Skip to main content
Log in

Functional mechanism of water splitting photosynthesis

  • Personal Perspective
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A personal account is given on physico-chemical aspects of photosynthesis. The article starts with the way I entered the field of photosynthesis. Then, selected results from our research group are discussed. Three methods used for functional analysis in our laboratory are described: the repetitive flash spectroscopy; the electrochromic volt- and ammeter; and the membrane energization by a battery. Our subsequent studies deal with the two photoreaction centers, the primary charge separation, the plastoquinones as a transmembrane link between the two centers and the vectorial electron- and proton pathways. The results led to a picture of the elementary functional mechanism of the molecular machinery in the thylakoid membrane. The perspective then focuses on the coupling between the electric field, protons and phosphorylation. This section is followed by our observations and analysis of the mechanism of water cleavage and its coupling with the functioning of reaction center II. Finally, information is provided on structural aspects of the two reaction centers. The article ends with a retrospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ADP(ATP):

adenosine di(tri)phosphate

A0, A1 :

electron carriers

Car:

carotenoid

Chl-a 1 (P700):

chlorophyll-a 1

Chl-a II (P680):

chlorophyll-a II

Cyt:

cytrochrome

Fd:

ferredoxin

FeS:

iron sulphur

Fe:

iron

FX, FA, FB :

FeS clusters

HA:

hydroxylamine

Mn:

manganese

NADP+ (TPN):

nictoinamide adenine dinucleotide phosphate

PC:

plastocyanin

Pheo:

pheophytin

PQ:

plastoquinone

P:

phosphate

QA (QB):

primary (secondary) plastoquinone acceptor

RC I(II):

reaction center I (II)

S0, 1, 2, 3, 4 :

different states of the water splitting enzyme S

Tyr:

tyrosine

X,Y,Z:

unknown redox components

References

  • Amesz J and Duysens LNM (1977) Primary and associated teactions of system II. In: Barber J (ed) Primary Processes of Photosynthesis — Topics of Photosynthesis, pp 149–185. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Andreasson LE, Hansson Ö and Vänngard T (1983) On the tole of manganese in photosynthetic oxygen evolution. Chemica Scripta 21: 71–74

    Google Scholar 

  • Ausländer W and Junge W (1975) Neutral red, a rapid inlicator for pH changes in the inner phase of thylakoids. FEBS Lett 59: 310–315

    Google Scholar 

  • Baltscheffsky H (1963) Inhibition of photophosphorylation in isolated spinach chloroplasts by lower aliphatic straightchain alcohols. Acta Chem Scand 17: 308–312

    Google Scholar 

  • Bensasson R and Land EI (1973) Optical and kinetic properties of semi-reduced plastoquinone and ubiquinone: Electron acceptors in photosynthesis. Biochim Biophys Acta 325: 175–181

    Google Scholar 

  • Bishop NI (1959) The reactivity of a naturally occurring quinone (Q-255) in photochemical reactions of isolated chloroplasts. Proc Natl Acad Sci USA 45: 1696–1702

    Google Scholar 

  • Boeck M and Witt HT (1972) Correlation between electrical events and ATP-generation in the functional membrane of photosynthesis. In: Forti G, Avron M and Melandri A (eds) Proc. 2nd Intern. Congr. Photosynthesis Research, Stresa 1971, pp 903–911. Dr W. Junk NV Publishers, The Hague

    Google Scholar 

  • Boekema EJ, Dekker JP, van Heel MG, Rögner M, Saenger W, Witt I and Witt HT (1987) evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286

    Google Scholar 

  • Bouges B (1971) Action de faibles concentrations d'hydroxylamine sur l'émission d'oxygène des algues Chlorella et des chloroplastes d'épinards. Biochim Biophys Acta 234: 103–112

    Google Scholar 

  • Bouges-Bocquet B (1973) Electron transfer between the two photosystems in spinach chloroplasts. Biochim Biophys Acta 314: 250–254

