Paraquat-Induced Oxidative Stress and Lung Inflammation

  • Namitosh Tyagi
  • Rashmi Singh


Lung pathogenesis is associated with the oxidative stress which is one of the major causes of the lung damage. Oxidative stress is an important factor (cause) for development of chronic and degenerative diseases including cancer, aging, rheumatoid arthritis, diabetes, cataract, chronic inflammatory diseases, autoimmune disorders, cardiovascular and neurodegenerative diseases. Emerging evidences suggest that the glutathione redox couple may entail dynamic regulation of protein function by reversible disulfide bond formation on kinases, phosphatases, and transcription factors. Reactive oxygen species (ROS) enhances inflammation through the activation of transcription factors, such as nuclear factor (NF)-κB and activator protein-1 through various kinases (c-Jun-activated kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase). This results in enhanced expression of proinflammatory mediators. Many environmental pollutants play an important role in causing oxidative stress leading to lung damage. In present chapter impact of paraquat, a known herbicide has been discussed in detail for its effects on oxidative stress and lung inflammation causing injury.


Oxidative stress Reactive oxygen species Inflammation Lung damage 



Authors are thankful to University Grants Commission and Science and Engineering Research Board (SERB)-Department of Science and Technology (DST), New Delhi, India, in part for financial assistance.


  1. 1.
    Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cheeseman KH, Slater TF (1993) An introduction to free radicals chemistry. Br Med Bull 49(3):481–493PubMedCrossRefGoogle Scholar
  3. 3.
    Irshad M, Chaudhuri PS (2002) Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol 40:1233–1239PubMedGoogle Scholar
  4. 4.
    Evans P, Halliwell B (1999) Free radicals and hearing: cause, consequence, and criteria. Ann N Y Acad Sci 884(1):19–40PubMedCrossRefGoogle Scholar
  5. 5.
    Mc Cord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108(8):652–659CrossRefGoogle Scholar
  6. 6.
    Rao AL, Bharani M, Pallavi V (2006) Role of antioxidants and free radicals in health and disease. Adv Pharmacol Toxicol 7(1):29–38Google Scholar
  7. 7.
    Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435PubMedCrossRefGoogle Scholar
  8. 8.
    Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118(2):413PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bhatia M, Zemans RL, Jeyaseelan S (2012) Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 46(5):566–572PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Manicone AM (2009) Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol 5(1):63–75PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bagchi K, Puri S (1998) Free radicals and antioxidants in health and disease. East Mediterr Health J 4:350–360Google Scholar
  12. 12.
    Ebadi M (2001) Antioxidants and free radicals in health and disease: an introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Prominent Press, ArizonaGoogle Scholar
  13. 13.
    Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38(1):13–71PubMedCrossRefGoogle Scholar
  14. 14.
    Tsai WT (2013) A review on environmental exposure and health risks of herbicide paraquat. Toxicol Environ Chem 95(2):197–206CrossRefGoogle Scholar
  15. 15.
    Wesseling C, De Joode BVW, Ruepert C, León C, Monge P, Hermosillo H, Partanen LJ (2001) Paraquat in developing countries. Int J Occup Environ Health 7(4):275–286PubMedCrossRefGoogle Scholar
  16. 16.
    Summers LA (1980) The bipyridinium herbicides. Academic, LondonGoogle Scholar
  17. 17.
    Wagner SL (1981) Clinical toxicology of agricultural chemicals. Environ Health Sci 309Google Scholar
  18. 18.
    Eddleston M (2000) Patterns and problems of deliberate self-poisoning in the developing world. Q J Med 93(11):715–731CrossRefGoogle Scholar
  19. 19.
    Brooks RE (1971) Ultrastructure of lung lesions produced by ingested chemicals. I. Effect of the herbicide paraquat on mouse lung. Lab Invest 25(6):536–545PubMedGoogle Scholar
  20. 20.
    Sandhu JS, Dhiman A, Mahajan R, Sandhu P (2003) Outcome of paraquat poisoning. A five-year study. Indian J Nephrol 13:64–68Google Scholar
  21. 21.
    Mohammadi-Karakani A, Ghazi-Khansari M, Sotoudeh M (2006) Lisinopril ameliorates paraquat-induced lung fibrosis. Clin Chim Acta 367(1):170–174PubMedCrossRefGoogle Scholar
  22. 22.
