Skip to main content

Lipids, Quinones and Fatty Acids of Anoxygenic Phototrophic Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Differences in profiles of polar lipids and quinones distinguish major groups of phototrophic prokaryotes. Also the fatty acid composition of representative species of purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, Chloroflexus aurantiacus and Heliobacterium and Heliobacillus species are significantly different. Phospholipids, and specifically PG, are present in all phototrophic bacteria. The presence of ornithine lipids and the sulfolipid SQDG has been clearly established only in purple nonsulfur bacteria. Various glycolipids are major components in Chloroflexus and green sulfur bacteria and are also common in Chromatiaceae, but absent from Ectothiorhodospiraceae and Heliobacterium; occasionally, they occur in purple nonsulfur bacteria. The presence of MGDG has only been established for green sulfur bacteria. The specific distribution of major quinones in anoxygenic phototrophic bacteria and the variety of hopanoid triterpene structures found in these bacteria are considered in this chapter. A major part of the chapter is concerned with polar lipids of Rhodobacter species because they have been most intensively studied in this chapter. Also biosynthesis, lipid transfer activities, and incorporation of lipids into different membrane fractions are discussed. Special attention is paid to the influence of growth conditions on lipid and fatty acid composition and to possible differences in the composition of cellular membrane fractions (CM, ICM, OM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson S (1964) A role for a sterol and a sterol precursor in the bacterium Rhodopseudomonas palustris. J Gen Microbiol 37: 225–232

    CAS  PubMed  Google Scholar 

  • Asselineau J and Trüper HG (1982) Lipid composition of six species of the phototrophic bacterial genus Ectothiorhodospira. Biochim Biophys Acta 712: 111–116

    CAS  Google Scholar 

  • Barrow KD and Chuck JA (1990) Determination of hopanoid levels in bacteria using high-performance liquid chromatography. Anal Biochem 184: 395–399

    Article  CAS  PubMed  Google Scholar 

  • Beck H, Hegeman GD and White D (1990) Fatty acid and lipopolysaccharide analyses of three Heliobacterium ssp. FEMS Microbiol Lett 69: 229–232

    Article  CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC and Sommerville CR (1993) The sulfolipid sulfoquinovosyl diacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90: 1561–1565

    CAS  PubMed  Google Scholar 

  • Benson AA, Daniel H and Wiser R (1959) A sulfolipid in plants. Proc Natl Acad Sci USA 45: 1582–1587

    CAS  Google Scholar 

  • Bias U (1985) Zur Freisetzung von Sulfat, Verwertung von Cystein und Vorkommen von Sulfolipiden bei Chlorobium. Doctoral Thesis, University of Bonn

    Google Scholar 

  • Brooks JL and Benson AA (1972) Studies on the structure of an ornithine-containing lipid from Rhodospirillum rubrum. Arch Biochem Biophys 152: 347–355

    Article  CAS  PubMed  Google Scholar 

  • Cain BD, Deal CD, Fraley RT and Kaplan S (1981) In vivo intermembrane transfer of phospholipids in the photosynthetic bacterium Rhodopseudomonas sphaeroides. J Bacteriol 143: 1154–1166

    Google Scholar 

  • Cain BD, Donohue TJ and Kaplan S (1982) Kinetic analysis of n-acylphosphatidylserine accumulation and implications for membrane assembly in Rhodopseudomonas sphaeroides. J Bacteriol 152: 607–615

    CAS  PubMed  Google Scholar 

  • Cain BD, Donohue TJ, Sheperd WD and Kaplan S (1984) Localization of the phospholipid biosynthetic enzyme activities in cell-free fractions derived from Rhodopseudomonas sphaeroides. J Biol Chem 259: 942–948

    CAS  PubMed  Google Scholar 

  • Cain BD, Singer M, Donohue TJ and Kaplan S (1983) In vivo metabolic intermediates of phospholipid biosynthesis in Rhodopseudomonas sphaeroides. J Bacteriol 156: 375–385

    CAS  PubMed  Google Scholar 

  • Collins MD and Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45: 316–354

    CAS  PubMed  Google Scholar 

  • Collins MLP and Niederman RA (1976) Membranes of Rhodospirillum rubrum: Isolation and physicochemical properties of membranes from aerobically grown cells. J Bacteriol 126: 1316–1325

    CAS  PubMed  Google Scholar 

  • Constantopoulos G and Bloch K (1967) Isolation and characterization of glycolipids from some photosynthetic bacteria. J Bacteriol 93: 1788–1793