    Google Scholar 

  • Boussac A, Zimmermann J-L, Rutherford AW and Lavergne J (1990) Histidine oxidation in the oxygen-evolving photo-system-II enzyme. Nature (London) 347: 303–306

    Google Scholar 

  • Brettel K and Witt HT (1983) Reduction kinetics of the photooxidized chlorophyll-a II in chloroplasts measured in the nanosecond range at 837 nm under repettive flash excitation. Photobiochem Photobiophys 6: 253–260

    Google Scholar 

  • Brettel K, Schlodder E and Witt HT (1984) Nanosecond reduction kinetics of photooxidized chlorophyll-a II (P-680) in single flashes as a probe for the electron pathway, H+ release and charge accumulation in the O2-evolving complex. Biochim Biophys Acta 766: 403–415

    Google Scholar 

  • Brettel K, Schlodder E and Witt HT (1985) Evidence for only one stable electron acceptor in the reaction center of photosystem II in spinach chloroplasts. Photobiochem Photobiophys 9: 205–213

    Google Scholar 

  • Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in photosystem I at low temperature: Evidence that the electron acceptor A1 is vitamin K1: FEBS Lett 203: 220–224

    Google Scholar 

  • Buchwald HE and Rüppel H (1968) Suppression of disturbing light signals in rapid flash kinetic measurements. Nature (London) 220: 57–58

    Google Scholar 

  • Buchwald HE and Wolff Ch (1971) Further evidence for carotenoids engaged in a metastable state in photosynthesis. Z Naturforsch 26b: 51–53

    Google Scholar 

  • Debus RJ, Barry BA, Babcock GT and McIntosh L (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen evolving system. Proc Natl Acad Sci USA 85: 427–430

    Google Scholar 

  • Debus RJ, Barry BA, Sithole I, Babcock GT and McIntosh L (1988) Directed mutagenesis indicates that the donor to P680+ in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry 27: 9071–9074

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in photosynthetic reaction centers of Rhodopseudomonas viridis at 3 A resolution. Nature 318: 618–624

    Google Scholar 

  • Dekker JP, van Gorkom HJ, Wensink J and Ouwehand L (1984) Absorbance difference spectra of the successive redox states of the oxygen-evolving appratus of photosynthesis. Biochim Biophys Acta 767: 1–9

    Google Scholar 

  • Dekker JP, Boekema EJ, Witt HT and Rögner M (1988) Refined purification and further characterization of oxygen-evolving and Tris-treated photosystem II particles from the thermophilic cyanobacterium Synechococcus sp. Biochim Biophys Acta 936: 307–318

    Google Scholar 

  • Dismukes GC and Siderer Y (1981) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci USA 78 (1): 274–278

    Google Scholar 

  • Döring G, Stiehl HH and Witt HT (1967) A second chlorophyll reaction in the electron chain of photosynthesis. Registration by the repetitive exciation technique. Z Naturforsch 22b: 639–644

    Google Scholar 

  • Döring G, Bailey JL, Kreutz W, Weikard J and Witt HT (1968a) The action of two chlorphyll-a I molecules in light reaction I of photosynthesis. Naturwiss 55: 219–220

    Google Scholar 

  • Döring G, Bailey JL, Kreutz W and Witt HT (1968b) The active chlorophyll-a II in light reaction II of photosynthesis. Naturwiss 55: 220–221

    Google Scholar 

  • Döring G, Renger G, Vater J and Witt HT (1969) Properties of the photoactive chlorophyll-a II in photosynthesis. Z Naturforsch 24b: 1139–1143

    Google Scholar 

  • Duysens LNM (1952) Transfer of excitation in photosynthesis. Thesis, University of Utrecht

  • Duysens LNM (1989) The discovery of the two photosynthetic systems: A personal account. Photosynth Res 21: 61–79

    Google Scholar 

  • Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature (London) 190: 510–511

    Google Scholar 

  • Emerson R (1958) The quantum yield of photosynthesis. Annu Rev Plant Physiol 9: 1–24