    Muthukumaran K, Laframboise AJ, Pandey S (2011) In: Hasaneen MNAE-G (ed) Herbicides and the risk of neurodegenerative disease. INTECH, Maastricht, p 153Google Scholar
  23. 23.
    Delirrad M, Majidi M, Boushehri B (2015) Clinical features and prognosis of paraquat poisoning: a review of 41 cases. Int J Clin Exp Med 8(5):8122PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kemi (2006) Paraquat. Annex: notification of final regulatory action on paraquat, Sweden. Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade, Chemical Review Committee, Fifth meeting, Rome, 23–27 March, 2009. UNEP/FAO/RC/CRC.5/8Google Scholar
  25. 25.
    Sittipunt C (2005) Paraquat poisoning. Respir Care 50:383–385PubMedGoogle Scholar
  26. 26.
    United States Environmental Protection Agency (1997) Registration Eligibility Decision (RED), office of prevention, pesticides and toxic substances, EPA 738-F-96-018: paraquat dichloride. US EPA, Washington, DCGoogle Scholar
  27. 27.
    Zerin T, Kim YS, Hong SY, Song HY (2012) Protective effect of methylprednisolone on paraquat-induced A549 cell cytotoxicity via induction of efflux transporter, P-glycoprotein expression. Toxicol Lett 208(2):101–107PubMedCrossRefGoogle Scholar
  28. 28.
    Rose HS, Smith LL (1977a) The relevance of paraquat accumulation by tissues. In: Biochemical mechanisms of paraquat toxicity. Academic, New York, pp 71–79CrossRefGoogle Scholar
  29. 29.
    Rose MS, Smith LL (1977b) Tissue uptake of paraquat and diquat. Gen Pharmacol 8(3):173–176PubMedCrossRefGoogle Scholar
  30. 30.
    Sharp CW, Ottolenghi A, Poaner HS (1972) Correlation of paraquat toxicity with tissue concentrations and weight loss of the rat. Toxicol Appl Pharmacol 22(2):241–251PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Rose MS, Lock EA, Smith LL, Wyatt I (1976) Paraquat accumulation. Tissue and species specificity. Biochem Pharmacol 25(4):419–423PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Smith P, Heath D, Kay JM (1974) The pathogenesis and structure of paraquat-induced pulmonary fibrosis in rats. J Pathol 114(2):57–67PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Litchfield MH, Daniel JW, Longshaw S (1973) The tissue distribution of the bipyridilium herbicides diquat and paraquat in rats and mice. Toxicology 1(2):155–165PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Smith LL, Lewis CP, Wyatt I, Cohen GM (1990) The importance of epithelial uptake systems in lung toxicity. Environ Health Perspect 85:25–30PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hoet PH, Nemery B (2000) Polyamines in the lung: polyamine uptake and polyamine-linked pathological or toxicological conditions. Am J Phys Lung Cell Mol Phys 278(3):417–433Google Scholar
  36. 36.
    Gordonsmith RH, Brooke-Taylor S, Smith LL, Cohen GM (1983) Structural requirements of compounds to inhibit pulmonary diamine accumulation. Biochem Pharmacol 32(24):3701–3709PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Dunbar JR (1987) Lung paraquat content and effects on the lung glutathione antioxidant system, NADPH, and polyamines resulting from intravenous coinfusion of paraquat and putrescine to ratsGoogle Scholar
  38. 38.
    Ranjbar A, Pasalar P, Sedighi A, Abdollahi M (2002) Induction of oxidative stress in paraquat formulating workers. Toxicol Lett 131(3):191–194PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yumino K (2002) Paraquat- and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes. J Biochem 131(4):565–570PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Bus JS, Aust SD, Gibson JE (1974) Superoxide-and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun 58(3):749–755PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48(6):623–640PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sengupta A, Manna K, Datta S, Das U, Biswas S, Chakrabarti N, Dey S (2017) Herbicide exposure induces apoptosis, inflammation, immune modulation and suppression of cell survival mechanism in murine model. RSC Adv 7(23):13957–13970CrossRefGoogle Scholar
  43. 43.
