Skip to main content

On the Use of Data Assimilation in Biogeochemical Modelling

  • Chapter
Ocean Weather Forecasting

Abstract

A main objective of applying data assimilation methods to marine ecosystem models is the optimisation of often poorly known model parameters or even of the model’s functional form. Recent efforts in this direction are reviewed. Results obtained so far indicate that presently available data sets can constrain not more 10 to 15 different ecological parameters. This raises questions about the use of more complex models. On the other hand, none of the optimised models yields a satisfactory fit to the observations, suggesting that present ecosystem models are overly simplistic. Implications of these apparently contradictory findings are discussed and a data assimilative strategy for future improvement of marine ecosystem models is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, L. A., and J. L. Sarmiento, 1995: Global ocean phosphate and oxygen simulations. Global Biogeochem. Cycles, 9, 621–636.

    Article  Google Scholar 

  • Athias, V., P. Mazzega, and C. Jeandel, 2000: Selecting a global optimization method to estimate the oceanic particle cycling rate constants. J. Mar. Res., 58, 675–707.

    Article  Google Scholar 

  • Aumont, O., E. Maier-Reimer, S. Blain, and P. Monfray, An ecosystem model of the global ocean including Fe, Si, P co-limitations. Global Biogeochem. Cycles, 17(2), doi:10.1029/2001GB001745, 2003.

    Google Scholar 

  • Bacastow, R., and E. Maier-Reimer, 1990: Ocean-circulation model of the carbon cycle. Climate Dynamics, 4, 95–125.

    Article  Google Scholar 

  • Bennett, A. F., 1989: The Kalman smoother for a linear quasi-geostrophic model of ocean circulation. Dyn. Atmos. Oceans, 13, 219–267.

    Article  Google Scholar 

  • Bertino, L., G. Evensen, and H. Wackernagel, 2003: Sequential data assimilation techniques in oceanography. Int. Stat. Rev., 71, 223–242.

    Article  Google Scholar 

  • Carmillet, V., J.-M. Brankart, P. Brasseur, H. Drange, G. Evensen, and J. Verron, 2001: A singular evolutive extended Kalman filter to assimilate ocean color data in a coupled physical-biochemical model of the North Atlantic ocean. Ocean Modelling, 3, 167–192.

    Article  Google Scholar 

  • Chai, F., R. T. Barber, and S. T. Lindley, 1996: Origin and maintenance of high nutrient condition in the equatorial Pacific. Deep-Sea Res. II, 43, 1031–1064.

    Article  Google Scholar 

  • Dring, M. J., and D. H. Jewson, 1982: What does 14C uptake by phytoplankton really measure? A theoretical modelling approach. Proc. R. Soc. Lond., B 214, 351–368.

    Article  Google Scholar 

  • Ebenhöh, W., J. G. Baretta, and J. W. Baretta, 1997: The primary production module in the marine ecosystem model ERSEM II with emphasis on the light forcing. J. Sea Res., 38, 173–193.

    Article  Google Scholar 

  • Evans, G. T., 2003: Defining misfit between biogeochemical models and data sets. J.Mar. Syst., 40–41, 49–54.

    Article  Google Scholar 

  • Evensen, G., 1992: Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. J. Geophys. Res., 97(C11), 17,905–17,924.

    Article  Google Scholar 

  • Evensen, G., 2003: The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.

    Article  Google Scholar 

  • Fasham, M. J. R., H. W. Ducklow, and S. M. McKelvie, 1990: A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48, 591–639

    Google Scholar 

  • Fasham, M. J. R., J. L. Sarmiento, R. D. Slater, H. W. Ducklow, and R. Williams, 1993: Ecosystem behavior at Bermuda Station “S” and Ocean Weather Station “India”: a general circulation model and observational analysis. Global Biogeochem. Cycles, 7, 379–415.

    Google Scholar 

  • Fasham, M. J. R., and G. T. Evans, 1995: The use of optimisation techniques to model marine ecosystem dynamics at the JGOFS station at 47N 20W. Phil. Trans. Roy. Soc. Lond. B, 348, 203–209.

    Google Scholar 

  • Fennel, K., M. Losch, J. Schröter, and M. Wenzel, 2001: Testing a marine ecosystem model: sensitivity analysis and parameter optimization. J. Mar. Syst., 28, 45–63.

    Article  Google Scholar 

  • Friedrichs, M. A. M., 2002: Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem model of the central equatorial Pacific Ocean. Deep-Sea Res. II, 49, 289–319.

    Article  Google Scholar 

  • Gabric, A. J., R. Simo, R. A. Cropp, A. C. Hirst, and J. Dachs (2004), Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions, Global Biogeochem. Cycles, 18, GB2014, doi:10.1029/2003GB002183.

    Google Scholar 

  • Gunson, J., A. Oschlies, and V. Garçon, 1999: Sensitivity of ecosystem parameters to simulated satellite ocean colour data using a coupled physical-biological model of the North Atlantic. J. Mar. Res., 57, 613–639.

    Article  Google Scholar 

  • Harmon, R., and P. Challenor, 1997: A Markov chain Monte Carlo method for estimation and assimilation into models. Ecol. Model., 101, 41–59.

    Article  Google Scholar 

  • Hemmings, J. C. P., M. A. Srokocz, P. Challenor, and M. J. R. Fasham, 2003: Assimilating satellite ocean-colour observations into oceanic ecosystem models. Phil. Trans. R. Soc. Lond., A 361, 33–39.

    Article  Google Scholar 

  • Hurtt, G. C., and R. A. Armstrong, 1996: A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res. II, 43, 653–683.

    Article  Google Scholar 

  • Hurtt, G. C., and R. A. Armstrong, 1999: A pelagic ecosystem model calibrated with BATS and OWSI data. Deep-Sea Res. I, 46, 27–61.

    Article  Google Scholar 

  • Kähler, P., and W. Koeve, 2001: Marine dissolved organic matter: can its C:N ratio explain carbon overconsumption? Deep-Sea Res. I, 48, 49–62.

    Article  Google Scholar 

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic. Eng., 82D, 35–45.

    Google Scholar 

  • Klausmeier, C. A., E. Litchman, T. Daufresne, and S. A. Levin, 2004: Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 429, 171–174.

    Article  Google Scholar 

  • Körtzinger, A., W. Koeve, P. Kähler, and L. Mintrop, 2001: C:N ratios in the mixed layer during the productive season in the Northeast Atlantic Ocean. Deep-Sea Res. I, 48, 661–688.

    Article  Google Scholar 

  • Lawson, L. M., Y. H. Spitz, E. E. Hofmann, and R. B. Long, 1995: A data assimilation technique applied to a predator-prey model. Bull. Math. Biology, 57, 625–651.

    Google Scholar 

  • Loukos, H., P. Monfray, L. Bopp, and P. Lehody, 2003: Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results. Fisheries Oceanography, 12, 474–482.

    Article  Google Scholar 

  • Losa, S. N., G. A. Kivman, and V. A. Ryabchenko, 2004: Weak constraint parameter estimation for a simple ocean ecosystem model: what can we learn about the model and data? J. Mar. Syst., 45, 1–20.

    Article  Google Scholar 

  • Marotzke, J., R. Giering, K. Q. Zhang, D. Stammer, C. Hill, and T. Lee, 1999: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104, 29,529–29,547.

    Article  Google Scholar 

  • Matear, R. J., 1995: Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P. J. Mar. Res., 53, 571–607.

    Article  Google Scholar 

  • McCreary, J. P., K. E. Kohler, R. R. Hood, and D. B. Olson, 1996: A four-component ecosystem of biological activity in the Arabian Sea. Prog. Oceanog., 37, 193–240.

    Article  Google Scholar 

  • Moore, J. K., S. C. Doney, J. A. Kleypas, D. M. Glover, and I. Y. Fung, 2002: An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II, 49, 403–462.

    Article  Google Scholar 

  • Najjar, R. G., J. L. Sarmiento, and J. R. Toggweiler, 1992: Downward transport and fate of organic matter in the ocean: simulations with a general circulation model. Global Biogeochem. Cycles, 6, 45–76.

    Google Scholar 

  • Orr, J. C., 1999: Ocean Carbon-Cycle Model Intercomparison Project (OCMIP), Research GAIM, 2, 7.

    Google Scholar 

  • Oschlies, A., 1999: On spurious interactions among a mixed layer model, convective adjustment, and isopycnal mixing in ocean circulation models. Mon. Weather Rev., 127, 1920–1927.

    Article  Google Scholar 

  • Oschlies, A., 2002: Can eddies make ocean deserts bloom? Global Biogeochem. Cycles, 16, 1106, doi:10.1029/2001GB001830.

    Article  Google Scholar 

  • Oschlies, A., 2004: Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model. J. Geophys. Res., 110, doi:10.1029/2004JC002430.

    Google Scholar 

  • Oschlies, A., and V. Garçon, 1998: Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature, 394, 266–269.

    Article  Google Scholar 

  • Oschlies, A., and V. Garçon, 1999: An eddy-permitting coupled physical-biological model of the North Atlantic. 1. Sensitivity to advection numerics and mixed layer physics. Global Biogeochem. Cycles, 13, 135–160.

    Article  Google Scholar 

  • Popova, E. E., M. J. R. Fasham, A. V. Osipov, and V. A. Ryabchenko, 1997: Chaotic behaviour of an ocean ecosystem model under seasonal external forcing. J. Plank. Res., 19, 1495–1515.

    Google Scholar 

  • Popova, E. E., M. A. Srokosz, and D. A. Smeed, 2002: Real-time forecasting of biological and physical dynamics at the Island-Faeroes Front in June 2001. Geophys. Res. Lett., 29, 10.1029/2001GL013706.

    Google Scholar 

  • Prunet, P., J. F. Minster, D. Ruiz-Pino, and I. Dadou, 1996: Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean. 1. Method and preliminary results. Global Biogeochem. Cycles, 10, 111–138.

    Article  Google Scholar 

  • Prunet, P., J. F. Minster, V. Echevin, and I. Dadou, 1996: Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean. 2. Adjusting a simple trophic model to chlorophyll, temperature, nitrate and PCO 2 data. Global Biogeochem. Cycles, 10, 139–158.

    Article  Google Scholar 

  • Redfield, A. C., 1934: On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, Liverpool, 176–192.

    Google Scholar 

  • Redfield, A.C., B. H. Ketchum, F. A. Richards, 1963: The influence of organisms on the composition of sea water. In The Sea, Vol. 2, M. N. Hill (Ed.), Interscience, New York, 26–77.

    Google Scholar 

  • Sarmiento, J. L., R. D. Slater, M. J. R. Fasham, H. W. Ducklow, J. R. Toggweiler, and G. T. Evans, 1993: A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem. Cycles, 7, 417–450.

    Article  Google Scholar 

  • Sarmiento, J. L., R. Murnane, and C. Le Quéré, 1995: Air-Sea CO2 transfer and the carbon budget of the North Atlantic. Philos. Trans. R. Soc. London Ser. B, 348, 211–219.

    Google Scholar 

  • Schartau, M., A. Oschlies, and J. Willebrand, 2001: Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method. Deep-Sea Res. II, 48, 1769–1800.

    Article  Google Scholar 

  • Schartau, M., and A. Oschlies, 2003: Simulataneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part I-Method and parameter estimates. J. Mar. Res., 61, 765–793.

    Article  Google Scholar 

  • Schartau, M., and A. Oschlies, 2003: Simulataneous data based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part II-Standing stocks and nitrogen fluxes. J. Mar. Res., 61, 795–821.

    Google Scholar 

  • Schofield, O., J. Grzymski, W. P. Bissett, G. J, Kirkpatrick, D. F. Millie, M. Moline, and C. S. Roesler, 1999: Optical monitoring and forecasting systems for harmful algal blooms: possibility of pipe dream? J. Phycol., 35, 1477–1496.

    Article  Google Scholar 

  • Six, K. D., and E. Maier-Reimer, 1996: Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Global Biogeochem. Cycles, 10, 559–583.

    Article  Google Scholar 

  • Smetacek, V., 2001: A watery arms race. Nature, 411, 745.

    Article  Google Scholar 

  • Spitz, Y. H., J. R. Moisan, M. R. Abbott, and J. G. Richman, 1998: Data assimilation and a pelagic ecosystem model: parameterization using time series observations. J. Mar. Syst., 16, 51–68.

    Article  Google Scholar 

  • Spitz, Y. H., J. R. Moisan, and M. R. Abbott, 2001: Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS). Deep-Sea Res. II, 48, 1733–1768.

    Article  Google Scholar 

  • Sterner, R. W., and J. J. Elser, 2002: Ecological Stoichiometry: the biology of elements from molecules to the biosphere, Princeton Univ. Press, Princeton, 439pp.

    Google Scholar 

  • Vallino, J. J., 2000: Improving marine ecosystem models: Use of data assimilation and mesocosm experiments. J. Mar. Res., 58, 117–164.

    Article  Google Scholar 

  • Volk, T., and M. I. Hoffert, 1985: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in The Carbon Cycle and Atmospheric CO 2: Natural Variations, Archean to Present, edited by E. Sundquist and W. Broecker, pp. 99–110, AGU Geophysical Monograph, 32, Washington D.C.

    Google Scholar 

  • Williams, P. L. le B., 1995: Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation rates. Mar. Chem., 51, 17–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Oschlies, A. (2006). On the Use of Data Assimilation in Biogeochemical Modelling. In: Chassignet, E.P., Verron, J. (eds) Ocean Weather Forecasting. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4028-8_24

Download citation

Publish with us

Policies and ethics