    Google Scholar 

  • Emerson R and Arnold W (1932a) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420

    Google Scholar 

  • Emerson R and Arnold W (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Google Scholar 

  • Emerson R, Chalmers RV and Cederstrand CN (1957) Some factors influencing the long-wave limit of photosynthesis. Proc Natl Acad Sci USA 43: 133–144

    Google Scholar 

  • Emrich HM, Junge W and Witt HT (1969) Further evidence for an optical response of chloroplast bulk pigments to a light induced electrical field in photosynthesis. Z Naturforsch 24b: 1144–1146

    Google Scholar 

  • Ford RC, Picot D and Garavito RM (1987) Crystallization of the photosystem I reaction center. EMBO J 6: 1581–1586

    Google Scholar 

  • förster V and Junge W (1985) Interaction of hydroxylamine with the water-oxidizing enzyme investigated via proton release. Photochem Photobiol 41: 191–194

    Google Scholar 

  • Fowler CF and Kok B (1974) Proton evolution associated with the photo-oxidation of water in photosynthesis. Biochim Biophys Acta 357: 299–307

    Google Scholar 

  • Gaffron H and Wohl K (1936) Zur Theorie der Assimilation. Naturwiss 24: 81–89

    Google Scholar 

  • Gerken S, Brettel K, Schlodder E and Witt HT (1987) Direct observation of the immediate electron donor to chlorophyll-a II + (P-680+) in oxygen-evolving photosystem II complexes. Resolution of nanosecond kinetics in the UV. FEBS Lett 223: 376–380

    Google Scholar 

  • Gerken S, Brettel K, Schlodder E and Witt HT (1988) Optical characterization of the immediate electron donor to chlorophyll a +II in O2-evolving photosystem II complexes. Tyrosine as possible electron carrier between chlorophyll-a II and the water-oxidizing-manganese complex. FEBS Lett 237: 69–75

    Google Scholar 

  • Gerken S, Dekker JP, Schlodder E and Witt HT (1989) Studies on the multiphasic charge recombination between chlorophyll-a II + (P680+) and plastoquinone QA - in photosystem II complexes. Ultraviolet difference spectrum of Chl-a II +/Chl-a II. Biochim Biophys Acta 977: 52–61

    Google Scholar 

  • Gläser M, Wolff Ch, Buchwald HE and Witt HT (1974) On the photoactive chlorophyll reaction in system II of photosynthesis. Detection of fast and large component. FEBS Lett 42: 81–85

    Google Scholar 

  • Good NE (1977) Uncoupling of electron transport from phosphorylation in chloroplasts. In: Trebst A and Avron M (eds) Encyclopedia of Plant Physiology, New Series, Photosynthesis 1, Vol 5, pp 429–436. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323

    Google Scholar 

  • Gräber P and Witt HT (1975) Direct measurement of the protons pumped into the inner phase of the functional membrane of photosynthesis per electron transfer. FEBS Lett 59: 184–189

    Google Scholar 

  • Griffths M, Sistrom WR and Cohen-Bazire G (1955) Function of carotenoids in photosynthesis. Nature (London) 176: 1211–1214

    Google Scholar 

  • Gromet-Elhanan Z and Arnon DI (1965) Effect of desaspidin on photosynthetic phosphorylation. Plant Physiol 40: 1060

    Google Scholar 

  • Guiles RD, Yachandra VK, McDermott AE, Cole JL, Dexheimer SL, Britt RD, Sauer K and Klein MP (1990) The S0 state of photosystem II induced by hydroxylamine: Differences between the structure of the manganese complex in the S0 and S1 states determined by X-ray absorption spectroscopy. Biochem 29: 486–496

    Google Scholar 

  • Hill R and Bendall DS (1960) Function of the two cytochrome components in chloroplasts: A working hypothesis. Nature (London) 186: 136–137

    Google Scholar 

  • Jackson JB and Crofts AR (1969) The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett 4: 185–189

    Google Scholar 

  • Jagendorf AT and Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177

    Google Scholar 

  • Joliot P (1965) Cinétiques des réactions liées à l'émission d'oxygène photosynthétique. Biochim Biophys Acta 102: 116–134

    Google Scholar 

  • Joliot P, Barbieri G and Chabaud R (1969) Un nouveau modèle des centres photochimiques du système II. Photochem Photobiol 10: 309–329

    Google Scholar 

  • Junge W and Ausländer W (1974) The electric generator in photosynthesis of green plants. I. Vectorial and protolytic properties of the electron transport chain. Biochim Biophys Acta 333: 59–70

    Google Scholar 

  • Junge W and Witt HT (1968) On the ion transport system of photosynthesis. Investigations on a molecular level. Z Naturforsch 23b: 244–254

    Google Scholar 

  • Junge W, Reinwald E, Rumberg B, Siggel U and Witt HT (1968) Further evidence for a new functional unit of photosynthesis. Naturwiss 55: 36–37

    Google Scholar 

  • Junge W, Rumberg B and Schröder H (1970) The necessity of an electrical potential difference and its use for photophosphorylation in short flash groups. Eur J Biochem 13: 575–581

    Google Scholar 

  • Katz JJ (1990) Green thoughts in a green shade. Photosynth Res 26: 143–160

    Google Scholar 

  • Kautsky H, Appel W and Amann H (1960) Chlorophyll-fluoreszenz und Kohlensäureassimilation. Biochem Zeitschrift 332: 277–292

    Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82: 183–186

    Google Scholar 

  • Klingenberg M, Müller A, Schmidt-Mende P and Witt HT (1962) Changes in absorption during photosynthesis in the ultra-violet spectrum. Nature (London) 194: 379–380

    Google Scholar 

  • Kok B (1957) Light induced absorption changes in photosynthetic organisms. Acta bot neerl 6: 316–336

    Google Scholar 

  • Kok B (1959) Light induced absorption changes in photosynthetic organisms. II. A split-beam difference spectro-photometer. Plant Physiol 34: 184–192

    Google Scholar 

  • Kok B (1961) Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48: 527–532

    Google Scholar 

  • Kok B and Hoch G (1961) Spectral changes in photosynthesis. In: McElroy WD and Glass B (eds) Light and Life, pp 397–416. John Hopkins Press, Baltimore

    Google Scholar 

  • Kok B, Forbush B and McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution. I. A linear fourstep mechanism. Photochem Photobiol 11: 457–475

    Google Scholar 

  • Kretschmann H, Dekker JP, Saygin Ö and Witt HT (1988) An agreement on the quaternary oscillation of ultraviolet absorption changes accompanying the water splitting in isolated photosystem II complexes from the cyanobacterium Synechococcus sp. Biochim Biophys Acta 932: 358–361

    Google Scholar 

  • Kretschmann H, Pauly S and Witt HT (1991) Evidence for a chemical reaction of hydroxylamine with the water-splitting enzyme S in the dark. Possible states of manganese and water. Biochim Biophys Acta 1059: 208–214

    Google Scholar 

  • Lavergne J (1989) Difference spectra of the oxidized intermediates in the photosynthetic oxygen-evolving system: Evidence for a small S0 → S1 absorption change. Photochem Photobiol 50: 235–241

    Google Scholar 

  • Lübbers K and Junge W (1990) Is the proton release due to water oxidation directly coupled to events in the manganese center? In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 3.877–880. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Malkin S and Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I. Number of component involved in the reaction and quantum yields. Biochim Biophys Acta 126: 413–432

    Google Scholar 

  • Mathis P (1969) Triplet-triplet energy transfer from chlorophyll a to carotenoids in solution and in chloroplasts. In: Metzner H (ed) Progress in Photosynthesis Research, Vol II, pp 818–822. International Union of Biological Sciences, Tübingen

    Google Scholar 

  • Messinger J, Pauly S and Witt HT (1991) Flash pattern of photosynthetic oxygen evolution after treatment with low concentrations of hydroxylamine does not depend on the previous S1/S0 ratio — Further evidence that NH2OH reduces the S states of water oxidation in the dark. Z Naturforsch, in press

  • Metz JG, Nixon PJ, Rögner M, Brudvig GW and Diner BA (1989) Directed alteration of the D1 polypeptide of photosystem II: Evidence that Tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry 28: 6960–6969

    Google Scholar 

  • Meyer B, Schlodder E, Dekker JP and Witt HT (1989) O2 evolution and Chl-a II + (P-680+) nanosecond reduction kinetics in single flashes as a function of pH. Biochim Biophys Acta 974: 36–43

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191: 144–148

    Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41: 445–502

    Google Scholar 

  • Moraw R and Witt HT (1961) VI. Zusammenhang zwischen Zellstruktur, Energiewanderung und Chlorophyllreaktion. Zeitschrift für Physikalische Chemie, Neue Folge 29: 25–42

    Google Scholar 

  • Müller A (1960) Blitzlichtphotometrische Untersuchungen an isolierten Chromatophoren. Thesis, University of Marburg

  • Neumann J and Jagendorf AT (1964) Light-induced pH changes related to phosphorylation by chloroplasts. Arch Biochem Biophys 107: 109–119

    Google Scholar 

  • Padhye S, Kambara T, Hendrickson DN and Govindjee (1986) Manganese-histidine cluster as the functional center of the water oxidation complex in photosynthesis. Photosynth Res 9: 103–112

    Google Scholar 

  • Pauly S, Schlodder E and Witt HT (1990) No evidence for a specific function of Ca2+ and Cl- in oxygen evolution of isolated PS II complexes from thermophilic cyanobacteria. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 3.745–3.748. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pauly S, Schlodder E and Witt HT (1991) The influence of salts on charge separation (P680+QA -) and water oxidation of PS II complexes from thermophilic cyanobacteria — Active and inactive conformational states of photosystem II. Biochim Biophys Acta, in press

  • Rabinowitch EI (1951) Photosynthesis and related processes. Vol II, Part 1, pp 600–1208. Interscience Publishers, New York

    Google Scholar 

  • Reich R, Scheerer R, Sewe KU and Witt HT (1976) Effect of electric fields on the absorption spectrum of dye molecules in lipid layers. V. Refined analysis of the field-indicating absorption changes in photosynthetic membranes in comparison with electro-chromic measurements in vitro. Biochim Biophys Acta 449: 285–294

    Google Scholar 

  • Reinwald E, Siggel U and Rumberg B (1968) Further results on the correlation between proton translocation and electron flow in chloroplasts. Naturwiss 55: 221–223

    Google Scholar 

  • Renger G (1972) The action of 2-anilinotiophenes of the deactivation reactions in the water splitting enzyme system of photosynthesis. Biochim Biophys Acta 256: 428–439

    Google Scholar 

  • Renger G, Eckert HJ and Buchwald HE (1978) On the detection of a new rapid recovery kinetics of photo-oxidized chlorophyll-a II in isolated chloroplasts under repetitive flash illumination. FEBS Lett 90: 10–14

    Google Scholar 

  • Rögner M, Dekker JP, Boekema EJ and Witt HT (1987) Size, shape and mass of the oxygen-evolving photosystem II complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 219: 207–211

    Google Scholar 

  • Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990) Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity. Biochim Biophys Acta 1014: 415–424

    Google Scholar 

  • Rumberg B (1964a) Evidence for the participation of chlorophyll-b in the primary reaction of photosynthesis. Nature (London) 204: 860–862

    Google Scholar 

  • Rumberg B (1964b) II. Die Eigenschaften des Reacktionszyklus von Chlorphyll-a I-430–703. Z Naturforsch 19b: 707–716

