Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The indirect flight muscle (IFM) of the fruit fly, Drosophila, represents a powerful model system for integrated structure and function studies because of the ease of genetically manipulating this organism. Recent advances in synchrotron technology have allowed collection of high quality two dimensional X-ray fiber diffraction patterns from the IFM of living fruit flies both at rest and during tethered flight. Based on many decades of X-ray and electron microscopic studies of vertebrate muscle and IFM from the waterbug, Lethocerus, there now exists a framework for interpreting changes in the X-ray diffraction patterns in terms of structural changes at the myofilament level. These developments allow testing of hypotheses concerning muscle function in a truly in vivo system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elliott GF, Lowey J, Millman BM. Low angle diffraction studies of living striated muscle during contraction. J Mol Biol 1967; 25:33–35.

    Article  Google Scholar 

  2. Huxley HE, Brown W. The low angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 1967; 30:383–434.

    PubMed  CAS  Google Scholar 

  3. Haselgrove JC, Huxley HE. X-ray evidence for radial crossbridge movement and for the sliding filament model in actively contracting skeletal muscle. J Mol Biol 1973; 77:549–568.

    Article  PubMed  CAS  Google Scholar 

  4. Huxley HE, Haselgrove JC. The structural basis of contraction in muscle and its study by rapid X-ray diffraction methods. In International Boehringer Mannheim Symposia “Myocardial failure”, Springer: Berlin 1976; 4–15.

    Google Scholar 

  5. Huxley HE, Simmons RM, Faruqi AR et al. Millisecond time-resolved changes in X-ray reflections from contracting muscle during rapid mechanical transients, recorded using Synchrotron Radiation. Proc Natl Acad Sci USA 1981; 78:2297–2301.

    Article  PubMed  CAS  Google Scholar 

  6. Huxley HE, Simmons RM, Faruqi AR et al. Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications. J Mol Biol 1983; 169:469–506.

    Article  PubMed  CAS  Google Scholar 

  7. Irving M, Lombardi V, Piazzesi G et al. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature 1992; 357:156–8.

    Article  PubMed  CAS  Google Scholar 

  8. Dobbie I, Linari M, Piazzesi G et al. Elastic bending and active tilting of myosin heads during muscle contraction. Nature 1998; 396:383–7.

    Article  PubMed  CAS  Google Scholar 

  9. Piazzesi G, Reconditi M, Linari M et al. Mechanism of force generation by myosin heads in skeletal muscle. Nature 2002; 415:659–62.

    Article  PubMed  CAS  Google Scholar 

  10. Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature 1971; 173:971–973.

    Article  Google Scholar 

  11. Celniker SE, Rubin GM. The Drosophila melanogaster genome. Annu Rev Genomics Hum Genet 2003; 4:89–117.

    Article  PubMed  CAS  Google Scholar 

  12. Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science 1982; 218:348–353.

    Article  PubMed  CAS  Google Scholar 

  13. Maughan DW, Vigoreaux JO. An integrated view of insect flight muscle: Genes, motor molecules and motion. News Physiol Sci 1999; 14:87–92.

    CAS  PubMed  Google Scholar 

  14. Bernstein SI, O’Donnell PT, Cripps RM, Molecular genetic analysis of muscle development, structure and function in Drosophila. Int Rev Cytol 1993; 143:63–152.

    Article  PubMed  CAS  Google Scholar 

  15. Peckham M, Molloy JE, Sparrow JC et al. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil 1990; 11:203–15.

    Article  PubMed  CAS  Google Scholar 

  16. Tohtong RH, Yamashita H, Graham M et al. Impairement of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature 1995; 374:650–653.

    Article  PubMed  CAS  Google Scholar 

  17. Dickinson MH, Hyatt CJ, Lehman FO et al. Phosphorylation-dependent power output of transgenic flies: An integrated study. Biophys J 1997; 73:3122–3134.

    PubMed  CAS  Google Scholar 

  18. Worthington CR. X-ray diffraction studies on the large-scale molecular structure of insect muscle. J Mol Biol 1961; 3:618–633.

    Article  PubMed  CAS  Google Scholar 

  19. Miller A, Tregear RT. Evidence concerning crossbridge attachment during muscle contraction. Nature 1970; 226:1060–1061.

    Article  PubMed  CAS  Google Scholar 

  20. Armitage PM, Tregear RT, Miller A. Effect of activation by calcium on the X-ray diffraction pattern from insect flight muscle. J Mol Biol 1975; 92:39–53.

    Article  PubMed  CAS  Google Scholar 

  21. Holmes KC, Tregear RT, Barrington-Leigh J. Interpretation of the low angle X-ray diffraction from insect muscle in rigor. Proc R Soc Lond [Biol.] 1980; 207:13–33.

