Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 4))

Summary

Carotenoids are components of every pigment-protein complex in the photosynthetic apparatus of higher plants. These pigments, previously referred to as ‘accessory,’ are now recognized to fulfill indispensable functions in light harvesting, protection against photooxidation, and regulation of Photosystem II efficiency. The wealth of information accumulated in recent years dealing with the closely related questions of carotenoid organization and functions are summarized in this chapter. In the first section the distribution of carotenoids in the different pigment proteins is reported showing that each photosystem subunit has its characteristic composition. The organization of the different xanthophylls within the antenna complexes is discussed on the basis of recent structural and biochemical evidence. In the second section, advances in photophysical mechanisms through which carotenoids perform their classical light harvesting and protective functions are discussed. In addition, particular attention is given to discussion of the xanthophyll cycle which, in conjunction with the transthylakoid ΔpH1 down-regulates Photosystem II photochemical efficiency by non-radiative dissipation of energy in the light-harvesting complexes. Down-regulation helps to keep PS II traps open, thereby helping to maintain electron transport and to protect the reaction center from photoinhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams III WW and Demmig-Adams B (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plantarum 92: 451–458

    CAS  Google Scholar 

  • Adams III WW and Demmig-Adams B (1995) The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter. Plant Cell and Environ 18: 117–127

    Google Scholar 

  • Adams III WW, Demmig-Adams B, Verhoeven AS and Baker DH (1995) ‘Photoinhibition’ during winter stress: Involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Phys 22: 261–276

    CAS  Google Scholar 

  • Adamska I and Ohad I and Kloppstech K (1992) Involvement of the early light-inducible protein (ELIP) in mature pea plants during photoinhibition. In: Argyroudy-Akoyonoglou JH (ed) Regulation of Chloroplast Biogenesis, pp 113–118. Plenum Press, New York

    Google Scholar 

  • Allen GF and Staehelin LA (1992) Biochemical characterization of Photosystem II antenna polypeptides in grana and stroma membranes of spinach. Plant Physiol 100: 1517–1526

    CAS  PubMed  Google Scholar 

  • Anderson JM, Brown JS, Lam E and Malkin R (1983a) Chlorophyll b: An integral component of Photosystem I of higher plant chloroplasts. Photochem Photobiol 38: 205–210

    CAS  Google Scholar 

  • Anderson JW, Foyer CH and Walker DA (1983b) Light-dependent reduction of dehydroascorbate and uptake of exogenous ascorbate by spinach chloroplast. Planta 158: 442–450

    Article  CAS  Google Scholar 

  • Andersson PO, Gillbro T, Ferguson L and Cogdell RJ (1991) Absorption spectral shifts of carotenoids related to medium polarizability. Photochem Photobiol 54: 353–360

    CAS  Google Scholar 

  • Andersson PO, Gillbro T, Asato AE and Liu RSH (1992) Dual singlet state emission in a series of mini-carotenes. J Luminescence 51: 11–20

    CAS  Google Scholar 

  • Asada K and Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, and Arntzen CJ (eds) Photoinhibition, pp 227–287. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Barbato R, Rigoni F, Giardi MT and Giacometti GM (1989) The minor antenna complexes of an oxygen evolving Photosystem II preparation: Purification and stoichiometry. FEBS Lett 251: 147

    Article  CAS  Google Scholar 

  • Barbato R, Race HL, Friso G and Barber J (1991) Chlorophyll levels in the pigment-binding proteins of Photosystem II. A study based on the chlorophyll to cytochrome ratio in different Photosystem II preparations. FEBS Lett. 286: 8620

    Article  Google Scholar 

  • Bassi R and Dainese P (1992) A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. Eur J Biochem 204: 317–326

    Article  PubMed  CAS  Google Scholar 

  • Bassi R and Simpson D (1987) Chlorophyll-protein complexes of barley Photosystem I. Eur J Biochem 163: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Machold O and Simpson DJ (1985) Chlorophyll-proteins of two Photosystem I preparations from maize. Carlsberg Res Comm 50: 145–162

    CAS  Google Scholar 

  • Bassi R, Hoyer-Hansen G, Barbato R, Giacometti GM and Simpson DJ (1987) Chlorophyll-proteins of the Photosystem II antenna system. J Biol Chem 262: 13333–13341

    PubMed  CAS  Google Scholar 

  • Bassi R, Rigoni F, Barbato R and Giacometti G (1988) Light-harvesting chlorophyll a/b proteins (LHCII) populations in phosphorylated membranes. Biochim Biophys Acta 936: 29–38

    CAS  Google Scholar 

  • Bassi R, Rigoni F and GM Giacometti (1990) Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol 52: 1187–1206

    CAS  Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1992) Carotenoid binding proteins of Photosystem II. Eur J Biochem 212: 297–303

    Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Beck E, Burkett A and Hoffman M (1983) Uptake of L-ascorbate by intact spinach chloroplasts. Plant Physiol 73: 41–45

    CAS  PubMed  Google Scholar 

  • Beddard GS, Davidson RS and Tretheway KR (1977) Quenching of chlorophyll fluorescence by β-carotene, Nature 267: 373–374

    Article  CAS  Google Scholar 

  • Bengis C and Nelson N (1975) Purification and properties of the Photosystem I reaction center from chloroplasts. J Biol Chem 250: 2783–2788

    PubMed  CAS  Google Scholar 

  • Berthold D, Babcock GT and Yocum CF (1981) A highly resolved, oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. EPR and electron transport-proprieties. FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  • Bilger W and Björkman O (1990) The xanthophyll cycle and sustained thermal energy photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25: 173–185

    CAS  Google Scholar 

  • Bilger W and Björkman O (1994) Relationship among violaxanthin deepoxidation, thylakoid membrane conformation and nonphotochemical chlorophyll fluorescence quenching in cotton leaves. Planta 193: 238–246

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O and Thayer S (1989) Light induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol 91: 542–551

    CAS  PubMed  Google Scholar 

  • Björkman O and Demmig-Adams B (1993) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED and Caldwell M (eds) Ecological Studies Vol 100, pp 14–47. Springer-Verlag, New York

    Google Scholar 

  • Block MA, Dome A, Joyard J and Douce R (1983a) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts I. Electrophoretic and immunochemical analysis. J Biol Chem 258:13273–13280

    PubMed  CAS  Google Scholar 

  • Block MA, Dome A, Joyard J and Douce R (1983b) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts II. Biochemical characterization. J Biol Chem 258:13281–13286

    PubMed  CAS  Google Scholar 

  • Boucher F and Gingra G (1984) Spectral evidence for photoinduced isomerization of carotenoids in bacterial photoreaction center. Photochem Photobiol 40: 277–282

    CAS  Google Scholar 

  • Braumann T, Weber G and Grimme LH (1982) Carotenoid and chlorophyll composition of light harvesting and reaction centre proteins of the thylakoid membrane. Photobiochem Photobiophys 4: 1–18

    CAS  Google Scholar 

  • Breton J and Satoh K (1987) Orientation of the pigments in Photosystem II: Low-temperature linear-dichroism study of a core particle and of its chlorophyll-protein subunits isolated from Synechococcus sp. Biochim Biophys Acta 892: 99–107

    CAS  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M and Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    PubMed  CAS  Google Scholar 

  • Bricker TM (1990) The structure and function of Cpa-1 and Cpa-2 in Photosystem II. Photosynth Res 24: 1–13

    Article  CAS  Google Scholar 

  • Brown JS (1987) Functional organization of chlorophyll a and carotenoids in the alga, Nannochloropsis salina. Plant Physiol 83:434–437

    CAS  PubMed  Google Scholar 

  • Bruce BD and Malkin R (1988) Subunit stoichiometry of the chloroplast Photosystem I complex. J Biol Chem 263: 7302–7308

    PubMed  CAS  Google Scholar 

  • Bullerjahn, GS and Sherman LA (1986) Identification of a carotenoid-binding protein in the cytoplasmic membrane from the heterotrophic cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol 167: 396–399

    PubMed  CAS  Google Scholar 

  • Butler PJG and Kühlbrandt W (1988) Determination of the aggregated size in detergent solution of the light-harvesting chlorophyll a/b-protein complex from chloroplast membrane. Proc Natl Acad Sci USA 85: 3797–3801

    CAS  PubMed  Google Scholar 

  • Camm EL and Green BR (1980) Fractionation of thylakoid membranes with the nonionic detergent octyl-β-D-glucopyranoside. Resolution of chlorophyll-protein complex II into two chlorophyll-protein complexes. Plant Physiol 66: 428–432

    CAS  PubMed  Google Scholar 

  • Cammarata KV and Schmidt GW (1992) In vitro reconstitution of a light-harvesting gene product: Deletion mutagenesis and analyses of pigment binding. Biochemistry 31: 2779–2789

    Article  PubMed  CAS  Google Scholar 

  • Chrystal J and Larkum AWD (1987) Pigment-protein complexes and light harvesting in Eustigmatophyte algae. In: Biggins J (ed) Progress in Photosynthesis Research, Vol II, pp 189–192. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Chunaev A, Mirnaya O, Maslov V and Boschetti A (1991) Chlorophyll b and loroxanthin-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 25, 21: 301–307

    Google Scholar 

  • Claes H (1960) Interaction between chlorophyll and carotene with different chromogenic groups. Biochem Biophys Res Commun 3: 585–590

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ and Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79

    PubMed  CAS  Google Scholar 

  • Cogdell RJ, Andersson PO and Gillbro T (1992) Carotenoid singlets and their involvement in photosynthetic light-harvesting pigments. J. Photochem Photobiol B: Biol 15:105–112

    CAS  Google Scholar 

  • Dainese P and Bassi R (1991) Subunit stoichiometry of the chloroplast Photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J. Biol. Chem 266: 8136–8142

    PubMed  CAS  Google Scholar 

  • Dainese P, Hoyer-Hansen G and Bassi R (1990) The resolution of chlorophyll a/b binding proteins by a preparative method based on flat bed isoelectrofocusing. Photochem Photobiol 51: 693–703

    CAS  Google Scholar 

  • de Vitry C, Wollmann FA and Delepelaire P (1984) Function of the polypeptides of the Photosystem II reaction center in Chlamydomonas reinhardtii. Biochim Biophys Acta 767: 415–422

    Google Scholar 

  • Deamer DW, Crofts AR and Packer L (1967) Mechanisms of light-induced structural change in chloroplasts. Biochim Biophys Acta 131: 81–86

    CAS  Google Scholar 

  • DeCoster B, Christensen RL, Gebhard R, Lugtenburg J, Farhoosh R and Frank HA (1992) Low-lying electronic states of carotenoids. Biochim Biophys Acta 1102: 107–114

    Google Scholar 

  • Delepelaire P and Chua NH (1979) Lithium dodecyl sulfate/ polyacrylamide gel electrophoresis of thylakoid membranes at 4°C: Characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci USA 76: 111–115

    CAS  PubMed  Google Scholar 

  • Demers S, Roy S, Gagnon R and Vignault C (1991) Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): A photoprotection mechanism. Mar Ecol Prog Ser 76: 185–193

    Google Scholar 

  • Demmig B, Winter K, Krüger A and Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84: 218–224

    CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Krüger A and Czygan FC (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87: 17–24

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoid and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    CAS  Google Scholar 

  • Demmig-Adams and Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43: 599–626

    CAS  Google Scholar 

  • Demmig-Adams B and Adams III WW (1994) Capacity for energy dissipation in the pigment bed in leaves with different xanthophyll cycle pools. Aust J Plant Physiol 21: 575–588.

    CAS  Google Scholar 

  • Demmig-Adams B, Adams III WW, Heber U, Neimanis S, Winter K, Krüger A, Czygan F-C, Bilger W and Björkman (1990) Inhibition of zeaxanthin formation and ofrapid changes in radiationless energy dissipation of dithriotreitol in spinach leaves and chloroplasts. Plant Physiol 92: 292–301

    Google Scholar 

  • Demmig-Adams B, Adams III WW, Logan BA and Verhoeven AS (1995) Xanthophyll cycle-dependent energy dissipation and flexible Photosystem II efficiency in plants acclimated to light stress. Aust J Plant Physiol 22: 249–260

    CAS  Google Scholar 

  • Di Paolo ML, Peruffo dal Belin A and Bassi R (1990) Immunological studies on chlorophyll-a/b proteins and their distribution in thylakoid membrane domains. Planta 181:275–286

    Article  Google Scholar 

  • Droppa M, Ghirardi ML, Horvath G and Melis A (1987) Chlorophyll b deficiency in soybean mutants. II. Thylakoid membrane development and differentiation. Biochim Biophys Acta 932: 138–145

    Google Scholar 

  • Dunahay TG, Shuster G and Staehelin LA (1987) Phosphorylation of spinach chlorophyll-protein complexes. CPII*, but not CP29, CP27, or CP24, is phosphorylated in vitro. FEBS Lett 215:25–30

    Article  PubMed  CAS  Google Scholar 

  • Dunsmuir P (1985) The petunia chlorophyll a/b binding protein genes: A comparison of Cab genes from different gene families. Nucleic Acids Res 13: 2503–2518

    PubMed  CAS  Google Scholar 

  • Feher G, Allen JP, Okamura MY and Rees DC (1989) Structure and function of bacterialphotosynthetic reaction centres. Nature 339: 111–116

    Article  CAS  Google Scholar 

  • Foyer DH, Lescure J-C, Lefebvre C, Morot-Gaudry J-F, Vincentz M and Vaucheret H (1994) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol 104: 171–178

    PubMed  CAS  Google Scholar 

  • Frank HA (1993) Physical and chemical properties of carotenoids. Annals of the New York Academy of Sciences 691: 1–9

    PubMed  CAS  Google Scholar 

  • Frank HA, Violette CA, Trautman JK, Shreve AP, Owens TG and Albrecht AC (1991) Carotenoids in photosynthesis: Structure and photochemistry. Pure Appl Chem 63: 109–114

    CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 389–395

    Article  CAS  Google Scholar 

  • Funk C, Schröder WP, Green BR, Renger G and Andersson B (1994) The intrinsic 22 kDa protein is a chlorophyll-binding subunit of Photosystem II. FEBS Letters 342: 261–266

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM and Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990: 87–92

    CAS  Google Scholar 

  • Genty B, Harbinson J, Briantais JM and Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25: 249–257

    Article  CAS  Google Scholar 

  • Genty B, Goulas Y, Dimon B, Peltier G, Briantais JM and Moya I (1992) Modulation of efficiency of primary conversion in leaves, mechanism involved at PS2. In: Murata N (ed) Research in Photosynthesis, Vol IV, pp 603–610. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gillbro T and Cogdell RJ (1989) Carotenoid fluorescence. Chem Phys Letters 158: 312–316

    CAS  Google Scholar 

  • Gillbro T, Andersson PO, Liu RS, Asato AE, Takaishi S and Cogdell RJ (1993) Location of the carotenoid 2A-state and its role in photosynthesis. Photochem Photobiol 57: 44–48

    CAS  Google Scholar 

  • Gillhan DJ and Dodge AD (1987) Chloroplast superoxide and hydrogen peroxide scavenging systems from pea leaves: Seasonal variation. Plant Sc 50: 105–109

    Google Scholar 

  • Gilmore AM and Björkman O (1994a) Adenine nucleotide and the xanthophyll cycle in leaves I. Effects of the CO2 - and temperature-limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation. Planta 192: 526–536

    CAS  Google Scholar 

  • Gilmore AM and Björkman O (1994b) Adenine nucleotides and the xanthophyll cycle in leaves II. Comparison of the effects of CO2 - and temperature-limited photosynthesis on Photosystem II fluorescence quenching, the adenylate energy charge and violaxanthin de-epoxidation in cotton. Planta 192: 537–544

    CAS  Google Scholar 

  • Gilmore AM and Yamamoto HY (1990) Zeaxanthin formation in qE-inhibited chloroplasts. In: Baltscheffsky M (ed). Current Research in Photosynthesis, Vol II, pp 495–498. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gilmore AM and Yamamoto HY (1991) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol 96: 636–643

    Google Scholar 

  • Gilmore AM and Yamamoto HY (1992a) Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci USA 89: 1899–1903

    PubMed  CAS  Google Scholar 

  • Gilmore AM and Yamamoto HY (1992b) Zeaxanthin-dependent quenching of the variable fluorescence arising from ATP-induced reverse electron flow. In: Murata (ed) Research in Photosynthesis, Vol I., pp 255–258. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gilmore AM and Yamamoto HY (1993a) Biochemistry of xanthophyll-dependent nonradiative energy dissipation. In: Yamamoto HY and Smith CM (eds) Photosynthetic Responses to the Environment pp 160–165, American Society of Plant Physiologists, Maryland

    Google Scholar 

  • Gilmore AM and Yamamoto HY (1993b) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynthesis Research 35: 67–78

    Article  CAS  Google Scholar 

  • Gilmore AM, Mohanty N and Yamamoto HY (1994) Epoxidation ofzeaxanthin and antheraxanthin reverses non-photochemical quenching of Photosystem II chlorophyll a fluorescence in the presence oftrans-thylakoid ΔpH. FEBS Lett 350: 271–274

    Article  PubMed  CAS  Google Scholar 

  • Glick RE and Melis A (1989) Minimum photosynthetic unit size in system I and system II of barley chloroplasts. Biochim Biophys Acta 934: 151–155

    Google Scholar 

  • Golbeck JH (1987) Structure, function and organization of the Photosystem I reaction center complex. Biochim Biophys Acta 895: 167–204

    PubMed  CAS  Google Scholar 

  • Gounaris K, Chapman DJ, Booth P, Crystall B, Giorg LB, Klug DR, Porter G, and Barber J (1990) Comparison of the D1/D2/cytochrome b559 reaction centre complex ofphotosystem two isolated by two different methods. FEBS Lett 265: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Green BR, Pichersky E and Kloppstech K (1991) Chlorophyll a/b-binding proteins: An extended gene family. Trends in Biochem Sci 16: 181–186

    CAS  Google Scholar 

  • Greer DH, Laing WA and Woolley DJ (1993) The effect of chloramphenicol on photoinhibition of photosynthesis and its recovery in intact kiwifruit (Actinidia deliciosd) leaves. Aust J Plant Physiol 20: 33–34

    Article  CAS  Google Scholar 

  • Grimm B, Krause E and Kloppstech K (1989) Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol 13: 583–593