    Toygar M, Aydin I, Agilli M, Aydin FN, Oztosun M, Gul H, Macit E, Karslioglu Y, Topal T, Uysal B, Honca M (2015) The relation between oxidative stress, inflammation, and neopterin in the paraquat-induced lung toxicity. Hum Exp Toxicol 34(2):198–204PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Amirshahrokhi K (2013) Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice. Int Immunopharmacol 17(2):210–215PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Windsor ACJ, Mullen PG, Fowler AA, Sugerman HJ (1993) Role of the neutrophil in adult respiratory distress syndrome. Br J Surg 80(1):10–17PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Martin WJ (1984) Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway: an in vitro model of neutrophil-mediated lung injury. Am Rev Respir Dis 130(2):209–213PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Amirshahrokhi K, Bohlooli S, Chinifroush MM (2011) The effect of methylsulfonylmethane on the experimental colitis in the rat. Toxicol Appl Pharmacol 253(3):197–202PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Martin WJ, Howard DM (1986) Paraquat-induced neutrophil alveolitis: reduction of the inflammatory response by pretreatment with endotoxin and hyperoxia. Lung 164(1):107–120PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tian ZG, Ji Y, Yan WJ, Xu CY, Kong QY, Han F, Zhao Y, Pang QF (2013) Methylene blue protects against paraquat-induced acute lung injury in rats. Int Immunopharmacol 17(2):309–313PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS (1978) Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest 61(5):1161PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Weiss SJ, Young J, LoBuglio AF, Slivka AD, Nimeh NF (1981) Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Investig 68(3):714PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zahorec R (2001) Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy 102(1):5–14PubMedPubMedCentralGoogle Scholar
  53. 53.
    Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):124CrossRefGoogle Scholar
  54. 54.
    Zhou DC, Zhang H, Luo ZM, Zhu QX, Zhou CF (2016) Prognostic value of hematological parameters in patients with paraquat poisoning. Sci Rep 6:36235PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang JM, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Closa D, Folch-Puy E (2004) Oxygen free radicals and the systemic inflammatory response. IUBMB Life 56(4):185–191PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Situnayake RD, Crump BJ, Thurnham DI, Davies JA, Davis M (1987) Evidence for lipid peroxidation in man following paraquat ingestion. Hum Toxicol 6(1):94–98PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Watanabe N, Shiki Y, Morisaki N, Saito Y, Yoshida S (1986) Cytotoxic effects of paraquat and inhibition of them by vitamin E. Biochim Biophys Acta Gen Subj 883(3):420–425CrossRefGoogle Scholar
  59. 59.
    STY Y, Guo HR, Su YS, Lin HJ, Hou CC, Chen HM, Wang YJ (2006) Protective effects of N-acetylcysteine treatment post acute paraquat intoxication in rats and in human lung epithelial cells. Toxicology 223(3):181–190CrossRefGoogle Scholar
  60. 60.
    Fukushima T, Tanaka K, Heejin LI, Moriyama M (2002) Mechanism of cytotoxicity of paraquat. Environ Health Prev Med 7(3):89–94PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hara S, Endo T, Kuriiwa F, Kano S (1991) Mechanism of paraquat-stimulated lipid peroxidation in mouse brain and pulmonary microsomes. J Pharm Pharmacol 43(10):731–733PubMedCrossRefGoogle Scholar
  62. 62.
    Terao J, Matsushita S (1977) Products formed by photosensitized oxidation of unsaturated fatty acid esters. J Am Oil Chem Soc 54(6):234–239CrossRefGoogle Scholar
  63. 63.
    Kellogg EW 3rd, Fridovich I (1975) Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 250(22):8812–8817PubMedPubMedCentralGoogle Scholar
  64. 64.
    Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Martinez FJ, Safrin W, Weycker D, Starko KM, Bradford WZ, King TE (2005) The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med 142(12):963–967PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Charles H, Brown MS (2015) Pharm, RPh, CACPA review of pulmonary fibrosis. US Pharm 40(7):12–16Google Scholar
  67. 67.
    Chen CM, Chou HC, Hsu HH, Wang LF (2005) Transforming growth factor-β1 upregulation is independent of angiotensin in paraquat-induced lung fibrosis. Toxicology 216(2):181–187PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Vijeyaratnam GS, Corrin B (1971) Experimental paraquat poisoning: a histo-logical and electron-optical study of the changes in the lung. J Pathol 103:123–129PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Fukuda Y, Ferrans VJ, Schoenberger CI, Rennard S, Crystal RG (1985) Patterns of pulmonary structural remodeling after experimental paraquat toxicity. The morphogenesis of intraalveolar fibrosis. Am J Pathol 118:452PubMedPubMedCentralGoogle Scholar
  70. 70.
