Skip to main content

Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesis

  • Chapter
Discoveries in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 20))

Abstract

Basic structural elements of the two photosystems and their component electron donors, acceptors, and carriers were revealed by newly developed spectroscopic methods in the 1960s and subsequent years. The spatial organization of these constituents within the functional membrane was elucidated by electrochromic band shift analysis, whereby the membrane-spanning chlorophyll—quinone couple of Photosystem (PS) II emerged as reaction center and as a model relevant also to other photosystems. A further step ahead for improved structural information was realized with the use of thermophilic cyanobacteria instead of plants which led to isolation of supramolecular complexes of the photosystems and their identification as PS I trimers and PS II dimers. The preparation of crystals of the PS I trimer, started in the late 1980s. Genes encoding the 11 subunits of PS I from Synechococcus elongatus were isolated and the predicted sequences of amino acid residues formed a basis for the interpretation of X-ray structure analysis of the PS I crystals. The crystallization of PS I was optimized by introduction of the ‘reverse of salting in’ crystallization with water as precipitating agent. On this basis the PS I structure was successively established from 6Å resolution in the early 1990s up to a model at 2.5Å resolution in 2001. The first crystals of the PS II dimer, capable of water oxidation, were prepared in the late 1990s; a PS II model at 3.8–3.6Å resolution was presented in 2001. Implications of the PS II structure for the mechanism of transmembrane charge separation are discussed. With the availability of PS I and PS II crystals, new directional structural results became possible also by application of different magnetic resonance techniques through measurements on single crystals in different orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adir N (1998) Crystallization of the reaction center of photosystem II. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 945–948. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Adir N, Zer H, Shochat S and Ohad I (2003) Photoinhibition — a historical perspective. Photosynth Res 76: 343–370

    Article  PubMed  CAS  Google Scholar 

  • Allen JP (2004) My daily constitutional in Martinsried. Photosynth Res 80: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Allen JP and Williams JC (1995) Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron transfer in photosynthetic reaction centers. J Bioenerg Biomembr 27: 275–283

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2004) Engine of life and big bang of evolution: a personal perspective. Photosynth Res 80: 137–155

    Article  PubMed  CAS  Google Scholar 

  • Barry BA, Boener RJ and Paula IC (1994) The use of cyanobacteria in the study of the structure and function of photosystem II. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 217–257. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76: 35–52

    Article  PubMed  Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73: 29–49

    Article  PubMed  CAS  Google Scholar 

  • Bittl R, Zech SG, Fromme P, Witt HT and Lubitz W (1997) Pulsed EPR structure analysis of Photosystem I single crystals: localization of the phylloquinone acceptor. Biochemistry 36: 12001–12004

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Dekker JP, van Heel MG, Rögner M, Saenger W, Witt I and Witt HT (1987) Evidence for a trimeric organization of the Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286

    Article  CAS  Google Scholar 

  • Bouges-Bocquet B (1973) Electron transfer between two photosystems in spinach chloroplasts. Biochim Biophys Acta 314: 250–256

    Article  PubMed  CAS  Google Scholar 

  • Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in Photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1. FEBS Lett 203: 220–224

    Article  CAS  Google Scholar 

  • Buchwald HE and Rüppel H (1968) Suppression of disturbing light signals in rapid flash kinetic measurements. Nature 220: 5758

    Article  Google Scholar 

  • Clayton RK (2002) Research on photosynthetic reaction centers from 1932–1987. Photosynth Res 73: 63–71

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK and Straley SC (1970) An optical absorption change that could be due to reduction of the primary photochemical electron acceptor in photosynthetic reaction centers. Biochem Biophys Res Commun 39: 1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Crofts AR (2004) The Q-cycle — a personal perspective. Photosynth Res 80: 223–243

    Article  PubMed  CAS  Google Scholar 

  • Debus R (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of Photosystem II. Biochim Biophys Acta 1503: 164–186

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in photosynthetic reaction centers of Rhodopseudomonas viridis at 3Å resolution. Nature 318: 618–624