    Article  PubMed  CAS  Google Scholar 

  • Gruszecki WI and Krupa Z (1993) LHCII, the major light-harvesting pigment-protein complex is a zeaxanthin epoxidase. Biochem Biophys Acta 144: 97–101

    Google Scholar 

  • Hager A (1969) Lichtbedingte pH-erniedriqung in einem chloroplasten-kompartiment als ursache der enzymatischen violaxanthin-zeaxanthin-umwandlung. Beziehungen zur photophosphorylierung Planta 89: 224–243

    CAS  Google Scholar 

  • Hager A (1975) The reversible, light-induced conversions of xanthophylls in the chloroplast. Ber Deutsch Pot Ges Bd 88: 27–44

    CAS  Google Scholar 

  • Hager A and Holocher K (1994) Localization ofthe xanthophyllcycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192: 581–589

    Article  CAS  Google Scholar 

  • Hager A and Stransky H (1970) Das carotinoidmuster und die verbreitung del lichtinduzierten xanthophyllcyclus in verschiedenen algenklassen V. Einzelne vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae und Phaeophyceae. Arch Mikrobiol 73: 77–89

    Article  PubMed  CAS  Google Scholar 

  • Harrison MA and Melis A (1992) Organization and stability of polypeptides associated with the chlorophyll a−b light-harvesting complex of photosystem-II. Plant Cell Physiol. 33: 627–637

    CAS  Google Scholar 

  • Hashimoto H and Koyama Y (1990) The 21A state of a carotenoid bound to spinach chloroplast as revealed by picosecond transient Raman spectroscopy. Biochem Biophys Acta 1017: 181–186

    CAS  Google Scholar 

  • Haworth P. Watson JL and Arntzen CJ (1983) The detection, isolation and characterization of a light-harvesting complex which is specifically associated with Photosystem I. Biochim Biophys Acta 724: 151–158

    CAS  Google Scholar 

  • Henry LEA, Mikkelsen JD and Lindberg-Moller B (1983) Pigment and acyl-lipid composition of Photosystem I and II vesicles and of photosynthetic mutants in barley. Carlsberg Res Commun 48: 131–148

    CAS  Google Scholar 

  • Henrysson T, Schroeder WP, Spangfort M and Akerlund HE (1989) Isolation and characterization of the chlorophyll a/b protein complex CP29 from spinach. Biochim Biophys Acta 977: 301–308

    CAS  Google Scholar 

  • Hoffman NE, Pichersky E, Malik VS, Castresana C, Ko K, Darr SC and Cashmore AR (1987) A cDNA clone encoding a Photosystem 1 protein with homology to Photosystem II chlorophyll a/b-binding polypeptides. Proc Natl Acad Sci USA 84: 8844–8848

    PubMed  CAS  Google Scholar 

  • Holschuhl K, Bottomley W and Whitfeld PR (1984) Structure of the spinach chloroplast genes for the D2 and 44 kd reaction-centre proteins of Photosystem II and for tRNASer (UGA). Nucleic Acid Res 12: 8819–8834

    Google Scholar 

  • Horton P and Ruban AV (1992) Regulation of Photosystem II. Photosyn Res 34: 375–385

    CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1992) pH-dependent control of chloroplast light harvesting by binding ofDCCD to LHCII. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 311–314. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hundal T, Virgin I, Styring S and Andersson B (1990) Changes in the organization of Photosystem II following light-induced D1-protein degradation. Biochim Biophys Acta 1017: 235–241

    CAS  Google Scholar 

  • Irrgang KD, Bochtel C, Vater J and Renger G (1990) A new Chi a/b binding protein in Photosystem II from spinach with a Mr of 14 kDa. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 1, pp 355–358. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Irrgang KD, Renger G and Vater J (1991) Isolation, purification and partial characterization of a 30-kDa chlorophyll-a/b-binding protein from spinach. Eur J Biochem 201: 515–522

    Article  PubMed  CAS  Google Scholar 

  • Jahns P and Krause GH (1994) Xanthophyll cycle and energy-dependent fluorescence quenching in leaves from pea plants grown under intermittent light, Planta 192: 176–182

    CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–20

    PubMed  CAS  Google Scholar 

  • Jansson S, Pichersky E, Bassi R, Green BR, Ikeuchi M, Melis A, Simpson DJ, Spangforth M, Staehelin LA and Thornber JP (1992). A nomenclature for the genes encoding the chlorophyll a/b-binding proteins of higher plants. Plant Mol Biol Reporter 10: 242–253

    CAS  Google Scholar 

  • Joyard J, Block M and Douce R (1991) Molecular aspects of plastid envelope biochemistry. Eur J Biochem 199: 489–509

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Block MA, Pineau B and Douce R (1992) Pigments of the plastid envelope membranes. In: Aryroudi-Akoyonoglou J (ed) Regulation of Chloroplast Biogenesis, pp 165–174. NATO-ASI series Plenum Press, New York

    Google Scholar 

  • Juhler RK, Andreasson E, Yu SG and Albertsson PA (1993) Composition of photosynthetic pigments in thylakoid membrane vesicles from spinach. Photosynth Res 35: 171–178

    CAS  Google Scholar 

  • Katoh T, Nagashima U and Mimuro M (1991) Fluorescence properties of the allenic carotenoid fucoxanthin: Implication for energy transfer in photosynthetic pigment systems. Photosynth Res 27: 221–226

    CAS  Google Scholar 

  • Kim S, Sandusky P, Bowlby NR, Aebersold R, Green BR, Vlahakis S, Yocum CF and Pichersky E (1992) Characterization of spinach psbS cDNA encoding the 22 kDa protein of Photosystem II. FEBS Lett 314: 67–71

    PubMed  CAS  Google Scholar 

  • Knoetzel J, Svendsen I and Simpson DJ (1992) Identification of the Photosystem I antenna polypeptides in barley. Isolation of three pigment-binding antenna complexes. Eur J Biochem 206: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Maeda H, Watanabe T, Nakane H and Satoh K (1990) Chlorophyll a and β-carotene content in the D1/D2/ cytochrome b-559 reaction center complex from spinach. FEBS Lett 260: 138–140

    Article  CAS  Google Scholar 

  • Königer M and Winter K (1991) Carotenoid composition and photon-use efficiency of photosynthesis in Gossypium hirsutum L. Grown under conditions of slightly suboptimum leaf temperatures and high levels of irradiance. Oecologia 87: 349–356