    Lang YD, Chang SF, Wang LF, Chen CM (2010) Chymase mediates paraquat-induced collagen production in human lung fibroblasts. Toxicol Lett 193(1):19–25PubMedCrossRefGoogle Scholar
  71. 71.
    Xu XL, Wang W, Song ZJ, Ding H, Duan XH, Meng HC, Chong J (2011) Imaging in detecting sites of pulmonary fibrosis induced by paraquat. World J Emerg Med 2(1):45PubMedPubMedCentralGoogle Scholar
  72. 72.
    Rocco PR, Negri EM, Kurtz PM, Vasconcellos FP, SILVA GH, Capelozzi VL, Zin WA (2001) Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am J Respir Crit Care Med 164(6):1067–1071PubMedCrossRefGoogle Scholar
  73. 73.
    Pardo A, Selman M (2012) Role of matrix metaloproteases in idiopathic pulmonary fibrosis. Fibrogenesis Tissue Repair 5(1):S9PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Corbel M, Belleguic C, Boichot E, Lagente V (2002) Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 18(1):51–61PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Davey A, McAuley DF, O’Kane CM (2011) Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J 38:959–970PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ouchi H, Fujita M, Ikegame S, Ye Q, Inoshima I, Harada E, Kuwano K, Nakanishi Y (2008) The role of collagenases in experimental pulmonary fibrosis. Pulm Pharmacol Ther 21(2):401–408PubMedCrossRefGoogle Scholar
  77. 77.
    Kim JY, Choeng HC, Ahn C, Cho SH (2009) Early and late changes of MMP-2 and MMP-9 in bleomycin-induced pulmonary fibrosis. Yonsei Med J 50(1):68–77PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3):818–824PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Singh G, Gladdy G, Chandy TT, Sen N (2014) Incidence and outcome of acute lung injury and acute respiratory distress syndrome in the surgical intensive care unit. Indian J Crit Care Med 18(10):659PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bhadade RR, De Souza RA, Harde MJ, Khot A (2011) Clinical characteristics and outcomes of patients with acute lung injury and ARDS. J Postgrad Med 57(4):286PubMedCrossRefGoogle Scholar
  81. 81.
    Fauci AS (2008) Harrison’s principles of internal medicine, vol 2. McGraw-Hill, Medical Publishing Division, New York, pp 1612–1615Google Scholar
  82. 82.
    Wang BL, Tu YY, Fu JF, Zhong YX, Fu GQ, Tian XX, Wang LH, Gong L, Ren QY (2011) Unbalanced MMP/TIMP-1 expression during the development of experimental pulmonary fibrosis with acute paraquat poisoning. Mol Med Rep 4(2):243–248PubMedGoogle Scholar
  83. 83.
    Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40(5):519–535PubMedCrossRefGoogle Scholar
  84. 84.
    Schoenberger CI, Rennard SI, Bitterman PB, Fukuda Y, Ferrans VJ, Crystal RG (1984) Paraquat-induced pulmonary fibrosis: role of the alveolitis in modulating the development of fibrosis. Am Rev Respir Dis 129(1):168–173PubMedGoogle Scholar
  85. 85.
    Smith EA, Mayfield CI (1978) Paraquat: determination, degradation, and mobility in soil. Water Air Soil Pollut 9(4):439–452Google Scholar
  86. 86.
    Copland GM, Kolín A, Shulman HS (1974) Fatal pulmonary intra-alveolar fibrosis after paraquat ingestion. N Engl J Med 291(6):290–292PubMedCrossRefGoogle Scholar
  87. 87.
    McGowan SE (1992) Extracellular matrix and the regulation of lung development and repair. FASEB J 6(11):2895–2904CrossRefGoogle Scholar
  88. 88.
    Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rodemann HP, Rennekampff HO (2011) Functional diversity of fibroblasts. In: Tumor-associated fibroblasts and their matrix. Springer, Dordrecht/New York, pp 23–36CrossRefGoogle Scholar
  90. 90.
    White ES (2015) Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc 12(1):30–33CrossRefGoogle Scholar
  91. 91.
