Skip to main content
Log in

Triterpenoids from lipids of Rhodomicrobium vanniellii

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Triterpenoids have been isolated from the lipids of the anaerobic, photosynthetic bacterium, Rhodomicrobium vannielii. These compounds constitute various hopanoids, including hydrocarbons, 22-, 29-and 3β-hydroxy, 3-keto-, C-3 and C-21 methyl-triterpenoids, as well as fernenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ageta H, Iwata K, Natori S (1963) A fern constituent, fernene, a triterpenoid hydrocarbon of a new type. Tetr Lett 1447–1450

  • Ageta H, Shiojima K, Arai Y (1968) Fern constitutents: Neohopene, hopene-II, neohopadiene and fernadiene isolated from Adiantum species. Chem Comm 1105–1107

  • Anding C, Rohmer M, Ourisson G (1976) Non-specific biosynthesis of hopane triterpenes in a cell free system from Acetobacter rancens. J Am Chem Soc 98:1274–1275

    Google Scholar 

  • Barton DR, Moss GP (1966) Squalene cyclization in yeast. Chem Comm 261–162

  • Barton DR, Gosden AF, Mellows G, Widdowson DA 91968) Lanosterol biosynthesis in Saccharomyces cerevisiae. Chem Comm 1067–1069

  • Barton DR, Mellows G, Widdowson DA (1971) Biosynthesis of terpenes and steroids. III. Squalene cyclization in the biosynthesis of triterpenoids; the biosynthesis of fern-9-ene in Polypodium vulgare. J Chem Soc (C) 110–116

  • Bird CW, Lynch JM, Pirt FJ, Reid WW, Brooks CJ, Middleditch, BS (1971) Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 230:473–474

    Google Scholar 

  • Bouvier P, Berger Y, Rohmer M, Ourisson G (1980) Non-specific biosynthesis of gammacerane derivatives by a cell free system from the protozoan Tetrahymena pyriformis. Eur J Biochem 112:549–556

    Google Scholar 

  • Caspi E, Zander ZM, Greig JB, Mallory F, Conner R, Landrey J (1968) Evidence for a non-oxidative cyclization of squalene in the biosynthesis of tetrahymanol. J Am Chem Soc 90:3563–3564

    Google Scholar 

  • Chapman DJ, Gest H (1983) Terms used to describe biological energy conversions, electron transport processes, interactions of cellular systems with molecular oxygen, and carbon nutrition. In: Schopf JW (ed) Evolution of the earth's earliest biosphere. Princeton University Press, Princeton, pp 459–463

    Google Scholar 

  • Cherry PC, Jones ERH, Meakins GD (1966) Microbiological hydroxylation at position 3 of androst-5-en-7-one. Chem Comm 587

  • Corbett RE, Young H (1966) Lichens and fungi. Part II. Isolation and structural elucidation of 7β-acetoxy-22-hydroxyhopane from Sticta billardierii Del. J Chem Soc (C) 1556–1563

  • de Rosa M, Gambacorta A, Minale L, Bu'Lock J (1971) Bacterial triterpenes. Chem Comm 619–620

  • de Rosa M, Gambacorta A, Minale L (1973) Isoprenoids of Bacillus acidocaldarius. Phytochem 12:1117–1123

    Google Scholar 

  • Duchow E, Douglas H (1949) Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J Bacteriol 58:409–416

    Google Scholar 

  • Elgamal MHA, Fayez MBR, Kemp TR (1969) The mass spectra of some triterpenoid dehydration products. Org Mass Spec 2:175–194

    Google Scholar 

  • Ensminger A, Albrecht P, Ourisson G, Kimble BJ, Maxwell JR, Eglinton G (1972) Homohopane in Messel oil shale: First identification of a C31 pentacyclic triterpane in nature. Bacterial origin of some tritepanes in ancient sediments? Tetr Lett 3861–3864

  • Farquhar JF (1962) Identification and gas-liquid chromatographic behavior of plasmalogen aldehydes and their acetal, alcohol and acetylated alcohol derivatives. J Lipid Res 3:21–30

    Google Scholar 

  • Forster HJ, Biemann K, Haigh G, Tattrie N, Colvin JR (1973) The structure of novel C35 pentacyclic terpenes from Acetobacter xylinum. Biochem J 135:133–143

    Google Scholar 

  • Golterman HL (1969) Methods for chemical analysis of fresh waters. Blackwell Scientific Publ. Oxford, p 124

    Google Scholar 

  • Howard DL (1980) Polycyclic triterpenes of the anaerobic photosynthetic bacterium, Rhodomicrobium vannielii. Ph. D. Thesis, University of California, Los Angeles, p 272

    Google Scholar 

  • Howard DL, Chapman DJ (1981) Pentacyclic triterpenes of the anaerobic photosynthetic bacterium Rhodomicrobium vannielii. Chem Comm 468–469

  • Hui WH, Li MM (1976) Structures of eight new triterpenoids and isolation of other triterpenoids and epi-ikshusterol from the stens of Lithocarpus cornea. J Chem Soc Perkin I, 23–30

    Google Scholar 

  • Kimple BJ (1972) The geochemistry of triterpenoid hydrocarbons. Ph. D. Thesis, University of Bristol, England

    Google Scholar 

  • Kimble BJ, Maxwell JR, Philp RP, Eglinton G (1974) Identification of steranes and triterpenes in geolipid extracts by high resolution gas chromatography and mass spectrometry. Chem Geol 14:173–198

    Google Scholar 

  • Langworthy T, Mayberry W (1976) A 1,2,3,4-tetrahydroxypentane substituted pentacyclic triterpene from Bacillus acidocaldarius. Biochim Biophys Acta 431:560–577

    Google Scholar 

  • Mackenzie AS, Patience RL, Maxwell JR, Vandenbroucke M, Durand B (1980) Molecular parameters of maturation in the Toarchian shales, Paris Basin, France. I. Changes in the configuations of acyclic isoprenoid alkanes, steranes and tritepanes. Geochim Cosmochim Acta 44:1709–1721

    Google Scholar 

  • Nes WR, McKean ML (1977) Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore, pp 1–690

    Google Scholar 

  • Ourisson G, Rohmer M (1982) Prokaryotic polyterpenes: phylogenetic precursors of sterols. Curr Topics Membr Trans 17:153–182

    Google Scholar 

  • Ourisson G, Albrecht P, Rohmer M (1979a) The hopanoids: paleochemistry and biochemistry of a group of natural products. Pure Appl Chem 51:709–729

    Google Scholar 

  • Ourisson G, Rohmer M, Anton R (1979b) From terpenes to sterols: macroevolution and microevolution. In: Swain T, Waller G (eds) Recent advances in phytochemistry, vol 13. Plenum Press, New York, p 131

    Google Scholar 

  • Ourisson G, Albrecht P, Rohmer M (1982) Predictive microbial biochemistry-from molecular fossils to procaryotic membranes. Trends Biochem Sci 7:236–239

    Google Scholar 

  • Reed WE (1975) Molecular composition of weathered petroleum and comparison with its possible source. Geochim Cosmochim Acta 41:237–247

    Google Scholar 

  • Rohmer M (1975) Triterpénes de prokaryotes. Ph. D. Thesis, University Louis Pasteur, Strasbourg, France

    Google Scholar 

  • Rohmer M, Ourisson G (1976a) Structure des bactériopanetétrols d'Acetobacter xylinum. Tetr Lett 3633–3636

  • Rohmer M, Ourisson G (1976b) Dérivés du bactériohopanes: variations structurales et répartition. Tetr Lett 3637–3640

  • Rohmer M, Ourisson G (1976c) Méthylhopanes d'Acetobacter xylinum et d'Acetobacter rancens: une nouvelle famille de composés triterpéniques. Tetr Lett 3641–3644

  • Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci USA 76:847–851

    Google Scholar 

  • Rohmer M, Anding C, Ourisson G (1980a) Non-specific biosynthesis of hpane triterpenes by a cell-free system from Acetobacter pasteurianum. Eur J Biochem 112:541–547

    Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1980b) Non-specific lanosterol and hopanoid biosynthesis by a cell-free system from the bacterium Methylococcus capsulatus. Eur J Biochem 112:557–560

    Google Scholar 

  • Schmidt J, Huneck S (1980) Mass spectroscopy of natural products. VI. Localization of functional groups in the hopane skeleton. Org Mass Spec 14:656–662

    Google Scholar 

  • Seifert WK, Moldowan JM (1978) Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim Cosmochim Acta 42:77–95

    Google Scholar 

  • Simoneit BRT (1978) The organic chemistry of marine sediments. In: Chester R, Riley JP (eds) Chemical oceanography, 2nd ed, vol 7. Academic Press, London, pp 233–311

    Google Scholar 

  • Simoneit BRT (1981) Utility of molecular markers and stable isotope compositions in the evaluation of sources and diagenesis of organic matter in the geosphere. In: Prashnowsky AA (ed) The impact of the Treib's porphyrin concept on the modern organic geochemistry. Julius Maximilian Universität Würzburg, pp 133–158

  • Van Dorsselaer A, Albrecht P, Ourisson G (1977) Identification of novel (17 αH)-hopanes in shales, coals, lignites, sediments and petroleum. Bull Soc Chim France 165–170

  • Zander JM, Greig JB, Caspi E (1970) Tetrahymanol biosynthesis. J Biol Chem 245:1247–1254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, D.L., Simoneit, B.R.T. & Chapman, D.J. Triterpenoids from lipids of Rhodomicrobium vanniellii . Arch. Microbiol. 137, 200–204 (1984). https://doi.org/10.1007/BF00414543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414543

Key words

Navigation