    Google Scholar 

  • Koyama Y (1991) Structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol B: Bill 9: 265–280

    CAS  Google Scholar 

  • Koyama Y, Takatsuka I, Kanaji M, Tomimoto K, Kito M, Shimamura T, Yamashita J, Saiki K and Tsukida K (1990) Configurations of carotenoids in the reaction center and the light-harvesting complex of Rhodospirillum rubrum. Natural selection of carotenoid configurations by pigment protein complexes. Photochem Photobiol 51: 119–128

    CAS  Google Scholar 

  • Krause GH (1974) Changes in chlorophyll fluorescence in relation to light-dependent cation transfer across thylakoid membranes. Biochim Biophys Acta 333: 301–313

    CAS  PubMed  Google Scholar 

  • Krause GH and Behrend U (1986) ΔpH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Letters 200: 298–302

    Article  CAS  Google Scholar 

  • Krause GH and Laasch H (1987) Energy-dependent chlorophyll fluorescence quenching in chloroplasts correlated with quantum yield of photosynthesis. Z Naturforsch 42c: 582–584

    Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Krause GH, Vernotte C and Briantais JM (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Biochim Biophys Acta 679: 116–124

    CAS  Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson K, Witt HT and Senger W (1993) Three dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361: 326–331

    Article  CAS  Google Scholar 

  • Kreiger A and Weis E (1993) The role of calcium in the pH-dependent control of Photosystem II. Photosynth Res 37: 117–130

    Google Scholar 

  • Krinsky NI (1984) Biology and photobiology of singlet oxygen. In: Bors W, Saran M, and Tait D (eds) Oxygen Radicals in Chemistry and Biology, pp 453–463. Walter de Gruyter and Co, New York.

    Google Scholar 

  • Krishnan M and Gnanam A (1979) A basic chlorophyll-protein complex. FEBS Lett 97: 322–324

    Article  CAS  Google Scholar 

  • Król M, Spanfort MD, Huner NPA, Öquist G, Gustafsson P and Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions and early-light-induced proteins in a Chl b-less barley mutant. Plant Physiol 107: 873–883

    PubMed  Google Scholar 

  • Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–135

    PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model ofplant light-harvesting complex by electron crystallography. Nature 367: 614–621

    PubMed  Google Scholar 

  • Laasch H and Weis E (1989) Photosynthetic control, ‘energy dependent’ quenching of chlorophyll fluorescence and photophosphorylation under influence of tertiary amine. Photosynth Res 22: 137–146

    Article  CAS  Google Scholar 

  • Lam E, Ortiz W and Malkin R (1984) Chlorophyll a/b proteins of Photosystem I. FEBS Lett 168: 10–14

    Article  CAS  Google Scholar 

  • Larsson UK, Sundby C and Andersson B (1987) Characterization of two different subpopulations of spinach light-harvesting chlorophyll a/b-protein complex (LHCII): Polypeptide composition, phosphorylation pattern and association with Photosystem II. Biochim Biophys Acta 894: 59–68

    CAS  Google Scholar 

  • Lee AL and Thornber JP (1995) Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of Photosystem I and Photosystem II. Plant Physiol 107: 565–574

    Article  PubMed  CAS  Google Scholar 

  • Lerst A, Levy H and Zamir A (1991) Co-regulation of a gene homologous to early-light-induced genes in higher plant and β-carotene biosynthesis in the alga Dunaliella bardawil. J Biol Chem 266: 13698–13705

    Google Scholar 

  • Leverenz JW, Öquist G and Wingsle G (1992) Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light. Physiol Plant 85: 495–502

    Article  CAS  Google Scholar 

  • Levy H, Tal T, Shaish A, and Zamir A (1993) Cbr, an algal homolog of plant early-light-induced proteins, is a putative zeaxanthin binding protein. J Biol Chem 268: 20892–20896

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel U and Kuhn G (1982) Carotenoid composition of chlorophyll-carotenoid-proteins from radish chloroplasts. Z Naturforsch 37c: 10–12

    CAS  Google Scholar 

  • Livne A, Katcoff D, Yacobi YZ and Sukenik A (1992) Pigment-protein complexes of Nannochloropsis sp (Eustigmatophyceae). An algae lacking chlorophylls b and c. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 203–206. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lutz M, Aalidis I, Hervo G, Cogdell R and Reiss-Husson F (1978) On the state of carotenoids bound to reaction centers of photosynthetic bacteria: A resonance Raman study. Biochim Biophys Acta 503: 287–303

    PubMed  CAS  Google Scholar 

  • Machold O, Simpson DJ and Moller BL (1979) Chlorophyll-proteins of thylakoids from wild type and mutants of barley (Hordeum vulgare L.). Carlsberg Res Commun 44: 235–254

    CAS  Google Scholar 

  • Markwell J, Bruce BD and Keegstra K (1992) Isolation of a carotenoid-containing sub-membrane particle from the chloroplastic envelope outer membrane of pea (Pisum sativum). J Biol Chem 267: 13933–13937

    PubMed  CAS  Google Scholar 

  • Marquardt J and Bassi R (1993) Chlorophyll-proteins from maize seedlings grown under intermittent light conditions. Their stoichiometry and pigment content. Planta 191: 265–273

    Article  CAS  Google Scholar 

  • Masamoto K, Riethman HC and Sherman LA (1987) Isolation and characterization of a carotenoid associated thylakoid-protein from the cyanobacterium Anacystis nidulans R2. Plant Physiol 84: 633–639

    CAS  PubMed  Google Scholar 

  • McGrath JM, Terzaghi WB, Sridhar P, Cashmore AR and Pichersky E (1991) Sequence of the fourth and fifth Photosystem II type I chlorophyll a/b-binding protein genes of Arabidopsis thaliana and evidences for the presence of a full complement of the extended CAB gene family. Plant Mol Biol 19: 725–733

    Google Scholar 

  • Meyer G and Kloppstech K (1984) A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur J Biochem 138: 201–207

    PubMed  CAS  Google Scholar 

  • Miller KR and Kushman RA (1979) A chloroplast membrane lacking Photosystem II. Thylakoid stacking in the absence of the Photosystem II particle. Biochim Biophys Acta 546: 481–497