    Shahzeidi S, Mulier BD, De Crombrugghe B, Jeffery PK, McAnulty RJ, Laurent GJ (1993) Enhanced type III collagen gene expression during bleomycin induced lung fibrosis. Thorax 48(6):622–628PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Erroi A, Bianchi M, Ghezzi P (1992) The pneumotoxicant paraquat potentiates IL-1 and TNF production by human mononuclear cells. Inflamm Res 36(1):66–69Google Scholar
  93. 93.
    Harchegani AL, Hemmati AA, Nili-Ahmadabadi A, Darabi B, Shabib S (2017) Cromolyn sodium attenuates paraquat-induced lung injury by modulation of proinflammatory cytokines. Drug Res 67(05):283–288CrossRefGoogle Scholar
  94. 94.
    Bartram U, Speer CP (2004) The role of transforming growth factor beta in lung development and disease. Chest 125:754–765PubMedCrossRefGoogle Scholar
  95. 95.
    Brody AR, Warshamana GS, Jing Y, Pociask DA (2001) Expression of transforming growth factor-beta induces fibroproliferative pulmonary disease in fibrosis-resistant mice. Chest 120(1):48–49CrossRefGoogle Scholar
  96. 96.
    Yao R, Cao Y, He YR, Lau WB, Zeng Z, Liang ZA (2015) Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat. PLoS One 10(5):0125169Google Scholar
  97. 97.
    Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193–203PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Toth M, Sohail A, Fridman R (2012) Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Metastasis Res Protoc:121–135Google Scholar
  99. 99.
    Marshall RP, Bellingan G, Webb S, Puddicombe A, Goldsack N, McANULTY RJ, Laurent GJ (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162:1783–1788PubMedCrossRefGoogle Scholar
  100. 100.
    Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108(1):3–14PubMedCrossRefGoogle Scholar
  101. 101.
    Liu S, Liu K, Sun Q, Liu W, Xu W, Denoble P, Tao H, Sun X (2011) Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats. BioMed Res Int 2011:1Google Scholar
  102. 102.
    Hu X, Shen H, Wang Y, Zhao M (2017) Liver X receptor agonist TO901317 attenuates paraquat-induced acute lung injury through inhibition of NF-κB and JNK/p38 MAPK signal pathways. BioMed Res Int 2017:1–13Google Scholar
  103. 103.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang B, Hirahashi J, Cullere X, Mayadas TN (2003) Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem 278(31):28443–28454PubMedCrossRefGoogle Scholar
  105. 105.
    Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22(6):1115–1126PubMedCrossRefGoogle Scholar
  106. 106.
    Mitra S, Abraham E (2006) Participation of superoxide in neutrophil activation and cytokine production. Biochim Biophys Acta Mol Basis Dis 1762(8):732–741CrossRefGoogle Scholar
  107. 107.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183PubMedGoogle Scholar
  108. 108.
    Coulombe P, Meloche S (2007) Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim Biophys Acta Mol Cell Res 1773(8):1376–1387CrossRefGoogle Scholar
  109. 109.
    Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 1802(4):396–405CrossRefGoogle Scholar
  110. 110.
    Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK (2004) The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 279(31):32626–32632PubMedCrossRefGoogle Scholar
  111. 111.
    Wang X, Luo F, Zhao H (2014) Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-κB–IL-6/TNF-α positive-feedback circuit. PLoS One 9(4):93837CrossRefGoogle Scholar
  112. 112.
    Liu MW, Su MX, Zhang W, Wang YQ, Chen M, Wang L, Qian CY (2014) Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complement Altern Med 14(1):498PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Malekinejad H, Rezabakhsh A, Rahmani F, Razi M (2013) Paraquat exposure up-regulates cyclooxygenase-2 in the lungs, liver and kidneys in rats. Iran J Pharm Res 12(4):887PubMedPubMedCentralGoogle Scholar
  115. 115.
    Guan Z, Buckman SY, Pentland AP, Templeton DJ, Morrison AR (1998) Induction of cyclooxygenase-2 by the activated MEKK1→ SEK1/MKK4→ p38 mitogen-activated protein kinase pathway. J Biol Chem 273(21):12901–12908PubMedCrossRefGoogle Scholar
  116. 116.
    Pei YH, Cai XM, Chen J, Sun BD, Sun ZR, Wang X, Qian XM (2014) The role of p38 MAPK in acute paraquat-induced lung injury in rats. Inhal Toxicol 26(14):880–884PubMedCrossRefGoogle Scholar
  117. 117.