    Google Scholar 

  22. Goody RS, Reedy MC, Hofmann W et al. Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state. Biophys J 1985; 47:151–169.

    PubMed  CAS  Google Scholar 

  23. Rapp G, Güth K, Maèda Y et al. Time-resolved X-ray diffraction studies on stretch activated insect flight muscle. J Muscle Res Cell Motil 1991; 12:208–215.

    Article  PubMed  CAS  Google Scholar 

  24. Reedy MK, Lucaveche C, Naber N et al. Insect crossbridges, relaxed by spin-labeled nucleotide, show well-ordered 90 degrees state by X-ray diffraction and electron microscopy, but spectra of electron paramagnetic resonance probes report disorder. J Mol Biol 1992; 227:678–697.

    Article  PubMed  CAS  Google Scholar 

  25. Tregear RT, Edwards RJ, Irving TC et al. Stretch-activation of insect flight muscle changes the low-angle actin based diffraction pattern. Biophys J 1998; 74:1439–1451.

    PubMed  CAS  Google Scholar 

  26. Al-Khayat HA, Hudson L, Reedy MK et al. Myosin head configuration in relaxed insect flight muscle: X-ray modeled resting crossbridges in a prepowerstroke state are poised for actin binding. Biophys J 2003; 85:1063–1079.

    PubMed  CAS  Google Scholar 

  27. Reedy MK, Reedy MC. Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. Biophys J 1985; 47:151–69.

    PubMed  Google Scholar 

  28. Taylor KA, Reedy MC, Cordova L et al. Three-dimensional image reconstruction of insect flight muscle. I. The rigor myac layer. J Cell Biol 1989a; 109:1085–102.

    Article  PubMed  CAS  Google Scholar 

  29. Taylor KA, Reedy MC, Cordova L et al. Three-dimensional image reconstruction of insect flight muscle. II. The rigor actin layer. J Cell Biol 1989b; 109:1103–1123.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor KA, Reedy MC, Reedy MK et al. Crossbridges in the complete unit cell of rigor insect flight muscle imaged by three-dimensional reconstruction from oblique sections. J Mol Biol 1993; 233:86–108.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor KA, Schmitz H, Reedy MC et al. Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 1999; 99(4):421–431.

    Article  PubMed  CAS  Google Scholar 

  32. Winkler H, Reedy MC, Reedy MK et al. 3-D structure of nucleotide-bearing crossbridges in situ: Oblique section reconstruction of insect flight muscle in AMPPNP at 23°C. J Mol Biol 1996; 264:302–22.

    Article  PubMed  CAS  Google Scholar 

  33. Schmitz H, Lucaveche C, Reedy MK et al. Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration. Biophys J 1994; 67:1620–33.

    PubMed  CAS  Google Scholar 

  34. Schmitz H, Reedy MC, Reedy MK et al. Electron tomography of insect flight muscle in rigor and AMPPNP at 23°C. J Mol Biol 1996; 264:279–301.

    Article  PubMed  CAS  Google Scholar 

  35. Schmitz H, Reedy MC, Reedy MK et al. Tomographic three-dimensional reconstruction of insect flight muscle partially relaxed by AMPPNP and ethylene glycol. J Cell Biol 1997; 139:695–707.

    Article  PubMed  CAS  Google Scholar 

  36. Elliott GF. X-ray diffraction from insect flight muscle. J Mol Biol 1965; 13:956–958.

    Google Scholar 

  37. Irving TC, Maughan DW. In vivo X-ray diffraction of indirect flight muscle from Drosophila melanogaster. Biophys J 2000; 78:2511–2515.

    PubMed  CAS  Google Scholar 

  38. Irving TC, Fischetti R, Rosenbaum G et al. Fiber diffraction using the bioCAT undulator beamline at the advanced photon source. Nucl Instrum Meth (A) 2000; 448:250–254.

    Article  CAS  Google Scholar 

  39. Irving TC, Fischetti RF. Fibre diffraction using the bioCAT facility at the advanced photon source. Fiber Diffraction Review 2001; 9:58–62.

    Article  Google Scholar 

  40. Naday I, Westbrook EM, Westbrook ML et al. Characterization and data collection on a direct-coupled CCD X-ray detector. Nucl Instrum Methods (A) 1994; 348:635–640.

    Article  CAS  Google Scholar 

  41. Phillips WC, Stewart A, Stanton M et al. High-sensitivity CCD-based X-ray detector. J Synchrotron Rad 2002; 9:36–43.

    Article  CAS  Google Scholar 

  42. Helliwell JR. Macromolecular crystallography with synchrotron radiation. Cambridge University Press, 2003.

    Google Scholar 

  43. Tregear R, Miller A. Evidence of crossbridge movement during contraction of insect flight muscle. Nature 1969; 222:1185–1186.

