Skip to main content
Log in

Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The formation of zeaxanthin (Zea) from violaxanthin (Vio) in chloroplasts of leaves and algae upon strong illumination is currently suggested to play a role in the photoprotection of plants. Properties and location of the enzyme Vio de-epoxidase, which is responsible for the transformation of Vio to Zea, were studied using thylakoid membrane vesicles isolated from leaves of Spinacia oleracea L. Without using detergents a repeated freeze-thaw treatment of thylakoid vesicles was sufficient to release the enzyme into the medium. With the same procedure the mobile electron carrier plastocyanin, known to occur in the thylakoid lumen, was also released. The enzyme was demonstrated by its activity in the supernatant of the pelleted thylakoid vesicles in the presence of the added substrates Vio and ascorbic acid, as well as by staining of the released proteins after polyacrylamide gel electrophoresis. The release of the deepoxidase from the vesicles was pH-dependent, declined below pH 6.5 and ceased in the pH range around 5, which corresponds to the pH optimum of the enzyme activity. By using thylakoid vesicles isolated from pre-illuminated and therefore Zea-containing leaves the release by freeze-thaw cycles of both the de-epoxidase and plastocyanin was diminished compared with the dark control. However, the reason for this effect was not the Zea content but an unknown effect of the illumination on the thylakoid membrane properties. The de-epoxidase collected at pH 7 was able to re-bind to thylakoid membranes at pH 5.5 and to transform intrinsic Vio to Zea in the presence of ascorbate. The isolated de-epoxidase, as well as the endogenous membrane-bound de-epoxidase, was inhibited by dithiothreitol. From these results it is concluded that Vio de-epoxidase, like plastocyanin, is mobile within the thylakoid lumen at neutral pH values which occur under in-vivo conditions in the dark. However, upon strong illumination, when the lumen pH drops (pH < 6.5) due to the formation of a proton gradient, the properties of the de-epoxidase are altered and the enzyme becomes tightly bound to the membrane (in contrast to plastocyanin) thus gaining access to its substrate Vio. These findings corroborate the assumption of a transmembrane opposite location of the two enzymes of the xanthophyll cycle, the ascorbate-dependent Vio deepoxidase at the lumenal side and the NADPH-dependent Zea epoxidase at the stromal side. Indications in favour of a location of Vio within the lipid bilayer of the thylakoid membrane and of a binding of the active deepoxidase to these areas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Anth:

antheraxanthin

Vio:

violaxanthin

Zea:

zeaxanthin

References

  • Arnon, D.J. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15

    Google Scholar 

  • Blass, U., Anderson, J.M., Calvin, M. (1959) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. Plant Physiol. 34, 329–333

    Google Scholar 

  • Brown, L.M., McLachlan, J. (1982) Atypical carotenoids for the Rhodophyceae in the genus Gracilaria (Gigartinales). Phycologia 21, 9–16

    Google Scholar 

  • Demming, B., Winter, K., Krüger, A., Czygan, F.C. (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light. Plant Physiol. 84, 218–224

    Google Scholar 

  • Demming-Adams, B. (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020, 1–24

    Google Scholar 

  • Demming-Adams, B., Adams III, W.W. (1992) Photoprotection and other responses of plants to light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599–626

    Google Scholar 

  • Gruszecki, W.J., Sielewiesiuk, J. (1991) Galactolipid multibilayers modified with xanthophylls: orientational and diffractometric studies. Biochim. Biophys. Acta 1069, 21–26

    Google Scholar 

  • Haehnel, W. (1986) Plastocyanin. In: Encyclopedia of Plant Physiology, N.S., vol. 19, pp. 547–559, Pirson, A., Zimmermann, M.H., eds. Springer, Heidelberg

    Google Scholar 

  • Hager, A. (1955) Chloroplasten-Farbstoffe, ihre papierchromatographische Trennung und ihre Veränderungen durch Au\enfaktoren. Z. Naturforsch. 10b, 310–312

    Google Scholar 

  • Hager, A. (1957) Über den Einflu\ klimatischer Faktoren auf den Blattfarbstoffgehalt Höherer Pflanzen. Planta 49, 524–560

    Google Scholar 

  • Hager, A. (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktion. Ber. Deutsch.Bot. Ges. 79, 94–107

    Google Scholar 

  • Hager, A. (1967a) Untersuchungen über die lichtinduzierten, reversiblen Xanthophyllumwandlungen an Chlorella und Spinacia oleracea. Planta 74, 148–172

    Google Scholar 

  • Hager, A. (1967b) Untersuchungen über die Rückreaktionen im Xanthophyll-Cyclus bei Chlorella, Spinacia und Taxus. Planta 76, 138–148

    Google Scholar 

  • Hager, A. (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. Planta 89, 224–243

    Google Scholar 

  • Hager, A. (1975) Die reversiblen, lichtabhängigen Xanthophyllumwandlungen im Chloroplasten. Ber. Deutsch. Bot. Ges. 88, 27–44

    Google Scholar 

  • Hager, A. (1980) The reversible, light-induced conversions of xanthophylls in the chloroplast. In: Pigments in plants, pp. 57–79. Czygan, F.-C., ed. Fischer, Stuttgart New York

    Google Scholar 

  • Hager, A., Meyer-Bertenrath, T. (1966) Die Isolierung und quantitative Bestimmung der Carotinoide und Chlorophylle von Blättern, Algen und isolierten Chloroplasten mit Hilfe dünnschichtchromatographischer Methoden. Planta 69, 198–217

    Google Scholar 

  • Hager, A., Meyer-Bertenrath, T. (1967) Die Identifizierung der an Dünnschichten getrennten Carotinoide grüner Blätter und Algen. Planta 76, 149–168

    Google Scholar 

  • Hager, A., Perz, H. (1970) Veränderung der Lichtabsorption eines Carotinoids im Enzym (De-Epoxidase)-Substrat (Violaxanthin)-Komplex. Planta 93, 314–322

    Google Scholar 

  • Hager, A., Stransky, H. (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. I. Methoden zur Identifizierung der Pigmente. Arch. Mikrobiol. 71, 132–163

    Google Scholar 

  • Hager, A., Stransky, H. (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. III. Grünalgen. Arch. Mikrobiol. 72, 68–83

    Google Scholar 

  • Hager, A., Stransky, H. (1970c) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. V. Einzelne Vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae and Phaeophyceae. Arch. Mikrobiol. 73, 77–89

    Google Scholar 

  • Havaux, M., Gruszecki, W.J., Dupont, J., Leblanc, R.M. (1991) Increased heat emission and its relationship to the xanthophyll cycle in pea leaves exposed to strong light stress. J. Photochem. Photobiol. B: Biol. 8, 361–370

    Google Scholar 

  • Heber, U. (1974) Metabolic exchange between chloroplasts and cytoplasm. Annu. Rev. Plant Physiol. 25, 393–421

    Google Scholar 

  • Heber, U., Viil, J., Neimanis, S., Mimura, T., Dietz, K.J. (1989) Photoinhibitory damage to chloroplasts and phosphate deficiency and alleviations of deficiency and damage by photorespiratory reactions. Z. Naturforsch. 44c, 110–122

    Google Scholar 

  • Kamp, F., Hamilton, J.A. (1992) pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc. Natl. Acad. Sci. USA 89, 11367–11370

    Google Scholar 

  • Katoh, S., Shiratori, I., Takamiya, A. (1962) Purification and some properties of spinach plastocyanin. J. Biol. Chem. 51, 32–40

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685

    PubMed  Google Scholar 

  • Lee, K.H., Yamamoto, H.Y. (1968) Action spectra for lightinduced de-epoxidation and epoxidation of xanthophylls in spinach leaf. Photochem. Photobiol. 7, 101–107

    Google Scholar 

  • Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382

    Google Scholar 

  • Neuhoff, V., Stamms, R., Eibl, H. (1985) Clear background and highly sensitive protein staining with Coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6, 427–448

    Google Scholar 

  • Peter, G.F., Thornber, J.P. (1988) The antenna components of photosystem II with emphasis on the major pigment-protein, LHCIIb. In: Photosynthetic light-harvesting-systems, pp. 175–186. Scheer, Schneider, eds. De Gruyter, Berlin, New York

    Google Scholar 

  • Plumley, F.G., Schmidt, G.W. (1987) Reconstitution of chlorophyll a/b light harvesting complexes: xanthophyll-dependent assembly and energy transfer. Proc. Natl. Acad. Sci. USA 84, 146–150

    Google Scholar 

  • Ruban, A.V., Rees, D., Pascal, A.A., Horton, P. (1992) Mechanism of pH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHC II aggregation in vitro and qE in isolated thylakoids. Biochim. Biophys. Acta 1102, 39–44

    Google Scholar 

  • Ruban, A.V., Young, A.J., Horton, P. (1993) Induction of non-photochemical energy dissipation and absorbance changes in leaves. Plant Physiol. 102, 741–750

    Google Scholar 

  • Saphozhnikov, D.J., Krasovskaya, T.A., Mayevskaya, A.N. (1957) Changes observed in the relation between the main carotenoids in the plastids of green leaves exposed to light. Dokl. Akad.Nauk. SSSR 113, 465–467

    Google Scholar 

  • Sapozhnikov, D.J., Kolotova, L.R., Giller, Y.E. (1966) Action spectrum of de-epoxidation of violaxanthin. Dokl. Akad. Nauk.SSSR 171, 740–741

    Google Scholar 

  • Siefermann-Harms, D. (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim. Biophys. Acta 811, 325–355

    Google Scholar 

  • Siefermann-Harms, D., Yamamoto, H. (1975) NADPH and oxygen-dependent epoxidation of zeaxanthin in isolated chloroplasts. Biochem. Biophys. Res. Com. 62, 456–461

    Google Scholar 

  • Stransky, H. (1978) Die quantitative Bestimmung von Chloroplastenpigmenten im picomol-Bereich mit Hilfe einer isochratischen HPLC-Methode. Z. Naturforsch. 33c, 836–840

    Google Scholar 

  • Stransky, H., Hager, A. (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. II. Xanthophyceae. Arch. Mikrobiol. 71, 164–190

    Google Scholar 

  • Stransky, H., Hager, A. (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. IV. Cyanophyceae und Rhodophyceae. Arch. Mikrobiol. 72, 84–96

    Google Scholar 

  • Stransky, H., Hager, A. (1970c) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xantophyll-Cyclus in verschiedenen Algenklassen. VI. Chemosystematische Betrachtung. Arch. Mikrobiol. 73, 315–323

    Google Scholar 

  • Subczynski, W.K., Markowska, E., Gruszecki, W.I., Sielewiesiuk, J. (1992) Effects of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim. Biophys. Acta 1105, 97–108

    Google Scholar 

  • Sundby, C., Schiött, T. (1992) Characterization of the reversible state of photoinhibition occurring in vitro under anaerobic conditions. Photosynthesis Res. 33, 195–202

    Google Scholar 

  • Takeguchi, C.A., Yamamoto, H.Y. (1968) Light-induced 18O2 uptake by epoxy xanthophylls in New Zealand spinach leaves (Tetragonia expansa). Biochim. Biophys. Acta 153, 459–465

    Google Scholar 

  • Thayer, S.S., Björkman, D. (1992) Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynthetic Res. 33, 213–225

    Google Scholar 

  • Wu, J., Neimanis, S., Heber, U. (1991) Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot. Acta 104, 283–291

    Google Scholar 

  • Yamamoto, H.Y. (1985) Xanthophyll cycles. Methods Enzymol. 110, 303–312

    Google Scholar 

  • Yamamoto, H.Y., Higashi, R.M. (1978) Violaxanthin deepoxidase; lipid composition and substrate specificity. Arch. Biochem, Biophys. 190, 514–522

    Google Scholar 

  • Yamamoto, H.Y., Kamite, L. (1972) The effects of dithiothreitol on violaxanthin de-epoxidase and absorbance changes in the 500-nm region. Biochem. Biophys. Acta 267, 538–543

    Google Scholar 

  • Yamamoto, H.Y., Nakayama, T.O.M., Chichester, C.O. (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch. Biochem. 97, 168–173

    Google Scholar 

  • Yamamoto, H.Y., Chang, J.L., Aihara, M.S. (1967) Light-induced interconversion of violaxanthin and zeaxantin in New Zealand spinach-leaf segments. Biochim. Biophys. Acta 141, 342–347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Dieter Braun for excellent technical assistance, and L. van Caeseele (Department of Botany, University of Manitoba) for reading of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, A., Holocher, K. Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192, 581–589 (1994). https://doi.org/10.1007/BF00203597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203597

Key words

Navigation