    Vancurova I, Vancura A (2012) Regulation and function of nuclear IκBα in inflammation and cancer. Am J Clin Exp Immunol 1(1):56PubMedPubMedCentralGoogle Scholar
  118. 118.
    Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible new role for NF-κB in the resolution of inflammation. Nat Med 7(12):1291–1297PubMedCrossRefGoogle Scholar
  120. 120.
    Alvira CM (2014) Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. Birth Defects Res A Clin Mol Teratol 100(3):202–216PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Meredith TJ, Vale JA (1987) Treatment of paraquat poisoning in man: methods to prevent absorption. Hum Toxicol 6(1):49–55PubMedCrossRefGoogle Scholar
  122. 122.
    Idid SZ, Lee CY (1996) Effects of Fuller’s Earth and activated charcoal on oral absorption of paraquat in rabbits. Clin Exp Pharmacol Physiol 23(8):679–681PubMedCrossRefGoogle Scholar
  123. 123.
    Guadreault P, Friedman PA, Lovejoy FH (1985) Efficacy of activated charcoal and magnesium citrate in the treatment of oral paraquat intoxication. Ann Emerg Med 14(2):123–125CrossRefGoogle Scholar
  124. 124.
    Okonek S, Setyadharma H, Borchert A, Krienke EG (1982) Activated charcoal is as effective as fuller’s earth or bentonite in paraquat poisoning. Klin Wochenschr 60(4):207–210PubMedCrossRefGoogle Scholar
  125. 125.
    Gawarammana IB, Buckley NA (2011) Medical management of paraquat ingestion. Br J Clin Pharmacol 72(5):745–757PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180(1):65–77PubMedCrossRefGoogle Scholar
  127. 127.
    Reigart JR, Roberts JR (1999) Paraquat and diquat. In: Recognition and management of pesticide poisonings. Office of Pesticide Programs, Environmental Protection Agency, Washington DC, pp 108–117Google Scholar
  128. 128.
    Newstead CG (1996) Cyclophosphamide treatment of paraquat poisoning. Thorax 51(7):661–663CrossRefGoogle Scholar
  129. 129.
    Malone JDG, Carmody M, Keogh B, O’Dwyer WF (1971) Paraquat poisoning – a review of nineteen cases. J Irish Med Assoc 64(405):59–68Google Scholar
  130. 130.
    Lin JL, Wei MC, Liu YC (1996) Pulse therapy with cyclophosphamide and methylprednisolone in patients with moderate to severe paraquat poisoning: a preliminary report. Thorax 51(7):661–663PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Pond SM, Rivory LP, Hampson EC, Roberts MS (1993) Kinetics of toxic doses of paraquat and the effects of hemoperfusion in the dog. J Toxicol Clin Toxicol 31(2):229–246PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Halliwell B (1995) How to characterize an antioxidant- An update. Biochem Soc Symp 61:73–101PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Eizadi-Mood N, Sabzghabaee AM, Yaraghi A, Montazeri K, Golabi M, Sharifian A, Badri S (2011) Effect of antioxidants on the outcome of therapy in paraquat-intoxicated patients. Trop J Pharm Res 10(1):27–31CrossRefGoogle Scholar
  134. 134.
    Hong SY, Hwang KY, Lee EY, Eun SW, Cho SR, Han CS, Park YH, Chang SK (2002) Effect of vitamin C on plasma total antioxidant status in patients with paraquat intoxication. Toxicol Lett 126:51–59PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Block ER (1979) Potentiation of acute paraquat toxicity by vitamin E deficiency. Lung 156:195–203PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. In the molecular targets and therapeutic uses of curcumin in health and disease. Adv Exp Med Biol 595:1–75PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Reddy ACP, Lokesh BR (1994) Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Unnikrishnan MK, Rao MNA (1995) Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem 146(1):35–37PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87(1):44–53Google Scholar
  141. 141.
    Balasubramanian K (2006) Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem 54(10):3512–3520PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Dulbecco P, Savarino V (2013) Therapeutic potential of curcumin in digestive diseases. World J Gastroenterol 19(48):9256PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218CrossRefPubMedGoogle Scholar
  144. 144.
    Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 11(3):331–341PubMedCrossRefGoogle Scholar
  145. 145.
    Marx D, Williams G, Birkhoff M (2015) Intranasal drug administration—An attractive delivery route for some drugs. In: Drug discovery and development-from molecules to medicine. InTech, RijekaGoogle Scholar
  146. 146.
    Chien YW, Chang SF (1987) Intranasal drug delivery for systemic medications. Crit Rev Ther Drug Carrier Syst 4(2):67–194PubMedPubMedCentralGoogle Scholar
  147. 147.
    Subhashini, Chauhan PS, Kumari S, Kumar JP, Chawla R, Dash D, Singh M, Singh R (2013) Intranasal curcumin and its evaluation in murine model of asthma. Int Immunopharmacol 17(733–743):2013Google Scholar
  148. 148.
    Chauhan PS, Dash D, Singh R (2014) Intranasal curcumin attenuates airway remodeling in murine model of chronic asthma. Int Immunopharmacol 21:63–75PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Venkatesan N (1999) Pulmonary protective effects of curcumin against paraquat toxicity. Life Sci 66(2):21–28CrossRefGoogle Scholar
  150. 150.
    Tyagi N, Kumari A, Dash D, Singh R (2014) Protective effects of intranasal curcumin on paraquat induced acute lung injury (ALI) in mice. Environ Toxicol Pharmacol 38:913–921PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Ray S, Sengupta A, Ray A (2007) Effects of paraquat on anti-oxidant system in rats. Indian J Exp Biol 45:432–438PubMedPubMedCentralGoogle Scholar
  152. 152.
    Senator A, Rachidi W, Lehmann S, Favier A, Benboubetra M (2004) Prion protein protects against DNA damage induced by paraquat in cultured cells. Free Radical Biol Med 37:1224–1230CrossRefGoogle Scholar
  153. 153.
    Decoté-Ricardo D, Chagas K, Rocha J, Redner P, Lopes UG, Cambier JC, de Arruda LB, Peçanha LMT (2009) Modulation of in vitro murine B-lymphocyte response by curcumin. Phytomedicine 16(10):982–988PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Camacho-Barquero L, Villegas I, Sánchez-Calvo JM, Talero E, Sánchez-Fidalgo S, Motilva V, de la Lastra CA (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7(3):333–342PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Bhattacharyya S, Hossain DMS, Mohanty S, Sen GS, Chattopadhyay S, Banerjee S, Chakraborty J, Das K, Sarkar D, Das T, Sa G (2010) Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol 7(4):306–315PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Jeong H, Yun C (2012) Effect of curcumin on LPS-induced neutrophil activation and acute lung injury. Eur Respir J 40(56):635Google Scholar
  157. 157.
    Madan B, Ghosh B (2003) Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock 19(1):91–96PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Jančinová V, Perečko T, Nosáľ R, Košťálová D, Bauerová K, Drábiková K (2009) Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition. Eur J Pharmacol 612(1):161–166PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Moon DO, Kim MO, Lee HJ, Choi YH, Park YM, Heo MS, Kim GY (2008) Curcumin attenuates ovalbumin-induced airway inflammation by regulating nitric oxide. Biochem Biophys Res Commun 375(2):275–279PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Lee JH, Kim JW, Ko NY, Mun SH, Her E, Kim BK et al (2008) Curcumin, a constituent of curry, suppresses IgE-mediated allergic response and mast cell activation at the level of Syk. J Allergy Clin Immunol 121(5):1225–1231PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Kuramoto Y, Yamada K, Tsuruta O, Sugano M (1996) Effect of natural food colorings on immunoglobulin production in vitro by rat spleen lymphocytes. Biosci Biotechnol Biochem 60(10):1712–1713PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK (2005) Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27(3):485–497PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Sikora E, Bielak-Zmijewska A, Piwocka K, Janusz S, Radziszewska E (1997) Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochem Pharmacol 54(8):899–907PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Fiala M (2015) Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules 20(2):3020–3026PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Varalakshmi C, Ali AM, Pardhasaradhi BVV, Srivastava RM, Singh S, Khar A (2008) Immunomodulatory effects of curcumin: in-vivo. Int Immunopharmacol 8(5):688–700PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Golombick T, Diamond TH, Manoharan A, Ramakrishna R (2015) The effect of curcumin (as Meriva) on absolute lymphocyte count (ALC), NK cells and T cell populations in patients with stage 0/1 chronic lymphocytic leukemia. J Cancer Ther 6(07):566CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Namitosh Tyagi
    • 1
  • Rashmi Singh
    • 1
  1. 1.Department of Zoology, MMVBanaras Hindu UniversityVaranasiIndia

Personalised recommendations