    Google Scholar 

  • Rumberg B and Siggel U (1968) Quantitative Zusammenhänge zwischen Chlorphyll-b-Reaktion, Elektronentransport und Phosphorylierung bei der Photosynthese. Z Naturforsch 23b: 239–244

    Google Scholar 

  • Rumberg B and Siggel U (1969) pH changes in the inner phase of the thylakoids during photosynthesis. Naturwiss 56: 130–132

    Google Scholar 

  • Rumberg B and Witt HT (1964) I. Die Photooxydation von Chlorophyll-a I. Z Naturforsch 19b: 693–707

    Google Scholar 

  • Rumberg B, Reinwald E, Schröder H and Siggel U (1968) Correlation between electron flow, proton translocation and phosphorylation in chloroplasts. Naturwiss 55: 77–79

    Google Scholar 

  • Rüppel H (1962) An apparatus for periodical relaxation measurements in photosynthesis and other photochemical reactions. Increase of sensitivity by a factor 200. Thesis, University of Marburg

  • Rüppel H, Bültemann V and Witt HT (1964a) Periodische Anregung und Messung schneller chemischer Reaktionen. Equipment for measurements of fast chemical reaction through periodical excitation. Ber Bunsenges 68: 340–348

    Google Scholar 

  • Rüppel H, Bülteman V and Witt HT (1964b) Anwendung der periodischen chemischen Relaxation auf die Photosynthese. Further application of periodical excitation methods in photosynthesis. Ber Bunsenges 68: 752–754

    Google Scholar 

  • Saphon S and Crofts AR (1977) Protolytic reactions in photosystem II: A new model for the release of protons accompanying the photooxidation of water. Z Naturforsch 32c: 617–626

    Google Scholar 

  • Saygin Ö and Witt HT (1985a) Evidence for the electrochromic identification of the change of charges in the four oxidation steps of the photo-induced water cleavage in photosynthesis. FEBS Lett 187: 224–226

    Google Scholar 

  • Saygin Ö and Witt HT (1985b) Sequence of the redox changes of manganese and pattern of the changes of charges during water cleavage in photosynthesis. Optical events in the UV and the red region in the presence and absence of hydroxylamine. Photobiochem Photobiophys 10: 71–82

    Google Scholar 

  • Saygin Ö and Witt HT (1987) Optical characterization of intermediates in the water-splitting enzyme system of photosynthesis — Possible states and configurations of manganese and water. Biochim Biophys Acta 893: 452–469

    Google Scholar 

  • Schatz GH and Witt HT (1984) Extraction and characterization of oxygen-evolving photsystem II complexes from a thermophilic cyanobacterium Synechococcus sp. Photobiochem Photobiophys 7: 1–14

    Google Scholar 

  • Schliephake W, Junge W and Witt HT (1968) Correlation between field formation, proton translocation, and the light reactions in photosynthesis. Z Naturforsch 23b: 1571–1617

    Google Scholar 

  • Schlodder E and Witt HT (1980) Electrochromic absorption changes of a chloroplast suspension induced by an external electric field. FEBS Lett 112: 105–113

    Google Scholar 

  • Schlodder E, Gräber P and Witt HT (1982) Mechanism of phosphorylation in chloroplasts. In: Barber J (ed) Electron Transport and Photophosphorylation, pp 107–167. Elsevier Biomedical Press, Amsterdam, New York, Oxford

    Google Scholar 

  • Schlodder E, Brettel K, Schatz GH and Witt HT (1984) Analysis of the Chl-a II + reduction kinetics with nanosecond time resolution in oxygen-evolving photosystem II particles from Synechococcus at 680 and 824 nm. Biochem Biophys Acta 765: 178–185

    Google Scholar 

  • Schlodder E, Brettel K and Witt HT (1985) Relation between micro-second reduction kinetics of photooxidized chlorophyll-a II (P-680) and photosynthetic water oxidation. Biochim Biophys Acta 808: 123–131

    Google Scholar 

  • Schmidt S, Reich R and Witt HT (1972) Electrochromic measurements in vitro as a test for the interpretation of field indicating absorption changes in photosynthesis. In: Forti G, Avron M and Melandri A (eds) Proc. 2nd Intern. Congr. Photosynthesis Research Stresa 1971, pp 1087–1095. Dr W. Junk NV Publishers, The Hague

    Google Scholar 

  • Sewe KU and Reich R (1977) The effect of molecular polarization on the electrochromism of carotenoids. II. Lutein-chlorophyll complexes: The origin of the field-indicating absorption change at 520 nm in the membranes of photosynthesis. Z Naturforsch 32c: 161–171

    Google Scholar 

  • Slooten L (1972) Electron acceptors in reaction center preparations from photosynthetic bacteria. Biochim Biophys Acta 275: 208–218

    Google Scholar 

  • Stewart C and Bendall S (1979) Preparation of an active oxygen evolving Photosystem II particle from a blue-green alga. FEBS Lett 107: 308–312

    Google Scholar 

  • Stiehl HH and Witt HT (1968) Die kurzzeitigen ultravioletten Differenzspektren bei der Photosynthese. Z Naturforsch 23b: 220–224

    Google Scholar 

  • Stiehl HH and Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b: 1588–1598

    Google Scholar 

  • Tiemann R, Renger G, Gräber P and Witt HT (1979) The plastoquinone pool as possible hydrogen pump in photosynthesis. Biochim Biophys Acta 546: 498–529

    Google Scholar 

  • van Best JA and Mathis P (1978) Kinetics of reduction of the oxidized primary primary electron donor of photosystem II in spinach chloroplasts and in chlorella cells in the microsecond and nanosecond time ranges following flash excitation. Biochim Biophys Acta 503: 178–188

    Google Scholar 

  • van Gorkom HJ (1974) Identification of the reduced primary electron acceptor of photosystem II as a bound semiquinone anion. Biochim Biophys Acta 347: 439–442

    Google Scholar 

  • Velthuys BR and Amesz J (1974) Charge accumulation at the reducing side of system 2 of photosynthesis. Biochim Biophys Acta 333: 85–94

    Google Scholar 

  • Vermaas WFJ, Renger G and Dohnt G (1984) The reduction of the oxygen-evolving system in chloroplasts by thylakoid components. Biochim Biophys Acta 764: 194–202

    Google Scholar 

  • Vermaas WFJ, Rutherford AW and Hansson Ö (1988) Sitedirected mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci USA 85: 8477–8481

    Google Scholar 

  • Wacker U, Haage E and Renger G (1990) Investigation of pH-change patterns of photosystem II membrane fragments from spinach. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 3.869–872. Kluwer Academic Pulbishers, Dordrecht

    Google Scholar 

  • Weikard J, Müller A and Witt HT (1963) The function of plastoquinone in the electron transport system of photosynthesis. Z Naturforsch 18b: 139–141

    Google Scholar 

  • Witt HT (1955) Kurzzeitige Absorptionsänderungen beim Primärprozeß der Photosynthese. Naturwiss 42: 72–73

    Google Scholar 

  • Witt HT (1957) Reaction patterns in the primary process of photosynthesis, Gatlinburg Conference, October 25–29, 1955. Gaffron H, Brown AH, French CS, Livingstone R, Rabinowitch EI, Strehler BL and Tolbert NE (eds) Interscience Publishers Inc., New York

    Google Scholar 

  • Witt HT (1967a) Direct measurements of reactions in the 10-1 to 10-8 second range by single and repetitive excitations with pulses of electromagnetic waves (flashes, microwaves, giant laser pulses). In: Claesson S (ed) Fast Reactions and Primary Processes in Chemical Kinetics (Nobel Symposium V) pp 81–97. Almqvist & Wiksell, Stockholm; Interscience Publ., New York, London, Sydney

    Google Scholar 

  • Witt HT (1967b) On the analysis of photosynthesis by the pulse techniques in the 10−1 to 10−8 second range. In: Claesson S (ed) Fast Reactions and Primary Processes in Chemical Kinetics (Nobel Symposium V), pp 261–316. Almqvist & Wiksell, Stockholm; Interscience Publ., New York, London, Sydney

    Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Quart Rev Biophys 4: 365–477

    Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505: 355–427

    Google Scholar 

  • Witt HT (1987) Examples for the cooperation of photons, excitons, electrons, electric fields and protons in the photosynthesis membrane. Nouveau Journal de Chimie 11: 91–101

    Google Scholar 

  • Witt HT and Müller A (1959) III. Quantitative Untersuchungen über die Primärvorgänge der Photosynthese an isolierten Chloroplasten. Zeitschrift für Physikalische Chemie, Neue Folge 21: 1–23

    Google Scholar 

  • Witt HT and Zickler A (1974) Vectorial electron flow across the thylakoid membrane. Further evidence by kinetic measurements with an electrochromic and electrical method. FEBS Lett 39: 205–208

    Google Scholar 

  • Witt HT, Brettel K, Gerken S, Kretschmann H, Pauly S, Saygin Ö and Schlodder E (1990) Functional mechanism in reaction center II based on analysis of 7 time-resolved optical difference spectra and hydryxlamine ‘tritration’. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 3.837–3.840. Kluwer, Dordrecht

    Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961a) Experimental evidence for the mechanism of photosynthesis. Nature (London) 191: 194–195

    Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961b) Oxidized Cytochrome and Chlorophyll in Photosynthesis. Nature (London) 192: 967–969

    Google Scholar 

  • Witt HT, Döring G, Rumberg B, Schmidt-Mende P, Siggel U and Stiehl HH (1966) The difference spectrum in the UV region. Phosphorylation and the 513 mμ absorption changes. In: Report of Symposium ‘Energy Conversion by the Photosynthetic Apparatus’, pp 161–168. Brookhaven National Laboratory, Upton, New York

    Google Scholar 

  • Witt HT, Schlodder E and Gräber P (1976) Membranebound ATP synthesis generated by an external electrical field. FEBS Lett 69: 272–276

    Google Scholar 

  • Witt I, Witt HT, Gerken S, Saenger W, Dekker JP and Rögner M (1987) Crystallization of reaction center I of photosynthesis. Low-concentration crystallization of photoactive protein complexes from the cyanobacterium synechococcus sp. FEBS Lett 221: 260–264

    Google Scholar 

  • Witt I, Witt HT, DiFiore D, Rögner M, Hinrichs W, Saenger W, Granzin J, Betzel Ch and Dauter Z (1988) X-ray characterization of single crystals of the reaction center I of water splitting photosynthesis. Ber Bunsenges Phys Chem 92: 1503–1506

    Google Scholar 

  • Wolff Ch and Witt HT (1969) On metastable states of carotenoids in primary events of photosynthesis. Z Naturforsch 24b: 1031–1037

    Google Scholar 

  • Wolff Ch, Buchwald HE, Rüppel H, Witt K and Witt HT (1969) Rise time of the light induced electrical field across the functional membrane of photosynthesis. Z Naturforsch 24b: 1038–1041

    Google Scholar 

  • Wolff Ch, Gläser M and Witt HT (1974) Studies on the photochemical active chlorophyll-a II in system II of photosynthesis. In: Avron M (ed) Proc. 3rd Intern. Congr. Photosynthesis, Rehovot, Israel, pp 295–305. Elsevier Scientific Publishing Co., Amsterdam

    Google Scholar 

  • Zieger G, Müller A and Witt HT (1961) V. Über eine photochemische Reaktion bei der Photosynthese. Zeitschrift für Physikalische Chemie, Neue Folge 29: 13–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was written at the invitation of Govindjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, H.T. Functional mechanism of water splitting photosynthesis. Photosynth Res 29, 55–77 (1991). https://doi.org/10.1007/BF00035377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035377

Key words

Navigation