Skip to main content
Log in

Time-resolved X-ray diffraction studies on stretch-activated insect flight muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The specific feature of stretch activation of the indirect flight muscle of the tropical waterbugLethocerus was used to correlate mechanical and structural aspects of muscle contraction. The time courses of the changes in intensities of the strongest equatorial reflections, the (10) and (20) and of the first meridional reflection at 14.5 nm−1 were monitored using synchrotron radiation as a high intensity X-ray source. The ratio of the intensities of the equatorial reflections, (I20/I10), which reflects the mass distribution within the filament lattice array, increases by about 10% relative to the Ca2+-activated level when a rapid stretch is imposed, compared with a 200% change seen when fibres change from the relaxed to the rigor state, while the spacing of the lattice planes decreases by about 1%. The intensity of the first meridional reflection at 14.5 nm−1 decreases by about 35% during stretch activation with a slightly faster time course than the delayed tension increase. The results suggest that the average structure of cycling crossbridges is different from that present in the rigor state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage, P. M., Miller, A., Rodger, C. D. &Tregear, R. T. (1973) The structure and function of insect flight muscle.Cold Spring Harbor Symp. on Quant. Biol. 37, 379–87.

    Google Scholar 

  • Armitage, P. M., Tregear, R. T. &Miller, A. (1975) Effect of activation by calcium on the X-ray diffraction pattern from insect flight muscle.J. Molec. Biol. 92, 39–53.

    PubMed  Google Scholar 

  • Eisenberg, E. &Hill, T. L. (1985) Muscle contraction and free energy transduction in biological systems.Science 227, 999–1006.

    PubMed  Google Scholar 

  • Goody, R. S., Holmes, K. C., Mannherz, H. G., Barrington-Leigh, J. &Rosenbaum, G. (1975) Cross-bridge conformation as revealed by X-ray diffraction studies on insect flight muscle with ATP analogues.Biophys. J. 15, 687–705.

    PubMed  Google Scholar 

  • Goody, R. S., Reedy, M. K., Hofmann, W., Holmes, K. C. &Reedy, M. C. (1985) Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state.Biophys. J. 47, 151–69.

    PubMed  Google Scholar 

  • Güth, K., Kuhn, H. J., Tsuchiya, T. &Rüegg, J. C. (1981) Length dependent state of activation- length change dependent kinetics of crossbridges in skinned insect flight muscle.Biophys. Struct. Mech 7, 139–69.

    Google Scholar 

  • Hendrix, J., Koch, M. H. J. &Brodas, J. (1979) A double focussing X-ray camera for use with synchrotron radiation.Acta Cryst. 12, 467–72.

    Google Scholar 

  • Hendrix, J., Fürst, H., Hartfield, B. &Dainton, D. (1982) A wire per wire detector system for high counting rate X-ray experiments.Nuclear Instr. and Methods 201, 139–44.

    Google Scholar 

  • Holmes, K. C. &Blow, D. M. (1980)The Use of X-ray Diffraction in the Study of Protein and Nuclei Acid Structure. New York: Robert Krieger Publ. Comp. Inc.

    Google Scholar 

  • Huxley, A. F. (1957) Muscle structure and theories of contraction.Prog. Biophys. 7, 255–318.

    PubMed  Google Scholar 

  • Huxley, H. E., Faruqi, A. R., Kress, M., Bordas, J. &Koch, M. H. J. (1982) Time-resolved X-ray diffraction studies of the myosin layer-line reflection during muscle contraction.J. Mol. Biol. 158, 637–84.

    PubMed  Google Scholar 

  • Huxley, H. E. &Faruqi, A. R. (1983) Time-resolved X-ray diffraction studies on vertebrate striated muscle.Ann. Rev. Biophys. Bioeng. 12, 381–417.

    Google Scholar 

  • Jewell, B. R. &Rüegg, J. C. (1966) Oscillatory contraction of insect fibrillar muscle after glycerol-extraction.Proc. R. Soc. (Lond.) B164, 429–59.

    Google Scholar 

  • Lovell, S. J., Knight, P. J. &Harrington, W. F. (1981) Fraction of myosin heads bound to thin filaments in rigor fibrils from insect flight and vertebrate muscle.Nature 293, 664–6.

    PubMed  Google Scholar 

  • Miller, A. &Tregear, R. T. (1970) Evidence concerning crossbridge attachment during muscle contraction.Nature 226, 1060–61.

    PubMed  Google Scholar 

  • Poole, K. J. V., Rapp, G., Maeda, Y. &Goody, R. S. (1988) Synchrotron radiation studies on insect flight muscle. In:Topics in Current Chemistry 147 (edited byMandelkow, E.) p. 1–129. Heidelberg: Springer.

    Google Scholar 

  • Pringle, J. W. S. (1981) The evolution of fibrillar muscle in insects.J. Exp. Biol. 94, 1–14.

    Google Scholar 

  • Rapp, G., Poole, K. J. V., Maeda, Y., Ellis-Davies, G. C. R., Kaplan, J. H., Mccray, J. &Goody, R. S. (1989) Lasers and flashlamps in research on the mechanism of muscle contraction.Ber. Bunsenges. Phys. Chem. 93, 410–15.

    Google Scholar 

  • Reedy, M. C., Reedy, M. K. &Goody, R. S. (1983) Co-ordinated electron microscopy and X-ray studies of glycerinated insect flight muscle. II. Electron microscopy and image reconstruction of muscle fibres in rigor, in ATP and in MgAMPPPNP.J. Muscle Res. Cell Motil. 4, 55–81.

    PubMed  Google Scholar 

  • Reedy, M. C., Reedy, M. K. &Goody, R. S. (1987) The structure of insect flight muscle in the presence of APPNP.J. Muscle Res. Cell Motil. 8, 473–503.

    PubMed  Google Scholar 

  • Tregear, R. T. &Miller, A. (1969) Evidence of crossbridge movement during contraction of insect flight muscle.Nature 222, 1185–86.

    PubMed  Google Scholar 

  • Wakabayashi, K., Ueno, Y., Amemiya, Y. &Tanaka, H. (1988) Intensity changes of actin-based layer lines from frog skeletal muscles during an isometric contraction. In:Molecular Mechanics of Muscle Contraction (edited bySugi, H. &Pollack, G. H.) pp. 353–67. London: Plenum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, G., Güth, K., Maeda, Y. et al. Time-resolved X-ray diffraction studies on stretch-activated insect flight muscle. J Muscle Res Cell Motil 12, 208–215 (1991). https://doi.org/10.1007/BF01774040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01774040

Keywords

Navigation