    PubMed  CAS  Google Scholar 

  • Mimuro M and Katoh T (1991) Carotenoids in photosynthesis: Absorption, transfer and dissipation of light energy. Pure Appl Chem 63: 123–130

    CAS  Google Scholar 

  • Mimuro M, Nagashima U, Nagaoka S, Takaichi S, Yamazaki I, Nishimura Y, and Katoh T (1993) Direct measurement of the low-lying singlet excited (21Ag) state of a linear carotenoid, neurosporene, in solution. Chem Phys Letters 204: 101–105

    CAS  Google Scholar 

  • Mohanty N and Yamamoto HY (1995) Mechanism of nonphotochemical chlorophyll fluorescence quenching: I. The role of de-epoxidized xanthophylls and sequestered thylakoid membrane protons as probed by dibucaine. Aust J Plant Physiol 22: 231–238

    CAS  Google Scholar 

  • Mohanty N, Gilmore AM and Yamamoto (1995) Mechanism of nonphotochemical chlorophyll quenching. II. Resolution of rapidly reversible absorbance changes at 530 nm and fluorescence quenching by the effects of antimycin, dibucaine and cation exchanger, A23187. Aust J Plant Physiol 22: 239–247

    CAS  Google Scholar 

  • Morishige D and Thornber JP (1991) Correlation ofapoproteins with the genes for the major chlorophyll a/b binding protein of Photosystem II in Arabidopsis thaliana. Confirmation for the presence of a third member of the LHCIIb gene family. FEBS Lett 293: 183–187

    Article  PubMed  CAS  Google Scholar 

  • Morishige DT, Anandan S, Jaing JT and Thornber JP (1990) Amino-terminal sequence of the 21 kDa apoprotein of a minor light-harvesting pigment-protein complex of the Photosystem II antenna (LHCIId/CP24). FEBS Lett 264: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Morris J and Herrman RG (1984) Nucleotide sequence of the gene for the P680 chlorophyll a apoprotein in the Photosystem II reaction center from spinach. Nucleic Acids Res 12: 2837–2850

    PubMed  CAS  Google Scholar 

  • Mullet JE, Burke JJ and Arntzen CJ (1980) Chlorophyll proteins of Photosystem I. Plant Physiol 65: 814–822

    CAS  PubMed  Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P and Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHCII chlorophyll-protein complex: A time-resolved fluorescence study. Biochim Biophys Acta 1141: 23–28

    CAS  Google Scholar 

  • Murakami S and Packer L (1970) Protonation and chloroplast membrane structure. Jour Cell Biol 47: 332–335

    Article  CAS  Google Scholar 

  • Namba O and Satoh K (1987) Isolation of a Photosystem II reaction center of D-l and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    Google Scholar 

  • Naqvi K (1980) The mechanism of singlet-singlet excitation energy transfer from Carotenoids to chlorophyll. Photochem Photobiol 31: 523–524

    Google Scholar 

  • Nechushtai R, Peterson CC, Peter GF and Thornber JP (1987) Purification and characterization of a light-harvesting chlorophyll-a/b-protein of Photosystem I of Lemna gibba. Eur J Biochem 164: 345–350

    Article  PubMed  CAS  Google Scholar 

  • Neubauer C (1993) Multiple effects of dithiothreitol on nonphotochemical fluorescence quenching in intact chloroplasts: Influence on violaxanthin de-epoxidase and ascorbate peroxidase activity. Plant Physiology 103: 575–583

    PubMed  CAS  Google Scholar 

  • Neubauer C and Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon upset of strong continuous illumination. I. Saturation characteristics and partial control by the Photosystem II acceptor side. Z Naturforsch 42c: 1246–1254

    Google Scholar 

  • Neubauer C and Yamamoto HY (1992) Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 99:1354–1361

    CAS  PubMed  Google Scholar 

  • Neubauer C and Yamamoto HY (1993) The roles of ascorbate in the related ascorbate peroxidase, violaxanthin de-epoxidase and non-photochemical fluorescence-quenching activities. In: Yamamoto HY and Smith CM (eds) Photosynthetic Responses to the Environment, pp 166–171. American Society of Plant Physiologists, Maryland

    Google Scholar 

  • Newell WR, van Amerongen H, Barber J and van Grondelle R (1991) Spectroscopic characterization of the reaction centre of Photosystem II using polarised light: Evidence for β-carotene excitons in PS II reaction centres. Biochim Biophys Acta 1057: 232–238

    CAS  Google Scholar 

  • Noctor G, Rees D and Horton P (1989) Uncoupler titrations of energy-dependent quenching of chlorophyll fluorescence in chloroplasts. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 627–630. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Noctor G, Rees D, Young A and Horton P (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence and the transthylakoid pH-gradient in isolated chloroplasts. Biochim Biophys Acta 1057: 320–330

    CAS  Google Scholar 

  • Noctor G, Ruban AV and Horton P (1993) Modulation of ΔpH-dependent nonphotochemical quenching of chlorophyll fluorescence in spinach chloroplasts. Biochim Biophys Acta 1183: 339–344

    CAS  Google Scholar 

  • Oberhuber W and Bauer H (1991) Photoinhibition of photosynthesis under natural conditions in ivy (Hedera helix L.) growing in an understory of deciduous trees. Planta 185: 545–553

    Article  CAS  Google Scholar 

  • Olaizola M and Yamamoto HY (1994) Short-term responses of the diadinoxanthin cycle and fluorescence yield in Chaetoceros muelleri (Bacillariophyceae). J Phycol 30: 606–612

    Article  CAS  Google Scholar 

  • Olaizola M, LaRoche J, Kolber Z and Falkowski PG (1994) Nonphotochemical quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41: 357–370

    Article  CAS  Google Scholar 

  • Omata T and Murata N (1983) Isolation and characterization of the cytoplasmic membrane from the blue-green alga (Cyanobacterium) Anacystis nidulans. Plant Cell Physiol 24: 1101–1112

    CAS  Google Scholar 

  • Owens TG, Shreve AP and Albrecht AC (1992) Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: Light harvesting and non-photochemical fluorescence quenching. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 179–186. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Oxborough K and Horton P (1987) Characterization of the effects of antimycin A upon high energy state quenching of chlorophyll fluorescence (qE) in spinach and pea chloroplasts. Photosynth Res 12: 119–128