    Article  Google Scholar 

  44. Lehmann FO, Dickinson MH. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly, Drosophila melanogaster. J Exp Biol 1997; 200:1133–1143.

    PubMed  CAS  Google Scholar 

  45. Squire JM, Harford JJ, al-Khayat HA. Molecular movements in contracting muscle: Towards “muscle—the movie”. Biophys Chem 1994; 50:87–96.

    Article  PubMed  CAS  Google Scholar 

  46. Hudson L, Harford JJ, Denny RC et al. Myosin head configuration in relaxed fish muscle: Resting state myosin heads must swing axially by up to 150 A or turn upside down to reach rigor. J Mol Biol 1997; 273:440–55.

    Article  PubMed  CAS  Google Scholar 

  47. Gu J, Xu S, Yu LC. A model of cross-bridge attachment to actin in the A*M*ATP state based on X-ray diffraction from permeabilized rabbit psoas muscle. Biophys J 2002; 82:2123–33.

    PubMed  CAS  Google Scholar 

  48. Squire JM. The structural basis of muscular contraction. New York: Plenum 1981.

    Google Scholar 

  49. Irving TC, Millman BM. Changes in thick filament structure during compression of the filament lattice in vertebrate striated muscle. J Muscle Res Cell Motility 1989; 10:385–396.

    Article  CAS  Google Scholar 

  50. Matsubara I, Elliott GF. X-ray diffraction studies on skinned single fibres of frog skeletal muscle. J Mol Biol 1972; 72:657–69.

    Article  PubMed  CAS  Google Scholar 

  51. Millman BM. The filament lattice of striated muscle. Physiol Rev 1998; 78:359–391.

    PubMed  CAS  Google Scholar 

  52. Chan WP, Dickinson MH. In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. J Exp Biol 1996; 199:2767–74.

    PubMed  CAS  Google Scholar 

  53. Yu LC, Steven AC, Naylor GR et al. Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation. Biophys J 1985; 47(3):311–21.

    PubMed  CAS  Google Scholar 

  54. Yu LC. Analysis of equatorial X-ray diffraction patterns from skeletal muscle. Biophys J 1989; 55(3):433–40.

    PubMed  CAS  Google Scholar 

  55. Malincki S, Yu LC. Analysis of equatorial X-ray diffraction patterns from muscle fibers: Factors that affect the intensities. Biophys J 1995; 68:2023–31.

    Google Scholar 

  56. Worthington CR, McIntosh TJ. Direct determination of the electron density profile of nerve myelin. Nature New Biol 1973; 245(143):97–9.

    PubMed  CAS  Google Scholar 

  57. Trus BL, Steven AC, McDowall AW et al. Interactions between actin and myosin filaments in skeletal muscle visualized in frozen-hydrated thin sections. Biophys J 1989; 55:713–24.

    Article  PubMed  CAS  Google Scholar 

  58. Hawkins CJ, Bennett PM. Evaluation of freeze substitution in rabbit skeletal muscle. Comparison of electron microscopy to X-ray diffraction. J Muscle Res Cell Motil 1995; 16:303–18.

    Article  PubMed  CAS  Google Scholar 

  59. Huxley HE, Simmons RM, Faruqi AR et al. Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications. J Mol Biol 1983; 169:469–506.

    Article  PubMed  CAS  Google Scholar 

  60. Irving M, Lombardi V, Piazzesi G et al. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature 1992; 357:156–8.

    Article  PubMed  CAS  Google Scholar 

  61. Irving M, Piazzesi G, Lucii L et al. Conformation of the myosin motor during force generation in skeletal muscle. Nat Struct Biol 2000; 7:482–5.

    Article  PubMed  CAS  Google Scholar 

  62. Huxley HE, Stewart A, Irving TC. Spacing changes in the actin and myosin filaments during activation and their implications. Adv Exp Med Biol 1998; 453:281–7.

    PubMed  CAS  Google Scholar 

  63. Huxley HE, Reconditi M, Stewart A et al. What the higher order meridional reflections tell us. Biophys J 2003; 84:139a.

    Google Scholar 

  64. Menetret JF, Schröder RR, Hoffman W. Cryo-electron microscopic studies of relaxed striated muscle thick filaments. J Muscle Res Cell Motil 1990; 11:1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Irving, T.C. (2006). X-Ray Diffraction of Indirect Flight Muscle from Drosophila in Vivo. In: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-31213-7_16

Download citation

Publish with us

Policies and ethics