    Article  Google Scholar 

  • Dekker JP and van Grondelle R (2000) Primary charge separation in Photosystem II. Photosynth Res 63: 195–208

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Boekema EJ, Witt HT and Rögner M (1988) Refined purification and further characterization of oxygen evolving and Tris-treated Photosystem II particles from the thermophilic cyanobacterium Synechococcus sp. Biochim Biophys Acta 936: 307–318

    Article  CAS  Google Scholar 

  • Diner BA and Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of Photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53: 551–580

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ and Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His197 of Photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry 40: 9265–9281

    Article  PubMed  CAS  Google Scholar 

  • Döring G, Stiehl HH and Witt HT (1967) A second chlorophyll reaction in the electron chain of photosynthesis — registration by the repetitive excitation technique. Z Naturforsch 22b: 639–644

    Google Scholar 

  • Döring G, Bailey JL, Kreutz W, Weikard J and Witt HT (1968a) The action of two chlorophyll-a I molecules in light reaction I of photosynthesis. Naturwissenschaften 55: 219–224

    Article  PubMed  Google Scholar 

  • Döring G, Bailey JL, Kreutz W and Witt HT (1968b) The active chlorophyll-a II in light reaction II of photosynthesis. Naturwissenschaften 55: 219–224

    Article  PubMed  Google Scholar 

  • Döring G, Renger G, Vater J and Witt HT (1969) Properties of the photoactive chlorophyll-aII in photosynthesis. Z Naturforsch 24b: 1139–1143

    Google Scholar 

  • Durrant JR, Klug DR, Kwa SLS, von Grondelle R, Porter G and Dekker JP (1995) A multimer model for P680, the primary electron donor of Photosystem II. Proc Natl Acad Sci USA 92: 4798–4802

    Article  PubMed  CAS  Google Scholar 

  • Duysens LNM and Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (eds) Studies in Microalgae and Photosynthetic Bacteria, pp 353–372. University of Tokyo Press, Tokyo

    Google Scholar 

  • Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511

    Article  PubMed  CAS  Google Scholar 

  • Eijekelhoff E and Dekker JP (1995) Determination of the pigment stoichiometry of the photochemical reaction center of Photosystem II. Biochim Biophys Acta 1231: 21–28

    Article  Google Scholar 

  • Emerson R and Arnold W (1932) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420

    Article  CAS  Google Scholar 

  • Emerson R, Chalmers R and Cederstrand C (1957) Some factors influencing the long-wave limit of photosynthesis. Proc Natl Acad Sci USA 43: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Emrich HM, Junge W and Witt HT (1969) Further evidence for an optical response of chloroplast bulk pigments to a light-induced electrical field in photosynthesis. Z Naturforsch 24b: 1144–1146

    Google Scholar 

  • Ford RC and Holzenburg A (1988) Investigation of the structure of trimeric and monomeric Photosystem I reaction center complexes. EMBO J 7: 2287–2293

    PubMed  CAS  Google Scholar 

  • Ford RC, Picot D and Garavito RM (1987) Crystallization of the Photosystem I reaction center. EMBO J 6: 1581–1586

    PubMed  CAS  Google Scholar 

  • Fromme P and Witt HT (1998) Improved isolation and crystallization of Photosystem I for structural analysis. Biochim Biophys Acta 1365: 175–184

    Article  CAS  Google Scholar 

  • Fromme P and Mathis P (2004) Unraveling the Photosystem I reaction center: a history, or the sum of many efforts. Photosynth Res 80: 109–124

    Article  PubMed  CAS  Google Scholar 

  • Gerken S, Brettel K, Schlodder E and Witt HT (1987) Direct observation of the immediate electron donor to chlorophyll a+ II (P680+) in oxygen-evolving Photosystem II complexes. Resolution of nanosecond kinetics in the UV. FEBS Lett 223: 376–380

    Article  CAS  Google Scholar 

  • Gerken S, Dekker JP, Schlodder E and Witt HT (1989) Studies on the multiphasic charge recombination between chlorophyll a+ II and plastoquinone Q A in PS II complexes. UV difference spectrum of Chl a+ II /Chl a II. Biochim Biophys Acta 977:52–61

    CAS  Google Scholar 

  • Golbeck JH (1994) The structure of Photosystem I. Curr Opin Struct Biol 3: 508–514

    Article  Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP and Barber J (1999) Revealing the structure of the oxygen-evolving core dimer of PS II by cryoelectron crystallography. Nature Struct Biol 6: 560–564

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP, Nield J, Gerle Ch and Barber J (2001) Three-dimensional structure of the Photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135: 262–269

    Article  PubMed  CAS  Google Scholar 

  • Hauska G (2004) The isolation of a functional cytochrome b 6 f complex: from lucky encounter to rewarding experiences. Photosynth Res 80: 277–291

    Article  PubMed  CAS  Google Scholar 

  • Hauska G, Schütz M and Büttner M (1996) The cyt D 6 f complex-composition, structure and function. In: Ort DR and Yokum CF (eds) Oxygenic Photosynthesis, pp 377–398. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Hill R and Bendall F (1960) Function of two cytochrome components in chloroplasts: a working hypothesis. Nature 1186: 136–137

    Article  Google Scholar 

  • Hladik J and Sofrova D (1991) Does the trimeric form of the Photosystem I reaction center of cyanobacteria in vivo exist? Photosynth Res 29: 171–175

    CAS  Google Scholar 

  • Hofbauer W, Zouni A, Bittl R, Jern J, Orth P, Lendzian F, Fromme P, Witt HT and Lubitz W (2001) Photosystem II single crystals studied by EPR spectroscopy at 94 GHz: the tyrosine radical Y*D. Proc Natl Acad Sci USA 98: 6623–6628

    Article  PubMed  CAS  Google Scholar 

  • Jackson JB and Crofts AB (1969) The high energy state in chromatophores from Rhodospeudomonas sphaeroides. FEBS Lett 4: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf AT (2002) Photophosphorylation and chemiosmotic perspective. Photosynth Res 73: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (1999) In vivo analysis of the electron transfer within PS I: are the two phylloquinones involved? Biochemistry 38: 11130–11136

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Kok B (1975) Oxygen evolution in photosynthesis. In: Govindjee (ed) Bioenergetic of Photosynthesis, pp 387–412. Academic Press, New York

    Google Scholar 

  • Jordan P, Fromme P, Klukas O, Witt HT, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Junge W and Witt HT (1968) On the ion transport system of photosynthesis — investigations on a molecular level. Z Naturforsch 23b: 244–254

    Google Scholar 

  • Jursinic P and Govindjee (1977) Temperature dependence of delayed light emission in the 6 to 340 μs range after a single flash in chloroplasts. Photochem Photobiol 26: 617–628

    CAS  Google Scholar 

  • Käß H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the oxidized primary donor P+. 700 in Photosystem I: a single crystal EPR and ENDOR study. J Phys Chem 105: 1225–1239

    Google Scholar 

  • Kamen MD (1963) Primary Processes in Photosynthesis. Advanced Biochemistry. Academic Press, New York

    Google Scholar 

  • Kamlowski A, Zech S, Fromme P, Bittl R, Lubitz W, Witt HT and Stehlik D (1998) The radical pair state P+. 700 A−. 1 in Photosystem I single crystals: orientation dependence of the transient spin-polarized EPR spectra. J Phys Chem B 102: 8266–8277

    Article  CAS  Google Scholar 

  • Kautsky H, Appel W and Amann H (1960) Chlorophyllfluoreszenz und Kohlensäureassimilation. XIII. Mitteilung. Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem Z 332: 277–292

    PubMed  CAS  Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Klimov VV (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. Photosynth Res 76: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV and Krasnovskii AA (1981) Pheophytin as the primary electron acceptor in Photosystem II reaction center. Photosynthetica 15: 592–609

    CAS  Google Scholar 

  • Kok B (1956) On the reversible absorption change at 705 mμ in photosynthetic organisms. Biochim Biophys Acta 22: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1961) Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Kok B and Hoch G (1961) Spectral changes in photosynthesis. In: McElroy WD and Glass B (eds) Light and Life, pp 397–416. Johns Hopkins University Press, Baltimore, Maryland

    Google Scholar 

  • Konermann L, Yruela I and Holzwarth AR (1997) Pigment assignment in the absorption spectrum of the Photosystem II reaction center by site-selection fluorescence spectroscopy. Biochemistry 36: 7450–7498

    Google Scholar 

  • Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel Ch, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of System I of photosynthesis at 6Å resolution. Nature 361: 326–331

    Article  Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4Å resolution represents the first structural model of a joint photosynthetic reaction center and core antenna system. Nat Struct Biol 3: 965–973

    Article  PubMed  Google Scholar 

  • Kretschmann H, Schlodder E and Witt HT (1996) Net charge oscillation and proton release during water oxidation in photosynthesis. An electrochromic band shift study at pH 5.5–7.0. Biochim Biophys Acta 1274: 1–8

    Article  Google Scholar 

  • Kuhl H, Rögner M, van Breemn JFL and Boekema EJ (1999) Localization of cyanobacterial Photosystem II donor-side subunits by electron microscopy and the supramolecular organization of Photosystem II in the thylakoid membrane. Eur J Biochem 266: 453–459

    Article  PubMed  CAS  Google Scholar 

  • Kuhl H, Kruip J, Seidler A, Krieger-Liszkay A, Bünker M, Bald D, Scheidig AJ and Rögner M (2000) Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of Photosystem II from a thermophilic cyanobacterium. J Biol Chem 275: 20652–20659

    Article  PubMed  CAS  Google Scholar 

  • Lubitz W (2002) Pulse EPR and ENDOR studies of light-induced radicals and triplet states in Photosystem II of oxygenic photosynthesis. Phys Chem Phys 4: 5539–5545

    Article  CAS  Google Scholar 

  • Maggiora LL, Petke JD, Gopal D, Iwamoto RT and Maggiora GM (1985) Experimental and theoretical studies of Schiff base chlorophylls. Photochem Photobiol 42: 69–75

    CAS  Google Scholar 

  • Malkin R (1986) On the function of two vitamin K1 molecules in the PS I-electron acceptor complex. FEBS Lett 208: 343–346

    Article  CAS  Google Scholar 

  • Matysik J, Gast P, van Gorkom HJ, Hoff AJ and de Groot HJM (2000) Photochemically induced nuclear spin polarization in reaction centers of Photosystem II observed by 13C-solid-state NMR reveals a strongly asymmetric electronic structure of the P.+ 680 primary donor chlorophyll. PNAS 97: 9865–9870

    Article  PubMed  CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 17

    Article  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and proton transfer by a chemiosmotic type of mechanisms. Nature 191: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Mühlenhoff U, Haehnel W, Witt HT and Herrmann RG (1993) Genes encoding eleven subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. 192. Gene 127: 73–78

    Article  Google Scholar 

  • Mulkidjanian AY (1999) Photosystem II of green plants: on the possible role of retarded protonic relaxation in water oxidation. Biochim Biophys Acta 1410: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Nelson N and Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73: 193–206

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000) 3D map of the plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Biol 7: 44–47

    Article  PubMed  CAS  Google Scholar 

  • Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628

    Article  PubMed  CAS  Google Scholar 

  • Parson WW (2003) Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. Photosynth Res 76: 81–92

    Article  PubMed  CAS  Google Scholar 

  • Prokhorenko VI, Holzwarth AR (2000) Primary processes and structure of Photosystem II reaction center: a photon echo study. J Phys Chem 104: 11563–11578

    CAS  Google Scholar 

  • Renger G (2003) Apparatus and mechanism of photosynthetic oxygen evolution: a personal retrospective. Photosynth Res 76: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Rhee K-H (2001) Photosystem II: the solid structural era. Ann Rev Biophys Biomol Struct 30: 307–328

    Article  CAS  Google Scholar 

  • Rhee K-H, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W and Barber J (1997) Two-dimensional structure of plant system II at 8Å resolution. Nature 389: 522–526

    Article  CAS  Google Scholar 

  • Rhee K-H, Morris EP, Barber J and Kühlbrandt W (1998) Three-dimensional structure of the plant Photosystem II reaction center at 8Å resolution. Nature 396: 283–286

    Article  PubMed  CAS  Google Scholar 

  • Rigby SEJ, Nugent JHA and O’Malley PJ (1994) ENDOR and special triple resonance studies of chlorophyll cation radicals in Photosystem 2. Biochemistry 33: 10043–10050

    Article  PubMed  CAS  Google Scholar 

  • Rögner M, Dekker JP, Boekema EJ and Witt HT (1987) Size, shape and mass of the oxygen-evolving Photosystem II complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 219: 207–211

    Article  Google Scholar 

  • Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990) Mono-, di-and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity. Biochim Biophys Acta 1015: 415–424

    Article  Google Scholar 

  • Rüppel H and Witt HT (1969) Measurements of fast reactions by single and repetitive excitation with pulses of electromagnetic radiation. In: Kustin K (ed) Methods in Enzymology, pp 317–379. Academic Press, New York

    Google Scholar 

  • Ruffle SV, Donnelly D, Blundell TL and Nugent JHA (1992) A three-dimensional model of the Photosystem II reaction center of Pisum sativum. Photosynth Res 34: 287–300

    Article  CAS  Google Scholar 

  • Rumberg B (1964) Die Eigenschaften des Reaktionszyklus von Chl-a I-430-703. Z Naturforsch 19b: 707–716

    CAS  Google Scholar 

  • Rumberg B and Witt HT (1964) Die Photooxidation von Chlorophyll-a I-430-703. Naturforsch 19b: 693–707

    CAS  Google Scholar 

  • Saygin Ö and Witt HT (1985) Evidence for the electrochromic identification of the change of charges in the four oxidation steps of the photoinduced water cleavage in photosynthesis. FEBS Lett 187: 224–226

    Article  CAS  Google Scholar 

  • Schatz GH and Witt HT (1984a) Extraction and characterization of oxygen-evolving Photosystem II complexes from a thermophilic cyanobacterium Synechococcus sp. Photobiochem Photobiophys 7: 1–4

    CAS  Google Scholar 

  • Schatz GH and Witt HT (1984b) Characterization of electron transport in oxygen-evolving Photosystem II complexes from a thermophilic cyanobacterium Synechococcus sp. Photobiochem Photobiophys 7: 77–89

    CAS  Google Scholar 

  • Schliephake W, Junge W and Witt HT (1968) Correlation between field formation, proton translocation and the light reactions in photosynthesis. Z Naturforsch 23b: 1571–1578

    Google Scholar 

  • Schlodder E and Witt HT (1999) Stoichiometry of proton release from the catalytic center in photosynthetic water oxidation. J Biol Chem 274: 30387–30392

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Reich R and Witt HT (1971) Electrochromism of chlorophylls and carotenoids in multilayers and in chloroplasts. Naturwissenschaften 58: 414

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Reich R and Witt HT (1972) Electrochromic measurements in vitro as a test for the interpretation of field-indicating absorption changes in photosynthesis. In: Forti G, Avron M and Melandri A (eds) Proceedings Second International Congress on Photosynthesis Research, Stresa, Italy, 1971, pp 1087–1095. Dr W. Junk Publishers, The Hague, The Netherlands

    Google Scholar 

  • Schubert W-D, Klukas O, Krauß N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769

    Article  PubMed  CAS  Google Scholar 

  • Schubert W-D, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of Photosystem I. J Mol Biol 280: 297–314

    Article  PubMed  CAS  Google Scholar 

  • Seibert M and Wasilewski M (2003) The isolated Photosystem II reaction center: first attempts to directly measure the kinetics of primary charge separation. Photosynth Res 76: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Shen J-R and Kamiya N (2000) Crystallization and the crystal properties of the oxygen-evolving Photosystem II from Synechococcus vulcanus. Biochemistry 39: 14739–14744

    Article  PubMed  CAS  Google Scholar 

  • Shin M (2004) How is ferredoxin-NADP reductase involved in the NADP photoreduction of chloroplasts? Photosynth Res 80: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA and Klimov VV (1976) The primary photoreaction in the complex cytochrome P890–P760 (bacteriopheophytin 760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440: 587–599

    Article  PubMed  CAS  Google Scholar 

  • Slooten L (1972) Electron acceptors in reaction center preparations from photosynthetic bacteria. Biochim Biophys Acta 275: 208–218

    Article  PubMed  CAS  Google Scholar 

  • Smith PJ and Pace RJ (1996) Evidence for two forms of the g=4.1 signal in the S2 state of Photosystem II. Two magnetically isolated manganese dimers. Biochim Biophys Acta 1275: 213–220

    Article  Google Scholar 

  • Stiehl HH and Witt HT (1968) Die kurzzeitigen ultravioletten Differenzspektren bei der Photosynthese. Z Naturforsch 23b: 220–224

    Google Scholar 

  • Stiehl HH and Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b: 1588–1598

    Google Scholar 

  • Svensson B, Etchebest C, Tuffery P, van Kann PJ, Smith J and Styring S (1996) A model for the Photosystem II reaction center core including the structure of the primary donor P680. Biochemistry 35: 14486–14502

    Article  PubMed  CAS  Google Scholar 

  • Tiemann R, Renger G, Gräber P and Witt HT (1979) The plastoquinone pool as possible hydrogen pump in photosynthesis. Biochim Biophys Acta 546: 498–519

    Article  PubMed  CAS  Google Scholar 

  • Tommos C and Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458: 199–219

    Article  PubMed  CAS  Google Scholar 

  • Trebst A (1985) The topology of the plastoquinone and herbicide binding peptides of Photosystem II in the thylakoid membrane. Z Naturforsch 41c: 240–245

    Google Scholar 

  • van Gorkom HJ (1974) Identification of the reduced primary electron acceptor of Photosystem II as a bound semiquinone anion. Biochim Biophys Acta 347: 439–442

    Article  PubMed  Google Scholar 

  • van Mieghem FJE, Satoh K and Rutherford AW (1991) A chlorophyll tilted 30° relative to the membrane in the photosystem II reaction center. Biochim Biophys Acta 1058: 379–385

    Google Scholar 

  • Vasmel H and Amesz J (1983) Photoreduction of menaquinone in reaction centers of green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 724: 118–121

    Article  CAS  Google Scholar 

  • Velthuys BR and Amesz J (1974) Charge accumulation and the reducing side of Photosystem 2 of photosynthesis. Biochim Biophys Acta 333: 85–94

    Article  CAS  Google Scholar 

  • Vermaas WJF, Styring S, Schröder WP and Andersson B (1993) Photosynthetic water oxidation: the protein framework. Photosynth Res 38: 249–263

    Article  CAS  Google Scholar 

  • Vermeglio A (2002) The two-electron gate in photosynthetic bacteria. Photosynth Res 73: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Wasielewski MR, Johnson DG, Govindjee, Preston C and Seibert M (1989) Determination of the primary charge separation rate in Photosystem II reaction centers at 15 K. Photosynth Res 22: 89–99

    Article  CAS  Google Scholar 

  • Watanabe T, Kobayashi M, Hongu A, Nakazato M, Hiyama T and Murata N (1985) Evidence that a chlorophyll a′ dimer constitutes the photochemical reaction center I (P700) in photosynthetic apparatus. FEBS Lett 191: 252–256

    Article  CAS  Google Scholar 

  • Witt HT (1967) A. Direct measurements of reactions in the 10−1 to 10−8 second range by single and repetitive excitations with pulses of electromagnetic waves (flashes, microwaves, giant laser pulses). B. On the analysis of photosynthesis by pulse techniques in the 10−1 to 10−8 second range. In: Claesson S (ed) Fast Reactions and Primary Processes in Chemical Kinetics (Nobel Symposium V), (A) pp 81–97 and (B) pp 261–316. Almquist and Wiksell, Stockholm

    Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, fields, ions, and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Q Rev Biophys 4: 365–477

    Article  PubMed  CAS  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505: 355–427