    Article  CAS  Google Scholar 

  • Paulsen H and Hobe S (1992) Pigment-binding properties of mutant light-harvesting chlorophyll-a/b-binding protein. Eur J Biochem 205: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Paulsen H, Rümler U and Rüdiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta 181: 204–211

    CAS  Google Scholar 

  • Peter GF and Thornber JP (1991a) Biochemical composition and organization of higher plant Photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745–16754

    PubMed  CAS  Google Scholar 

  • Peter GF and Thornber JP (1991b) Electrophoretic procedure for fractionation of Photosystem I and II pigment-proteins of higher plants and determination of their subunit composition. Methods in Plant Biochemistry 5: 195–210

    CAS  Google Scholar 

  • Pföndel EE and Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42: 89–109

    Google Scholar 

  • Pföndel EE and Dilley RA (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts. Plant Physiol 101: 65–71

    Google Scholar 

  • Picorel R, Bakhtiari M, Lu T, Cotton TM and Siefert M (1992) Surface-enchanced resonance Raman scattering spectroscopy as a surface topography probe in plant photosynthetic membranes. Photochem Photobiol 56: 263–270

    CAS  Google Scholar 

  • Plumley, FG and Schmidt GW (1987) Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci USA 84: 146–150

    CAS  PubMed  Google Scholar 

  • Rawyler A, Henry LEA and Siegenthaler PA (1980) Acyl and pigment lipid composition of two chlorophyll-proteins. Carlsberg Res Commun 45: 443–451

    CAS  Google Scholar 

  • Reddy, KJ, Masamoto, K, Sherman, DM and Sherman LA (1989) DNA sequence and regulation of the gene (cbpA) encoding the 42-kilodalton cytoplasmic membrane caroteno-protein of the cyanobacterium Synechococcus sp strain PCC 7942. J Bacteriol 171: 3486–3493

    PubMed  CAS  Google Scholar 

  • Rees D, Noctor GD, Ruban AV, Crofts J, Young A and Horton P (1992) pH Dependent chlorophyll fluorescence quenching in spinach thylakoids from light treated or dark adapted leaves. Photosynth Res 31: 11–19

    Article  CAS  Google Scholar 

  • Ruban A V, Rees D, Pascal AA and Horton P (1992) Mechanism of Δph-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHCII aggregation in vitro and qE in isolated thylakoids. Biochim Biophys Acta 1102: 39–44

    CAS  Google Scholar 

  • Ruban AV, Young AJ and Horton P (1993) Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Plant Physiol 102: 741–750

    PubMed  CAS  Google Scholar 

  • Ruban A, Young A J, Pascal AA and Horton P (1994) The effects of illumination on the xanthophyll composition of the Photosystem II light-harvesting complexes ofspinach thylakoid membranes. Plant Physiol 104: 227–234

    PubMed  CAS  Google Scholar 

  • Ryrie IJ, Anderson JM and Goodchild DJ (1980) The role of the light-harvesting chlorophyll a/b-protein complex in chloroplast membrane stacking. Cation-induced aggregation of reconstituted proteoliposomes. Eur J Biochem 107: 345–354

    PubMed  CAS  Google Scholar 

  • Satoh K (1985) Protein-pigments and Photosystem II reaction center. Photochemistry Photobiology 42: 845–853

    CAS  Google Scholar 

  • Schoner S, Foyer C, Lelandais M and Krause GH (1989) Increase in activities of scavengers for active oxygen in spinach related to cold acclimation in excess light. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 2, pp 483–486. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a newtype ofhigh-frequency modulated chlorophyll fluorometer. Photosynth Res 261–272

    Google Scholar 

  • Schwartz, E and Pichersky, E (1990) Sequence of two tomato nuclear genes encoding chlorophyll a/b-binding proteins of CP24, a PS II antenna component. Plant Mol Biol 15:157–160

    Article  PubMed  CAS  Google Scholar 

  • Setif P, Acker S, Lagoute B and Duranton J (1980) Contribution to the structural characterization of eucaryotic PS I reaction centre-II. Characterization of a highly purified photoactive SDS-CP1 complex. Photosynth Res 1: 17–21

    Article  CAS  Google Scholar 

  • Siefermann D and Yamamoto HY (1974) Light-induced deepoxidation of violaxanthin in lettuce chloroplasts III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Biochem Biophys Acta 357: 144–150

    PubMed  CAS  Google Scholar 

  • Siefermann D and Yamamoto HY (1975a) Light-induced deepoxidation of violaxanthin in lettuce chloroplasts IV. The effects of electron-transport conditions on violaxanthin availability. Biochim Biophys Acta 387: 149–158

    PubMed  CAS  Google Scholar 

  • Siefermann D and Yamamoto HY (1975b) NADPH and oxygen-dependent epoxidation of zeaxanthin in isolated chloroplasts. Biochem Biophys Res Comm 62: 456–461

    Article  PubMed  CAS  Google Scholar 

  • Siefermann D and Yamamoto HY (1976) Light-induced deepoxidation in lettuce chloroplasts VI. De-epoxidation in grana and in stroma lamellae. Plant Physiol 57: 939–940

    CAS  PubMed  Google Scholar 

  • Siefermann-Harms D (1984) Evidence for a heterogeneous organization of violaxanthin in thylakoid membranes. Photochem Photobiol 40: 507–512

    CAS  Google Scholar 

  • Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811: 325–355

    CAS  Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69: 561–568

    CAS  Google Scholar 

  • Siefermann-Harms D and Ninnemann H (1982) Pigment organization in the light-harvesting chlorophyll-a/b protein complex of lettuce chloroplasts. Evidence obtained from protection of the chlorophylls against proton attack and from excitation energy transfer. Photochem Photobiol 35: 719–731

    CAS  Google Scholar 

  • Siefermann-Harms D, Joyard J and Douce R (1978) Light-induced changes of the carotenoid levels in chloroplast envelopes. Plant Physiol 61: 530–533

    CAS  PubMed  Google Scholar 

  • Sigrist, M. and Staehelin, LA (1992) Identification of type I and Type 2 light-harvesting chlorophyll a/b-binding proteins using monospecific antibodies. Biochim Biophys Acta 1098: 191–200

    PubMed  CAS  Google Scholar 

  • Simpson DJ (1978) Freeze-fracture studies on barley plastid membranes II. Wild-type chloroplasts. Carlsberg Res Commun 43: 365–389

    Google Scholar 

  • Simpson DJ (1983) Freeze-fracture studies on barley plastid membranes. VI. Location of the P700 chlorophyll a-protein 1. Eur J Cell Biol 31: 305–314

    PubMed  CAS  Google Scholar 

  • Sistrom WR, Griffiths M and Stanier TY (1956) The biology of a photosynthetic bacterium which lacks colored carotenoids. Cell Comp Physiol 48: 473–515

    CAS  Google Scholar 

  • Song P-S, Koka P, Prezelin B and Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll-a-protein, from marine dinoflagellates. Biochemistry 15: 4422–4427

    Article  PubMed  CAS  Google Scholar 

  • Spangfort M and Andersson B (1989) Subpopulations of the main chlorophyll a/b light-harvesting complex of Photosystem II-isolation and biochemical characterization. Biochim Biophys Acta 977: 163–170

    CAS  Google Scholar 

  • Spangfort M, Larsson UK, Ljunberg U, Ryberg M and Andersson B (1990) The 20 kDa apo-polypeptide of the chlorophyll a/b protein complex CP24-Characterization and complete primary amino acid sequence. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 253–256. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Thayer SS and Björkman O (1990) Leafxanthophyll content and composition in sun and shade leaves determined by HPLC. Photosynth Res 23: 331–343

    Article  CAS  Google Scholar 

  • Thayer SS and Björkman O (1992) Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle sheath cells ofmaize. Photosynthesis Research 33: 213–225

    Article  CAS  Google Scholar 

  • Thornber JP, Morishige DT, Anandan S and Peter GF (1991) Chlorophyll-carotenoid proteins of higher plant thylakoids. In: Scheer H (ed) Chlorophylls, pp 549–585. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Thornber JP, Peter GF, Morishige DT, Gomez S, Anandan S, Kerfeld C, Welty BA, Lee A, Takeuchi TS and Preiss S (1993) Light harvesting in Photosystem I and II. Biochem Soc Trans 21: 15–18

    PubMed  CAS  Google Scholar 

  • Thrash RJ, Fang L-B and Leroi GE (1979) On the role of forbidden low-lying excited states of light-harvesting carotenoids in energy transfer in photosynthesis. Photochem Photobiol 1049–1050

    Google Scholar 

  • Tremoliere A, Dainese Pand Bassi R (1993) Heterogeneous lipid distribution among chlorophyll binding proteins of Photosystem II in maize mesophyll chloroplast. Eur J Biochem 221: 721–730

    Google Scholar 

  • Truscott TG (1990) The photophysics and photochemistry of the carotenoids. J Photochem Photobiol B: Biol 6: 359–371

    CAS  Google Scholar 

  • van Dorsen RJ, Breton J, Pljiter JJ, Satoh K, van Gorkom HJ and Amesz J (1987) Spectroscopic properties of the reaction center and of the 47 kDa chlorophyll protein of Photosystem II. Biochim Biophys Acta 893: 267–274

    Google Scholar 

  • van Kooten O and Snel JFH (1990) The use of fluorescence nomenclature in plant stress physiology. Photosynth Res 25: 147–150

    Article  Google Scholar 

  • Vermaas WFJ, Williams JGK and Arntzen CJ (1987) Sequencing and the modification of psbB, the gene encoding the CP47 protein of Photosystem II in the cyanobacterium Synechocystis 6803. Plant Mol Biol 8: 317–326

    Article  CAS  Google Scholar 

  • Vogelman TC (1993) Plant tissue optics. Ann Rev Plant Physiol Plant Mol Biol 44: 231–251

    Article  Google Scholar 

  • Wedel N, Klein R, Ljunberg U, Andersson B and Herrman RG (1992) The single-copy gene psbS codes for a phylogeneticatly intriguing 22 kDa polypeptide of Photosystem II. FEBS Lett 314: 61–66

    PubMed  CAS  Google Scholar 

  • Weis E and Barry JA (1987) Quantum efficiency of Photosystem II of chloroplasts. Biochim Biophys Acta 894: 198–208

    CAS  Google Scholar 

  • Winter K and Lesch M (1992) Diurnal changes in chlorophyll a fluorescence and carotenoid composition in Opuntia ficusindica, a CAM plant and in three C3 species in Portugal during summer. Oecologia 91: 505–510

    Article  Google Scholar 

  • Witt I, Witt HT, Gerken S, Saenger W, Dekker JP and Rögner M (1987) Crystallization of reaction center I of photosynthesis. Low-concentration crystallization of photoactive protein complexes from the cyanobacterium Synechococcus sp. FEBS 221: 260–264

    Article  CAS  Google Scholar 

  • Wollman FA and Bennoun P (1982) A new chlorophyll-protein complex related to Photosystem I in Chlamydomonas reinhardtii. Biochim Biophys Acta 680: 352–360

    CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure and Appl chem 51: 639–648

    CAS  Google Scholar 

  • Yamamoto HY and Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267: 538–543

    PubMed  CAS  Google Scholar 

  • Yamamoto HY, Nakayama TOM and Chichester CO (1962) Studies on the light and dark interconversion of leaf xanthophylls. Arch Biochem Biophys 97: 168–173

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY, Kamite L and Wang Y-Y (1972) An ascorbate-induced absorbance change in chloroplasts from violaxanthin de-epoxidation. Plant Physiol 49: 224–228

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chenchin E and Yamada DK (1974) Effect of chloroplast lipids on violaxanthin de-epoxidase activity. In: Avron M (ed) Proceedings of 3rd International Congress on Photosynthesis, Vol III, pp 1999–2006. Elsevier, Amsterdam

    Google Scholar 

  • Yates TO, Komiya A, Chirino DC, Rees, JP, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: Protein cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci USA 85: 7993–7997

    Google Scholar 

  • Young AJ (1991) The protective role of carotenoids in higher plants. Physiologia Plant 83: 702–708

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yamamoto, H.Y., Bassi, R. (1996). Carotenoids: Localization and Function. In: Ort, D.R., Yocum, C.F., Heichel, I.F. (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-48127-8_30

Download citation

  • DOI: https://doi.org/10.1007/0-306-48127-8_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3683-9

  • Online ISBN: 978-0-306-48127-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics