plain rivers in the southeastern United States with the lowest average pH (5.5–7.3) of all sites and some with high DOC; (3) Rivers within and west of the AppalachianMountains, generally having higherpH(>7.5) than those in other regions, but with relatively low chloride concentrations; and (4) Gulf Coast rivers with the highest chloride (>100 mg 1−1), hardness (>250 mg 1−1), and pH of rivers in all the groups. Hardness, pH, alkalinity, and Cl explained most of the variation among diatom assemblages, based on ordination analysis. Factors related to water quality problems, such as BOD, P, NH4, and turbidity explained much less variability at the eastern US scale, but were more important in the four intermediate-scale regions. Diatom taxa abundance-weighted mean values for water chemistry characteristics varied among the four intermediate-scale regions, often greatly, and in proportion to the average measured values for each region. Design of calibration data sets for development of water quality indicators should account for spatial scale in relation to species dispersal, regional geochemistry and habitat types, and human-influenced water chemistry characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. 2nd edn., 841-B-99-002, U.S. EPA, Office of Water, Washington, DC.

    Google Scholar 

  • Biggs, B. J. F., 1996. Pattern of benthic algae of streams. In Stevenson, J. R., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 31–56.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Charles, D. F., 1996. Use of algae for monitoring rivers in the United States: some examples. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institut für Botanik, Universitä t Innsbruk, Innsbruck, Austria: 109–118.

    Google Scholar 

  • Cholnoky, B. J., 1968. Die Ö kologie der Diatomeen in Binnengewässern. J. Cramer, Lehre, Germany.

    Google Scholar 

  • Commission for Environmental Cooperation, 1997. Ecological Regions of North America: Toward a Common Perspective. Commission for Environmental Cooperation, Montreal, Quebec, Canada, 71 pp. Map (scale 1:12,500,000).

    Google Scholar 

  • Descy, J. P., 1979. A new approach to water quality estimation using diatoms. Nova Hedwigia 64: 305–323.

    Google Scholar 

  • Gurtz, M. E., 1994. Design of biological components of the National Water-Quality Assessment (NAWQA) Program. In Loeb, S. L. & A. Spacie (eds), Biological Monitoring of Aquatic Systems. CRC Press, Boca Raton, FL: 323–354.

    Google Scholar 

  • Hill, M.O., 1979. TWINSPAN-A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-way Table by Classification of the Individuals and Attributes. Cornell University, Ithaca, 90 pp.

    Google Scholar 

  • Hohn, M. H., 1961. Determining the pattern of the diatom flora. Journal Water Pollution Control Federation 33: 48–53.

    CAS  Google Scholar 

  • Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 285–304.

    Google Scholar 

  • Leland, H. V., 1995. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use and other environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52: 1108–1129.

    Article  Google Scholar 

  • Leland, H. V., L. R. Brown & D. K. Mueller, 2001. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity, and other environmental factors. Freshwater Biology 46: 1139–1167.

    Article  Google Scholar 

  • Leland, H. V. & S. Porter, 2000. Distribution of benthic algae in the Upper Illinois River basin in relation to geology and land use. Freshwater Biology 44: 279–301.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, 269 pp.

    Google Scholar 

  • Line, J. M., C. J. F. Ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. Journal of Paleolimnology 10: 147–152.

    Article  Google Scholar 

  • Lowe, R. L., 1974. Environmental requirements and pollution tolerance of freshwater diatoms. EPA/670/4-74/005, U.S. EPA, Cincinnati, OH. 334 pp.

    Google Scholar 

  • Lowe, R. L. & Y. Pan, 1996. Benthic algal communities as biological monitors. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 705–739.

    Google Scholar 

  • Munn, M. D., R. W. Black & S. J. Gruber, 2002. Response of benthic algae to environmental gradients in an agriculturally dominated landscape. Journal of the North American Benthological Society 21: 221–237.

    Article  Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the Conterminous United States. Map (scale 1:7,500,000). Annals of the Association of American Geographers 77: 118–125.

    Article  Google Scholar 

  • Omernik, J. M., 1995. Ecoregions: a spatial framework for environmental management. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton FL: 49–62.

    Google Scholar 

  • Pan, Y. D., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in Mid-Atlantic streams, USA. Journal of Phycology 35: 460–468.

    Article  Google Scholar 

  • Pan, Y. D., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518–540.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of the North American Benthological Society 15: 481–495.