    CAS  PubMed  Google Scholar 

  • Cooper CL and Lueking DR (1984) Localization and characterization of the sn-glycerol-3-phosphate acyltransferase in Rhodopseudomonas sphaeroides. J Lipid Res 25: 1222–1232

    CAS  PubMed  Google Scholar 

  • Cruden DJ and Stanier RY (1970) The characterization of Chlorobium vesicles and membranes isolated from green bacteria. Arch Microbiol 72: 115–134

    CAS  Google Scholar 

  • Daves GD Jr, Muraca RF, Whittick JS, Friis P and Folkers K (1967) Discovery of ubiquinones-1,-2,-3, and-4 and the nature of biosynthetic isoprenylation. Biochemistry 6: 2861–2866

    Article  CAS  PubMed  Google Scholar 

  • DePinto JA (1967) Ornithine-containing lipid in Rhodospirillum rubrum. Biochim Biophys Acta 144: 113–117

    Google Scholar 

  • Ditandy T and Imhoff JF (1993) Preparation and characterization of highly pure fractions of outer membrane, cytoplasmic and intracytoplasmic membranes from Ectothiorhodospira mobilis. J Gen Microbiol 139: 111–117

    CAS  Google Scholar 

  • Donohue TJ, Cain BD and Kaplan S (1982a) Purification and characterization of an N-acylphosphatidylserine from Rhodopseudomonas sphaeroides. Biochemistry 21: 2765–2773

    Article  CAS  PubMed  Google Scholar 

  • Donohue TJ, Cain BD and Kaplan S (1982b) Alterations in the phospholipid composition of Rhodopseudomonas sphaeroides and other bacteria induced by Tris. J Bacteriol 152: 595–606

    CAS  PubMed  Google Scholar 

  • Drews G and Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv Microbiol Physiol 22: 1–92

    CAS  Google Scholar 

  • Drews G, Weckesser J and Mayer H (1978) Cell envelopes. In: Clayton RK and Sistrom WR(eds) The Photosynthetic Bacteria, pp 61–77. Plenum Press, New York

    Google Scholar 

  • Ferguson MAJ, Williams AF (1988) Cell-free anchoring of proteins via glycosylphosphatidyl inositol structures. Annu Rev Biochem 57: 285–320

    Article  CAS  PubMed  Google Scholar 

  • Flamman H and Weckesser J (1984) Characterization of cell wall and outer membrane of Rhodopseudomonas capsulata. J Bacteriol 159: 191–198

    Google Scholar 

  • Flesch G and Rohmer M (1987) Growth inhibition of hopanoid synthesizing bacteria by squalene cyclase inhibitors. Arch Microbiol 147: 100–104

    Article  CAS  Google Scholar 

  • Fraley RT, Lueking DR and Kaplan S (1979) The relationship of intracytoplasmic membrane assembly to the cell division cycle in Rhodopseudomonas sphaeroides. J Biol Chem 254: 1980–1986

    CAS  PubMed  Google Scholar 

  • Friis P, Daves GD Jr and Folkers K (1967) New epoxyubiquinones. Biochemistry 6: 3618–3624

    Article  CAS  PubMed  Google Scholar 

  • Frydman B and Rappaport H (1963) Non-chlorophyllous pigments of Chlorobium thiosulfatophilum in chlorobiumquinone. J Am Chem Soc 85: 823–825

    Article  CAS  Google Scholar 

  • Gage DA, Huang ZH and Benning C (1992) Comparison of sulfoquinovosyl diacylglycerol from spinach and the purple bacterium Rhodobacter sphaeroides by fast atom bombardment tandem mass spectrometry. Lipids 27: 632–636

    CAS  PubMed  Google Scholar 

  • Glover J and Threlfall DR (1962) A new quinone (rhodoquinone) related to ubiquinone in the photosynthetic bacterium Rhodospirillum rubrum. Biochem J 85: 14P–15P

    CAS  Google Scholar 

  • Gorchein A (1968) Studies on the structure of an ornithine-containing lipid from non-sulphur purple bacteria. Biochim Biophys Acta 152: 358–367

    CAS  PubMed  Google Scholar 

  • Gorchein A, Neuberger A and Tait GH (1968a) Incorporation of radioactivity from (Me-14C)methionine and (2-14C)glycine into lipids of Rhodopseudomonas sphaeroides. Proc Roy Soc B 170: 299–310

    CAS  Google Scholar 

  • Gorchein A, Neuberger A and Tait GH (1968b) Metabolic turnover of the lipids of Rhodopseudomonas spheroides. Proc Roy Soc B 170:311–318

    CAS  Google Scholar 

  • Hale MB, Blankenship RE and Fuller RC (1983) Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 723: 376–382

    CAS  Google Scholar 

  • Hands AR and Bartley W (1962) The fatty acids of Rhodopseudomonas particles. Biochem J 84: 238–246

    CAS  PubMed  Google Scholar 

  • Haverkate F, Teulings, FAG and van Deenen LLM (1965) Studies on the phospholipids of photosynthetic microorganisms. K Ned Acad Wet Proc Ser B 68: 154–159

    Google Scholar 

  • Hiraishi A (1989) Occurrence of menaquinone as the sole isoprenoid quinone in the photosynthetic bacterium Heliobacterium chlorum. Arch Microbiol 151: 378–379

    Article  CAS  Google Scholar 

  • Hiraishi A and Hoshino Y (1984) Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J Gen Appl Microbiol 30: 435–448

    CAS  Google Scholar 

  • Hiraishi A, Hoshino Y and Kitamura H (1984) Isoprenoid quinone composition in the classification of Rhodospirillaceae. J Gen Appl Microbiol 30: 197–210

    CAS  Google Scholar 

  • Hiraishi A., Hoshino, Y and Satoh, T (1991) Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the ‘Rhodocyclus gelatinosus like’ group. Arch Microbiol 155: 330–336

    Article  Google Scholar 

  • Holo H, Broch-Due M and Ormerod JG (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143: 94–99

    Article  CAS  Google Scholar 

  • Howard DL, Simoneit BRT and Chapman D J (1984) Tritetpenoids from lipids of Rhodomicrobium vannielii. Arch Microbiol 137: 200–204

    Article  CAS  Google Scholar 

  • Hurlbert RE, Golecki JR and Drews G (1974) Isolation and characterization of Chromatium vinosum membranes. Arch Microbiol 101: 169–186

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (1984a) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25: 85–89

    Article  CAS  Google Scholar 

  • Imhoff JF (1984b) Sulfolipids in phototrophic purple nonsulfur bacteria. In: Siegenthaler PA and Eichenberger W (eds) Structure, function and metabolism of plant lipids pp 175–178 Elsevier Science Publ., Amsterdam

    Google Scholar 

  • Imhoff JF (1988) Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green photosynthetic bacteria, pp 223–232. Plenum Press, New York

    Google Scholar 

  • Imhoff JF (1989) The family Ectothiorhodospiraceae. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, 1 st ed., Vol. 3, pp 1654–1658. Williams and Wilkens, Baltimore

    Google Scholar 

  • Imhoff JF (1991) Polar lipids and fatty acids in the genus Rhodobacter. System. Appl Microbiol 14: 228–234

    CAS  Google Scholar 

  • Imhoff JF and Thiemann B (1991) Influence of salt concentration and temperature on the fatty acid compositions of Ectothiorhodospira and other halophilic phototrophic purple bacteria. Arch Microbiol 156: 370–375

    Article  CAS  Google Scholar 

  • Imhoff JF and Trüper HG (1989) The purple nonsulfur bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 3, pp 1658–1661. Williams and Wilkens, Baltimore

    Google Scholar 

  • Imhoff JF, Kushner DJ, Kushwaha SC and Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150: 1192–1201

    CAS  PubMed  Google Scholar 

  • Imhoff JF, Ditandy T and Thiemann B (1991) Salt adaption of Ectothiorhodospira. In: Rodriguez-Valera F (ed), General and Applied Aspects of Halophilic Microorganisms, pp 115–120. Plenum Press, New York

    Google Scholar 

  • Jensen MT, Knudsen J and Olson JM (1991) A novel aminoglycosphingolipid found in Chlorobium limicola f. thiosulfatophilum 6230. Arch Microbiol 156: 248–254

    Article  CAS  Google Scholar 

  • Jensen SL (1962) The constitution of some bacterial carotenoids and their bearing on biosynthetic problems. K Nor Vidensk Selsk Skr 8: 1–12

    Google Scholar 

  • Kaplan S and Arntzen CJ (1982) Photosynthetic membrane structure and function. In: Govindjee (ed) Photosynthesis, Vol 1, pp 65–151. Academic Press, New York

    Google Scholar 

  • Kato S-I, Urakami T and Komagata K (1985) Quinone systems and cellular fatty acid composition in species of Rhodospirillaceae genera. J Gen Appl Microbiol 31: 381–398

    CAS  Google Scholar 

  • Kenyon CN (1978) Complex lipids and fatty acids of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp. 281–313. Plenum Press, New York

    Google Scholar 

  • Kenyon CN and Gray AM (1974) Preliminary analysis of lipids and fatty acids of green bacteria and Chloroflexus. J Bacteriol 120: 131–138

    CAS  PubMed  Google Scholar 

  • Kleemann G, Poralla K, Englert G, Kjosen H, Liaaen-Jensen S, Neunlist S and Rohmer M (1990) Tetrahymenol from the phototrophic bacterium Rhodopseudomonas palustris: First report of a gammacerane triterpene from a prokaryote. J Gen Microbiol 136: 2551–2553

    CAS  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod JG and Sirevåg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132: 149–154

    Article  CAS  Google Scholar 

  • Lopitz P, Neunlist S and Rohmer M (1992) Prokaryotic triterpenoids alpha-D-glucuronopyranosylbacteriohopanetetrol a novel hopanoid from the bacterium Rhodospirillum rubrum. Biochem J 287: 159–161

    Google Scholar 

  • Low MG and Slatid AE (1988) Structural and functional roles of glycosyl phosphatidyl inositol in membranes. Science 239: 268–275

    CAS  PubMed  Google Scholar 

  • Lueking DR and Goldfine H (1975) Sn-glycerol-3-phosphate acyltransferase activity in particulate preparations from anaerobic, light grown cells of Rhodopseudomonas spheroides. J Biol Chem 250: 8530–8535

    CAS  PubMed  Google Scholar 

  • Lueking DR, Fraley RT and Kaplan S (1978) Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. J Biol Chem 253: 451–457

    CAS  PubMed  Google Scholar 

  • Marinetti GV and Cattieu K (1981) Lipid analysis of cells and chromatophores of Rhodopseudomonas sphaeroides. Chem Phys Lipids 28: 241–251

    CAS  Google Scholar 

  • Meissner J, Pfennig N, Krauss JH, Mayer H and Weckesser J (1988a) Lipopolysaccharides of Thiocystis violacea, Thiocapsa pfennigii, and Chromatium tepidum, species of the family Chromatiaceae. J Bacteriol 170: 3217–3222

    CAS  PubMed  Google Scholar 

  • Meissner J, Borowiak D, Fischer U and Weckesser J (1988b) The lipopolysaccharide of the phototrophic bacterium Ectothiorhodospira vacuolata. Arch Microbiol 149: 245–248

    CAS  Google Scholar 

  • Myers CR and Collins MLP (1986) Cell-cycle-specific oscillation in the composition of chromatophore membrane in Rhodospirillum rubrum. J Bacteriol 166: 818–823

    CAS  PubMed  Google Scholar 

  • Myers CR and Collins MLP (1987) Cell-cycle-specific fluctuation in cytoplasmic membrane composition in aerobically grown Rhodospirillum rubrum. J Bacteriol 169: 5445–5451

    CAS  PubMed  Google Scholar 

  • Neunlist S, Hoist O and Rohmer M (1985) Prokaryotic triterpenoids. The hopanoids of the purple non-sulphur bacterium Rhodomicrobium vannielii: An aminotriol and its aminoacyl derivatives, N-tryptophanyl and N-ornithinyl aminotriol. Eur J Biochem 147: 561–568

    CAS  PubMed  Google Scholar 

  • Neunlist S, Bisseret P and Rohmer M (1988) The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanetetrol. Eur J Biochem 171: 245–252

    Article  CAS  PubMed  Google Scholar 

  • Niederman RA and Gibson KD (1978) Isolation and physicochemical properties of membranes from purple photosynthetic bacteria. In. Clayton RK, Sistrom WR (ed) The Photosynthetic Bacteria, pp 79–118. Plenum Publishing Corp, New York

    Google Scholar 

  • Oelze J, Schröder J and Drews G (1970) Bacteriochlorophyll, fatty acid, and protein synthesis in relation to thylakoid Johannes F. Imhoff and Ursula Bias-lmhoff formation in mutant strains of Rhodospirillum rubrum. J Bacteriol 101: 669–674

    CAS  PubMed  Google Scholar 

  • Oelze J, Golecki JR, Kleinig H and Weckesser J (1975) Characterization of two cell-envelope fractions from chemotrophically grown Rhodospirillum rubrum. Ant van Leeuwenhoek 41: 273–286

    CAS  Google Scholar 

  • Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594: 33–51

    CAS  PubMed  Google Scholar 

  • Olson JM, Shaw EK, Gaffney JS and Scandella CJ (1983) A fluorescent aminolipid from a green photosynthetic bacterium. Biochem. 22: 1819–1827

    CAS  Google Scholar 

  • Olson JM, Shaw EK, Gaffney JS and Scandella CJ (1984) Chlorobium aminolipid. A new membrane lipid from green sulfur bacteria. In: Sybesma C (ed) Advances in photosynthesis research, Vol 3, pp 139–142. Nijhoff/Junk, The Hague

    Google Scholar 

  • Onishi JC and Niederman RA (1982) Rhodopseudomonas sphaeroides membranes: Alterations in phospholipid composition in aerobically and phototrophically grown cells. J Bacteriol 149: 831–839

    CAS  PubMed  Google Scholar 

  • Ourisson G, Rohmer M and Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann Rev Microbiol 41: 301–333

    CAS  Google Scholar 

  • Oyewole SH and Holt S (1976) Structure and composition of intracytoplasmic membranes of Ectothiorhodospira mobilis. Arch Microbiol 107: 167–182

    Article  CAS  PubMed  Google Scholar 

  • Park CE and Berger LR (1967) Complex lipids of Rhodomicrobium vannielii. J Bacteriol 93: 221–229

    CAS  PubMed  Google Scholar 

  • Pirovarova TA and Gorlenko VM (1977) Fine structure of Chloroflexus aurantiacus var. mesophilus (nom. prof.) — Growth in light under aerobic and anaerobic conditions. Microbiologiya 46: 276–282 (Engl. transl.)

    Google Scholar 

  • Powls R, Redfearn ER and Trippett S (1968) The structure of chlorobiumquinone. Biochem Biophys Res Comm 33: 408–411

    Article  CAS  PubMed  Google Scholar 

  • Radcliffe CW and Niederman RA (1984) Intracellular localization of membrane-associated phosphatidylserine synthase in Rhodopseudomonas sphaeroides. In: Siegenthaler PA, Eichenberger W (eds) Structure, function and metabolism of plant lipids, pp 319–323. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Radcliffe CW, Broglie RM and Niederman RA (1985) Sites of phospholipid biosynthesis during induction of intracytoplasmic membrane formation in Rhodopseudomonas sphaeroides. Arch Microbiol 142: 136–140

    Article  CAS  PubMed  Google Scholar 

  • Radcliffe CW, Steiner FX, Carman GM and Niederman RA (1989) Characterization and localization of phosphatidylglycerophosphate and phosphatidylserine synthase in Rhodobacter sphaeroides. Arch Microbiol 152: 132–137

    Article  CAS  PubMed  Google Scholar 

  • Radunz A (1969) Öber das Sulfochinovosyl-diacylglycerin aus höheren Pflanzen, Algen und Purpurbakterien. Hoppe-Seyler’s Z Physiol Chem 350: 411–417

    CAS  PubMed  Google Scholar 

  • Raetz CRH and Kennedy EP (1972) The association of serine synthetase with ribosomes in extracts of Escherichia coli. J Biol Chem 247: 2008–2014

    CAS  PubMed  Google Scholar 

  • Ratledge C and Wilkinson SG (1988) An overview of microbial lipids. In: Ratledge C and Wilkinson SG (eds) Microbial lipids. Vol 1, pp 3–22. Academic Press, London

    Google Scholar 

  • Raymond JC and Sistrom WR (1969) Ectothiorhodospira halophila: A new species of the genus Ectothiorhodospira. Arch Microbiol 69: 121–126

    CAS  Google Scholar 

  • Redfearn ER and Powls R (1968) The quinones of green photosynthetic bacteria. Biochem J 106: 50P

    CAS  Google Scholar 

  • Rohmer M, Bouvier P and Ourisson G (1979) Molecular evolution of biomembranes: Structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci USA 76: 847–851

    CAS  PubMed  Google Scholar 

  • Rohmer M, Bouvier-Nave P and Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol. 130: 1137–1150

    CAS  Google Scholar 

  • Russell NJ and Harwood JL (1979) Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochem J 181: 339–245

    CAS  PubMed  Google Scholar 

  • Scheuerbrandt G and Bloch K (1962) Unsaturated fatty acids in microorganisms. J Biol Chem 237: 2064–2073

    CAS  Google Scholar 

  • Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain OK-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch Microbiol 124: 21–31

    Article  CAS  Google Scholar 

  • Schmitz R (1967) Öber die Zusammensetzung der pigmenthaltigen Strukturen aus Prokaryonten. II. Untersuchungen an Chromatophoren von Chlorobium thiosulfatophilum Stamm Tassajara. Arch Microbiol 56: 238–247

    CAS  Google Scholar 

  • Schröder J, Biederdermann M and Drews G (1969) Die Fettsäuren in ganzen Zellen, Thylakoiden und Lipopolysacchariden von Rhodospirillum rubrum und Rhodopseudomonas capsulata. Arch Microbiol 66: 273–280

    Google Scholar 

  • Shiea J, Brassell SC, and Ward DM (1991) Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria. Org Geochem 17: 309–319

    Article  CAS  Google Scholar 

  • Sprague S, Staehelin A and Fuller RC (1981) Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1032–1039

    CAS  PubMed  Google Scholar 

  • Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organization of chlorosomes and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589: 30–45

    CAS  PubMed  Google Scholar 

  • Steiner S, Conti SF and Lester RL (1969) Separation and identification of the polar lipids of Chromatium strain D. J Bacteriol 98: 10–15

    CAS  PubMed  Google Scholar 

  • Steiner S, Sojka GA, Conti SF, Gest H and Lester RL (1970) Modification of membrane composition in growing photosynthetic bacteria. Biochim Biophys Acta 203: 571–579

    CAS  PubMed  Google Scholar 

  • Tai S-P and Kaplan S (1984) Purification and properties of a phospholipid transfer protein from Rhodopseudomonas sphaeroides. J Biol Chem 259: 12178–12183

    CAS  PubMed  Google Scholar 

  • Tai S-P and Kaplan S (1985) Intracellular localization of phospholipid transfer activity in Rhodopseudomonas sphaeroides and a possible role in membrane biogenesis. J Bacteriol 164: 181–186

    CAS  PubMed  Google Scholar 

  • Takacs BJ and Holt SC (1971) Thiocapsa floridana: A cytological, physical and chemical characterization. II. Physical and chemical characteristics of isolated and reconstituted chromatophores. Biochim Biophys Acta 233: 278–295

    CAS  PubMed  Google Scholar 

  • Thiemann B and Imhoff JF (1991) The effect of salt on the lipid composition of Ectothiorhodospira. Arch Microbiol 156: 376–384

    Article  CAS  Google Scholar 

  • Urakami T and Komagata K (1988) Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids, and the occurrence of squalene and sterols in species of Rhodospirillaceae genera and Erythrobacter longus. J Gen Appl Microbiol 34: 67–84

    CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–90

    Article  CAS  Google Scholar 

  • Weckesser J, Drews G., Fromme I and Meyer H (1973) Isolation and chemical composition of the lipopolysaccharides of Rhodopseudomonas palustris strains. Arch Microbiol 92: 123–138

    CAS  Google Scholar 

  • Wilkinson BJ, Sment KA and Mayberry WR (1982) Occurrence, localization, and possible significance of an ornithine-containing lipid in Paracoccus denitrificans. Arch Microbiol 131: 338–343

    Article  CAS  Google Scholar 

  • Willems A, Gillis M and de Ley, J (1991) Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov., and phylogenic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Int J Syst Bacteriol 41: 65–73

    Google Scholar 

  • Woese C, Debrunner-Vossbrink B, Oyaizu H, Stackebrandt E and Ludwig W (1985) Gram-positive bacteria: Possible photosynthetic ancestry. Science 229: 762–765

    CAS  PubMed  Google Scholar 

  • Wood JB, Nichols BW and James AT (1965) The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta 106: 261–273

    CAS  PubMed  Google Scholar 

  • Zahr M, Fobel B, Mayer H, Imhoff JF, Campos P and Weckesser J (1992) Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila. Arch Microbiol 157: 499–504

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Imhoff, J.F., Bias-lmhoff, U. (1995). Lipids, Quinones and Fatty Acids of Anoxygenic Phototrophic Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics