Skip to main content
Log in

Ocean-circulation model of the carbon cycle

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A three-dimensional model of the natural carbon cycle in the oceans is described. The model is an extension of the inorganic ocean-circulation carbon cycle model of Maier-Reimer and Hasselmann (1987) to include the effect of the ocean biota. It is based on a dynamic, general circulation model of the world oceans. Chemical species important to the carbon cycle are advected by the current field of the general circulation model. Mixing occurs through numerical diffusivity (related to finite box size), a small explicit horizontal diffusivity, and a convective adjustment. An atmospheric box exchanges CO2 with the surface ocean. There is no land biota provided in the present version of the model. The effect of the ocean biota on ocean chemistry is represented in a simple way and model distributions of chemical species are compared with distributions observed during the GEOSECS and other expeditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173–265

    Google Scholar 

  • Bacastow RB (1981) Numerical evaluation of the evasion factor. In: Bolin B (ed) Scope 16: Carbon cycle Modelling. John Wiley, New York, pp 95–101

    Google Scholar 

  • Bacastow R, Björkström A (1981) Chapter 2: Comparison of ocean models for the carbon cycle. In: Bolin B (ed) Scope 16: Carbon cycle modelling. John Wiley, New York

    Google Scholar 

  • Bacastow R, Maier-Reimer E (1990) Modeling oceanic new production. In: Keir R (ed) Interaction of the global carbon and climate systems. Electric Power Research Institute Report (in press)

  • Beinbridge AE (undated) GEOSECS Atlantic expedition, Volume 2, Sections and profiles. US Government Printing Office, Washington, DC 20402, Stock No. 038-000-00435-2

  • Bathen KH (1972) On the seasonal changes in the depth of the mixed layer in the North Pacific Ocean. J Geophys Res 77:7138–7150

    Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux, Part I: Overview and maps of primary production and export production, SIO Ref. 87–30. Univ. Calif., San Diego, La Jolla; also Berger WH (1989) Appendix: Global maps of ocean productivity. In Berger WH, Smetacek VS, Wefer G (eds) Productivity in the ocean, present and past. John Wiley, New York, pp 429–455

    Google Scholar 

  • Boyle EA, Keigwin LD (1982) Deep circulation of the North Atlantic over the last 200 000 years: geochemical evidence. Science 218:784–787

    Google Scholar 

  • Brewer PG (1986) What controls the variability of carbon dioxide in the surface ocean? A plea for complete information. In: Burton JD, Brewer PG, Chesselet R (eds) Dynamic Processes in the Chemistry of the Upper Ocean. Plenum Press New York, pp 215–231

    Google Scholar 

  • Brewer PG, Wong GTF, Bacon MP, Spencer DW (1975) An oceanic calcium problem? Earth Plant Sci Lett 26:81–87

    Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the sea. Lamont-Doherty Geological Observatory, Palisades, New York, 691 p

    Google Scholar 

  • Chen CTA, Feely RA, Gendron JF (1988) Lysocline, calcium carbonate compensation depth and calcareous sediments in the North Pacific Ocean, Contribution No. 974. NOAA/Pacific Marine Environmental Laboratory

  • Clarke RA (1985) Temporal and spatial scales of Laborador sea water formation. In: Bennett T, Broecker W, Hansen J (eds) North Atlantic deep water formation. NASA Conference Publication 2367, pp 7–11

  • Craig H, Broecker WS, Spenser D (1981) GEOSECS Pacific expedition, volume 4, sections and profiles. U.S. Government Printing Office, Washington, D. C. 20402

    Google Scholar 

  • Defant A (1961) Physical oceanography, Vol. I. Pergamon Press, New York, pp 56–59

    Google Scholar 

  • Delmas RJ, Ascencio JM, Legrand M (1980) Polar ice evidence that atmospheric CO2 20 000 yr BP was 50% of present. Nature 284:155–159

    Google Scholar 

  • Detwiler RP, Hall CAS (1988) Tropical forests and the global carbon cycle. Science 239:42–47

    Google Scholar 

  • De Vooys CGN (1979) Primary production in aquatic environments. In Scope 13: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle. John Wiley & Son, New York, pp 259–292

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in sea water media, Deep Sea Res 34:1733–1743

    Google Scholar 

  • Druffel EM (1980) Radiocarbon in annual coral rings of Florida and Belize, Radiocarbon 22:363–371

    Google Scholar 

  • Druffel EM (1981) Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean, Geophys Res Lett 8:59–62

    Google Scholar 

  • Druffel EM, Linick TW (1978) Radiocarbon in annnual coral rings of Florida, Geophys Res Lett 5:913–916

    Google Scholar 

  • Druffel EM, Suess HE (1983) On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. J Geophys Res 88:1271–1280

    Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification and significance, Limn. Oceanogr 12:685–695

    Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Google Scholar 

  • Erickson DJ III (1989) Variations in the global air-sea transfer velocity field of CO2. Gobal Biogeochemical Cycles 3:37–41

    Google Scholar 

  • Fiadeiro M (1980) Carbon cycling in the ocean. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Press, New York, pp 487–495

    Google Scholar 

  • Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238

    CAS  Google Scholar 

  • Gieskes WWC, Kraay GW, Baars MA (1979) Current 14C methods for measuring primary production: gross underestimates in oceanic waters. Neth J Sea Res 13:58–78

    Google Scholar 

  • Hasselmann K (1982) An ocean model for climate variability studies. Prog Oceanogr 11:69–92

    Google Scholar 

  • Heimann M, Monfray P (1990) Spatial and temporal variations of the gas-exchange coefficient for CO2: 1. Data analysis. Geophys Res (in press)

  • Holtslag AAM, Ulden AP van (1983) A simple scheme for daytime estimates of the surface fluxes from routine weather data. J Climate and App Met 22:517–529

    Google Scholar 

  • Honjo S, Manganini SJ, Cole J (1982) Sedimentation of biogenic matter in the deep ocean. Deep Sea Research 29:609–625

    Google Scholar 

  • Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235–262

    CAS  Google Scholar 

  • Jenkins WJ (1982) Oxygen utilization rates in the North Atlantic subtropical gyre and primary productivity in oligotrophic systems. Nature 300:246–248

    Google Scholar 

  • Keeling CD (1968) Carbon dioxide in surface waters. 4. Global distributon. J Geophys Res 73:4543–4553

    Google Scholar 

  • Keeling CD (1973) The carbon dioxide cycle: reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants. In: Rasool SI (ed) Chemistry of the lower atmosphere. Plenum Press, pp 251–329

  • Keeling CD (1981) The modeling of rare isotopic carbon with regard to notations. In Scope 16: Bolin B (ed) Carbon cycle modelling. John Wiley & Sons, New York, pp 89–94

    Google Scholar 

  • Keeling CD, Piper SC, Heimann M (1989) A three dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In: Aspects of climate variability in the pacific and the Western Americas. American Geophysical Union Monograph, pp 305–363

  • Knox F, McElroy MB (1984) Changes in atmospheric CO2: influence of marine biota at high latitude. J Geophys Res 89:4629–4637

    Google Scholar 

  • Koblentz-Mishke OL, Volkovinsky VV, Kabanova JG (1970) Plankton primary production of the world ocean. Scientific exploration of the south pacific, Book No. 309–01755–6. National Academy of Sciences, Washington, D. C., pp 183–193

    Google Scholar 

  • Kroopnick PM (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Research 32:57–84

    Google Scholar 

  • Kroopnick PM, Margolis SV, Wong CS (1977) δ13C variations in marine carbonate sediments as indicators of the CO2 balance between the atmosphere and oceans. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum Press, New York, pp 295–321

    Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Climate Dynamics 2:63–90

    Google Scholar 

  • Maier-Reimer E, Hasselmann K, Olbers D, Willebrand J (1982) An ocean circulation model for climate variability studies. Technical Report, Max-Planck-Institut für Meteorologie, Hamburg, Germany

    Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbonate isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planet Lett 22:169–176

    Google Scholar 

  • Neftel A, Oeschger H, Schwander J, Stauffer B, Zumbrunn R (1982) Ice core sample measurements give atmospheric CO2 content during the past 40 000 yr. Nature 295:220–223

    Google Scholar 

  • Nozaki Y, Rye DM, Turekian KK, Dodge RE (1978) A 200-year record of carbon-13 and carbon-14 variations in Bermuda coral, Geophys Res Lett 5:825–828

    Google Scholar 

  • Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A (1975) A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–192

    Google Scholar 

  • Östlund HG, Stuiver M (1980) GEOSECS Pacific radiocarbon. Radiocarbon 22:25–53

    Google Scholar 

  • Peng T-H, Broecker WS (1987) C/P ratios in marine detritus. Global Biogeochemical Cycles 1:155–161

    Google Scholar 

  • Radach G, Maier-Reimer E (1975) The vertical structure of phytoplankton growth dynamics — a mathematical model. Mémoires Société Royal des Sciences de Liége, 6e série, tome VII, pp 113–146

    Google Scholar 

  • Reid JL, Brinton E, Fleminger A, Venrick EL, McGowan JA (1978) Ocean circulation and Marine Life. In: Charnock H, Deacon G (eds) Advances in oceanography. Plenum Press, New York, pp 65–130

    Google Scholar 

  • Rotty RM (1987) A look at the 1983 CO2 emissions from fossil fuels (with preliminary data for 1984). Tellus 39B:203–208

    Google Scholar 

  • Sarmiento JL, Toggweiler JR (1984) A new model for the role of the oceans in determining atmospheric PCO2. Nature 308:621–624

    Google Scholar 

  • Schulenberger E, Reid JL (1981) The Pacific oxygen maximum, deep chlorophyll maximum, and primary production, reconsidered. Deep Sea Res 28A:901–919

    Google Scholar 

  • Siegenthaler U (1983) Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J Geophys Res 88:3599–3608

    Google Scholar 

  • Siegenthaler U, Münnich KO (1981) 13C/12C fractionation during CO2 transfer from air to sea. In Scope 16: Bolin B (ed) Carbon cycle modelling. John Wiley & Sons, New York, pp 249–257

    Google Scholar 

  • Siegenthaler U, Wenk Th (1984) Rapid atmospheric CO2 variations and ocean circulation. Nature 308:624–626

    Google Scholar 

  • Spenser D, Broecker WS, Craig H, Weiss RF (1982) GEOSECS Indian ocean expedition, volume 6, sections and profiles. US Government Printing Office, Washington, DC 20402

    Google Scholar 

  • Stuiver M, Östlund HG (1980) GEOSECS Atlantic radiocarbon. Radiocarbon 22:1–24

    Google Scholar 

  • Stuiver M, Östlund HG (1983) GEOSECS Indian ocean and mediterranean radiocarbon. Radiocarbon 25:1–29

    Google Scholar 

  • Stuiver M, Östlund HG, McConnaughey TA (1981) GEOSECS Atlantic and pacific 14C distribution. In Scope 16: Bolin B (ed) Carbon Cycle modelling. John Wiley & Sons, pp 201–226

  • Takahashi T, Broecker WS, Bainbridge AE (1981a) Supplement to the alkalinity and total carbon dioxide concentration in the World Oceans. In Scope 16: Bolin B (ed) Carbon cycle modelling. John Wiley & Sons, pp 159–199

  • Takahashi T, Broecker WS, Bainbridge AE (1981b) The alkalinity and total carbon dioxide concentration in the World Oceans. In Scope 16: Bolin B (ed) Carbon cycle modelling. John Wiley & Sons, pp 271–286

  • Takahashi T, Broecker WS, Langer S (1985) Redfield ratio based on chemical data from isopycnal surfaces. J Geophys Res 90:6907–6924

    Google Scholar 

  • Takahashi T, Chipman D, Volk T (1983) Geographical, seasonal, and secular variations of the partial pressure of CO2 in surface waters of the North Atlantic Ocean: the results of the North Atlantic TTO program, II.123–II.145. In: Proceedings of carbon dioxide research conference: carbon dioxide, science and consensus, Sept. 19–23, 1982, Berkeley Springs, West Virginia, USA, CONF-820970, US Dept of Energy, Washington DC, available from NTIS, Springfield, Va., USA

    Google Scholar 

  • Tans P (1981a) A compilation of bomb 14C data for use in global carbon model calculations. In Scope 16: Bolin B (ed) Carbon cycle modelling. pp 131–157

  • Tans P (1981b) 13C/12C of industrial CO2. In Scope 16: Bolin B (ed) Carbon cycle modelling. John Wiley & Sons, New York, pp 127–129

    Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: Natural variations archean to present. American Geophysical Union, Washington, DC, pp 99–110

    Google Scholar 

  • Volk T, Liu Z (1988) Controls of CO2 sources and sinks in the earthscale surface ocean: temperature, nutrients. Global Biogeochemical Cycles 2:73–89

    Article  CAS  PubMed  Google Scholar 

  • Walsh JJ (1975) A spatial simulation model of the Peru upwelling ecosystem. Deep Sea Res 22:201–236

    Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen, and argon in water and sea water. Deep Sea Res 17:721–735

    Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and sea water: The solubility of a non-ideal gas. Marine Chem 2:203–215

    Google Scholar 

  • Wroblewski JS (1977) A model of phytoplankton plume formation during variable Oregon upwelling. J Marine Res 35–2:357–394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: R Bacastow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacastow, R., Maier-Reimer, E. Ocean-circulation model of the carbon cycle. Climate Dynamics 4, 95–125 (1990). https://doi.org/10.1007/BF00208905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00208905

Keywords

Navigation