    Article  Google Scholar 

  • Patrick, R., 1950. Biological measure of stream conditions. Sewage and Industrial Wastes 22: 926–938.

    CAS  Google Scholar 

  • Patrick, R., 1951. A proposed biological measure of stream conditions. Internationale Vereinigung Für Theoretische und Angewandte Limnologie,Verhandlungen 9: 299–307.

    Google Scholar 

  • Patrick, R., 1973. Use of algae, especially diatoms, in the assessment of water quality. In Biological Methods for the Assessment of Water Quality, ASTM STP 528: 76–95.

    Google Scholar 

  • Patrick, R., 1994. Rivers of the United States. Vol. 1. Estuaries. John Wiley & Sons, Inc, New York, 825 pp.

    Google Scholar 

  • Patrick, R., 1995. Rivers of the United States. Vol. 2. Chemical and Physical Characteristics. John Wiley & Sons, Inc, New York, 237 pp.

    Google Scholar 

  • Patrick, R., 1996. Rivers of the United States. Vol. 3. The Eastern and Southeastern States. John Wiley & Sons, Inc, New York, 829 pp.

    Google Scholar 

  • Patrick, R., 1998a. Rivers of the United States. Vol. 4. Part A: The Mississippi River and Tributaries North of St. Louis. John Wiley & Sons, Inc, New York, 408 pp.

    Google Scholar 

  • Patrick, R., 1998b. Rivers of the United States. Vol. 4. Part B: The Mississippi Tributaries South of St. Louis. John Wiley & Sons, Inc, New York, 488 pp.

    Google Scholar 

  • Patrick, R., 2000. Rivers of the United States. Vol. 5. Part A: The Colorado River. John Wiley & Sons, Inc, New York, 264 pp.

    Google Scholar 

  • Patrick, R., 2003. Rivers of the United States. Vol. 5. Part B: The Gulf of Mexico. John Wiley & Sons, Inc, New York, 272 pp.

    Google Scholar 

  • Potapova, M. & D. F. Charles, 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography 29: 167–187.

    Article  Google Scholar 

  • Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328. Data available at http://diatom.acnatsci.org/autecology/.

    Article  CAS  Google Scholar 

  • Prygiel, J., B. A. Whitton & J. Bukowska (eds), 1999. Use of Algae for Monitoring Rivers III. Jean Prygiel, Agence de l,Eau Artois-Picardie, Douai, France, 271 pp.

    Google Scholar 

  • Seaber, P. R., F. P. Kapinos & G. L. Knapp, 1987. Hydrologic Unit Maps: U.S. Geological Survey Water-Supply Paper 2294. 63 pp. (http://water.usgs.gov/GIS/huc.html).

    Google Scholar 

  • Stevenson, R. J., 1997. Scale dependent determinants and consequences of benthic algal heterogeneity. Journal of the North American Benthological Society 16: 248–262.

    Article  Google Scholar 

  • Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In E. F. Stoermer & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 11–40.

    Google Scholar 

  • ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca.

    Google Scholar 

  • van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.

    Article  Google Scholar 

  • Whitton, B. A. & G. Friedrich, (eds), 1991. Use of Algae for Monitoring Rivers. Dü sseldorf, Germany, Dr. Eugen Rott, Institut fü r Botanik AG Hydrobotanik, Universitaät Innsbruck, Sternwaartestrabe 15 A-6020 Innsbruck Austria, 193 pp.

    Google Scholar 

  • Whitton, B. A. & E. Rott, (eds), 1996. Use of Algae for Monitoring Rivers II. Institut für Botanik, Universität Innsbruk, Innsbruck, Austria.

    Google Scholar 

  • Whitton, B. A. & M. G. Kelly, 1995. Use of algae and other plants for monitoring rivers. Australian Journal of Ecology 20: 45–56.

    Article  Google Scholar 

  • Williams, L. G., 1964. Possible relationships between planktondiatom species numbers and water-quality estimates. Ecology 45: 809–823.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Charles, D.F., Acker, F.W., Hart, D.D., Reimer, C.W., Cotter, P.B. (2006). Large-scale regional variation in diatom-water chemistry relationships: rivers of the eastern United States. In: Stevenson, R.J., Pan, Y., Kociolek, J.P., Kingston, J.C. (eds) Advances in Algal Biology: A Commemoration of the Work of Rex Lowe. Developments in Hydrobiology, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5070-4_3

Download citation

Publish with us

Policies and ethics