    PubMed  CAS  Google Scholar 

  • Witt HT (1991) Functional mechanism of water splitting photosynthesis. Photosynth Res 29: 55–77

    Article  CAS  Google Scholar 

  • Witt HT (1996a) Primary reactions of oxygenic photosynthesis. Ber Bunsenges Phys Chem 100: 1923–1942

    CAS  Google Scholar 

  • Witt HT (1996b) Structure analysis of single crystals of photosystem I by X-ray, EPR and ENDOR: a short status report. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: the Light Reactions, pp 363–375. Kluwer Academic Publishes, Dordrecht, The Netherlands

    Google Scholar 

  • Witt K and Wolff Ch (1970) Rise time of the absorption changes of chlorophyll-a I and carotenoids in photosynthesis. Z Naturforsch 25b: 387

    Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961a) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–195

    Article  PubMed  CAS  Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961b) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 967

    Article  PubMed  CAS  Google Scholar 

  • Witt I, Witt HT, Gerken S, Saenger W, Dekker JP and Rögner M (1987) Crystallization of reaction center I of photosynthesis. Low-concentration crystallization of photoactive protein complexes from the cyanobacterium Synechococcus sp. FEBS Lett 221: 260–264

    Article  CAS  Google Scholar 

  • Witt I, Witt HT, DiFiore D, Rögner M, Hinrichs W, Saenger W, Granzin J, Betzel CH and Dauter Z (1988) X-ray characterization of single crystals of the reaction center I of water-splitting photosynthesis. Ber Bunsenges Phys Chem 92: 1503–1506

    CAS  Google Scholar 

  • Witt HT, Krauß N, Hinrichs W, Witt I, Fromme P and Saenger W (1992) Three-dimensional crystals of Photosystem I from Synechococcus sp. and X-ray structure analysis at 6Å resolution. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 521–528. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Witt HT, Zouni A, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of Photosystem II and aspects of its function. In: Critchley C (ed) Proceedings of the 12th International Congress on Photosynthesis, Brisbane, Australia, PL-1, pp 1–8. CSIRO, Melbourne, Australia

    Google Scholar 

  • Wolff Ch and Witt HT (1969) On metastable states of carotenoids in primary events of photosynthesis. Z Naturforsch 240: 1031–1037

    Google Scholar 

  • Wolff Ch, Buchwald HE, Rüppel H, Witt K and Witt HT (1969) Rise time of the light-induced electrical field across the function membrane of photosynthesis. Z Naturforsch 24b: 1038–1041

    Google Scholar 

  • Xiong J, Subramaniam S and Govindjee (1996) Modeling of the D1/D2 proteins and cofactors of the Photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Sci 5: 2054–2073

    Article  PubMed  CAS  Google Scholar 

  • Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96: 2927–2950

    Article  PubMed  CAS  Google Scholar 

  • Zech SG, Hofbauer W, Kamlowski A, Fromme P, Stehlik D, Lubitz W and Bittl R (2000) A structural model for the charge separated state P +•700 A −•1 in Photosystem I from the orientation of the magnetic interaction tensors. J Phys Chem B 104: 9728–9739

    Article  CAS  Google Scholar 

  • Zouni A, Lüneberg C, Fromme P, Schubert W-D, Saenger W and Witt HT (1998) Characterization of single crystals of Photosystem II from the thermophilic cyanobacterium Synechococcus elongatus. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 925–928. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Zouni A, Jordan R, Schlodder E, Fromme P and Witt HT (2000) First Photosystem II crystals capable of water oxidation. Biochim Biophys Acta 1457: 103–105

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001a) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8Å resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Kern J, Loll B, Fromme P, Witt HT, Orth P, Krauß N, Saenger W and Biesiadka J (2001b) Biochemical characterization and crystal structure of water oxidizing Photosystem II from Synechococcus elongatus. In: Critchley C (ed) 12th International Congress on Photosynthesis, Brisbane, Australia, S5-003, pp 1–6. CSIRO, Melbourne, Australia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Witt, H.T. (2005). Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesis. In: Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, vol 20. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3324-9_24

Download citation

Publish with us

Policies and ethics